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Abstract—We consider secure and reliable connectivity in
wireless sensor networks that utilize a heterogeneous random key
predistribution scheme. We model the unreliability of wireless
links by an on-off channel model that induces an Erdős-Rényi
graph, while the heterogeneous scheme induces an inhomoge-
neous random key graph. The overall network can thus be
modeled by the intersection of both graphs. We present conditions
(in the form of zero-one laws) on how to scale the parameters of
the intersection model so that with high probability i) all of its
nodes are connected to at least k other nodes; i.e., the minimum
node degree of the graph is no less than k and ii) the graph is
k-connected, i.e., the graph remains connected even if any k− 1
nodes leave the network. We also present numerical results to
support these conditions in the finite-node regime. Our results
are shown to complement and generalize several previous work
in the literature.

Index Terms—General Random Intersection Graphs, Wireless
Sensor Networks, Security, Inhomogeneous Random Key Graphs,
k-connectivity, Mobility.

1. INTRODUCTION

A. Motivation and Background

Wireless sensor networks (WSNs) enable a broad range
of applications including military, health, and environmental
monitoring, among others [1]. A typical WSN consists of
hundreds, thousands, or hundreds of thousands of nodes that
are often deployed randomly in hostile environments. The ease
of deployment, low cost, low power consumption, and small
size have paved the way for the proliferation of WSNs, but
also rendered them vulnerable to various types of attacks. In
fact, security of WSNs is a key challenge given their unique
features [2]; e.g., limited computational capabilities, limited
transmission power, and vulnerability to node capture attacks.
Random key predistribution schemes were proposed to tackle
those limitations, and they are currently regarded as the most
feasible solutions for securing WSNs; e.g., see [3, Chapter 13]
and [4], and references therein.

Random key predistribution schemes were first introduced
in the pioneering work of Eschenauer and Gligor [5]. Their
scheme, hereafter referred to as the EG scheme, operates as
follows: prior to deployment, each sensor node is assigned
a random set of K cryptographic keys, selected from a key
pool of size P (without replacement). After deployment, two
nodes can communicate securely over an existing channel if
they share at least one key. The EG scheme led the way to
several other variants, including the q-composite scheme [6],
and the random pairwise scheme [6] among others.
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Recently, a new variation of the EG scheme, referred to
as the heterogeneous key predistribution scheme, was intro-
duced [7]. The heterogeneous scheme considers the case when
the network includes sensor nodes with varying levels of
resources, features, or connectivity requirements (e.g., regular
nodes vs. cluster heads); it is in fact envisioned [8] that
many WSN applications will be heterogeneous. The scheme
is described as follows. Given r classes, each sensor is
independently classified as a class-i node with probability
µi > 0 for each i = 1, . . . , r. Then, sensors in class-i are
each assigned Ki keys selected uniformly at random (without
replacement) from a key pool of size P . Similar to the EG
scheme, nodes that share key(s) can communicate securely
over an available channel after the deployment; see Section 2
for details.

In [9], the authors considered the reliability of secure WSNs
under the heterogeneous key predistribution scheme; namely,
when each wireless link fails with probability 1 − α inde-
pendently from other links. From a wireless communication
perspective, this is similar with investigating the secure con-
nectivity of a WSN under an on/off channel model, wherein
each wireless channel is on with probability α independently
from other links. There, we established critical conditions on
the probability distribution µµµ = {µ1, µ2, . . . , µr}, and scaling
of the key ring sizes KKK = {K1,K2, . . . ,Kr}, the key pool
size P , and the channel parameter α as a function of network
size n, so that the resulting WSN is securely connected with
high probability. Although these results form a crucial starting
point towards the analysis of the heterogeneous key predistri-
bution scheme, there remains to establish several important
properties of the scheme to obtain a full understanding of its
performance in securing WSNs. In particular, the connectivity
results given in [9] do not guarantee that the network would
remain connected when sensors fail due to battery depletion
or get captured by an adversary. Moreover, the results are
not applicable for mobile WSNs; wherein, the mobility of
sensor nodes may render the network disconnected. In essence,
sharper results that guarantee network connectivity in the
aforementioned scenarios are needed.

B. Contributions

The objective of our paper is to address the limitations
of the results in [9]. We consider the heterogeneous key
predistribtuion scheme under an on/off communication model
consisting of independent wireless channels each of which is
either on (with probability α), or off (with probability 1−α).
We focus on the k-connectivity property which implies that
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the network connectivity is preserved despite the failure of
any (k − 1) nodes or links [10]. Accordingly, k-connectivity
provides a guarantee of network reliability against the potential
failures of sensors or links. Moreover, for a k-connected
mobile WSN, any (k − 1) nodes are free to move anywhere
while the rest of the network remains at least 1-connected.

Our approach is based on modeling the WSN by an appro-
priate random graph and then establishing scaling conditions
on the model parameters such that certain desired properties
hold with high probability (whp) as the number of nodes n gets
large. The heterogeneous key predistribution scheme induces
an inhomogeneous random key graphs [7], denoted hereafter
by K(n,µµµ,KKK,P ), while the on-off communication model
leads to a standard Erdős-Rényi (ER) graph [11], denoted by
G(n, α). Hence, the appropriate overall random graph model
is the intersection of an inhomogeneous random key graph
with an ER graph, denoted K(n;µµµ,KKK,P ) ∩G(n;α).

We establish two main results for the intersection model
K(n;µµµ,KKK,P ) ∩ G(n;α); namely, i) a zero-one law for the
minimum node degree of K(n;µµµ,KKK,P )∩G(n;α) to be no less
than k for any non-negative integer k and ii) a zero-one law for
the k-connectivity property of K(n;µµµ,KKK,P )∩G(n;α) for any
non-negative integer k. More precisely, we present conditions
on how to scale the parameters of K(n;µµµ,KKK,P )∩G(n;α) so
that i) its minimum node degree is no less than k and ii) it is
k-connected, both with high probability when the number of
nodes n gets large. Furthermore, we show by simulations that
minimum node degree being no less than k and k-connectivity
properties exhibit almost equal (empirical) probabilities. Not
only do our results complement and generalize several previ-
ous work in the literature, but they also have broad range of
applications to other interesting problems (See Section 3 for
details).

C. Notation and Conventions
All limiting statements, including asymptotic equivalence

are considered with the number of sensor nodes n going to
infinity. The random variables (rvs) under consideration are all
defined on the same probability triple (Ω,F ,P). Probabilistic
statements are made with respect to this probability measure
P, and we denote the corresponding expectation by E. The
indicator function of an event E is denoted by 111[E]. We say
that an event holds with high probability (whp) if it holds with
probability 1 as n → ∞. For any event E, we let E denote
the complement of E. For any discrete set S, we write |S| for
its cardinality. For sets Sa and Sb, the relative compliment of
Sa in Sb is given by Sa \ Sb. In comparing the asymptotic
behaviors of the sequences {an}, {bn}, we use an = o(bn),
an = w(bn), an = O(bn), an = Ω(bn), and an = Θ(bn), with
their meaning in the standard Landau notation. Namely, we
write an = o(bn) as a shorthand for the relation limn→∞

an
bn

=
0, whereas an = O(bn) means that there exists c > 0 such
that an ≤ cbn for all n sufficiently large. Also, we have an =
Ω(bn) if bn = O(an), or equivalently, if there exists c > 0
such that an ≥ cbn for all n sufficiently large. Finally, we
write an = Θ(bn) if we have an = O(bn) and an = Ω(bn) at
the same time. We also use an ∼ bn to denote the asymptotic
equivalence limn→∞ an/bn = 1.

2. THE MODEL

We consider a network consisting of n sensor nodes labeled
as v1, v2, . . . , vn. Each sensor is assigned to one of the r
possible classes (e.g., priority levels) according to a probability
distribution µµµ = {µ1, µ2, . . . , µr} with µi > 0 for each
i = 1, . . . , r; clearly it is also needed that

∑r
i=1 µi = 1. Prior

to deployment, each class-i node is given Ki cryptographic
keys selected uniformly at random from a pool of size P .
Hence, the key ring Σx of node vx is a PKtx -valued random
variable (rv) where PA denotes the collection of all subsets of
{1, . . . , P} with exactly A elements and tx denotes the class
of node vx. The rvs Σ1,Σ2, . . . ,Σn are then i.i.d. with

P[Σx = S | tx = i] =

(
P

Ki

)−1

, S ∈ PKi .

After the deployment, two sensors can communicate securely
over an existing communication channel if they have at least
one key in common.

Throughout, we let KKK = {K1,K2, . . . ,Kr}, and assume
without loss of generality that K1 ≤ K2 ≤ . . . ≤ Kr.
Consider a random graph K induced on the vertex set V =
{v1, . . . , vn} such that distinct nodes vx and vy are adjacent
in K, denoted by the event Kxy , if they have at least one
cryptographic key in common, i.e.,

Kxy := [Σx ∩ Σy 6= ∅] . (1)

The adjacency condition (1) characterizes the inhomogeneous
random key graph K(n;µµµ,KKK,P ) that has been introduced
recently in [7]. This model is also known in the literature
as the general random intersection graph; e.g., see [12]–[14].

The inhomogeneous random key graph models the cryp-
tographic connectivity of the underlying WSN. In particular,
the probability pij that a class-i node and a class-j have a
common key, and thus are adjacent in K(n;µµµ,KKK,P ), is given
by

pij = P[Kxy] = 1−
(
P −Ki

Kj

)/(
P

Kj

)
(2)

as long as Ki+Kj ≤ P ; otherwise if Ki+Kj > P , we clearly
have pij = 1. We also find it useful define the mean probability
λi of edge occurrence for a class-i node in K(n;µµµ,KKK,P ).
With arbitrary nodes vx and vy , we have

λi = P[Kxy | tx = i] =

r∑
j=1

pijµj , i = 1, . . . , r, (3)

as we condition on the class ty of node vy .
In this work, we consider the communication topology

of the WSN as consisting of independent channels that are
either on (with probability α) or off (with probability 1− α).
More precisely, let {Bij(α), 1 ≤ i < j ≤ n} denote
i.i.d Bernoulli rvs, each with success probability α. The
communication channel between two distinct nodes vx and
vy is on (respectively, off) if Bxy(α) = 1 (respectively if
Bxy(α) = 0). This simple on-off channel model captures the
unreliability of wireless links and enables a comprehensive
analysis of the properties of interest of the resulting WSN,
e.g., its connectivity. It was also shown that on-off channel
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model provides a good approximation of the more realistic
disk model [15] in many similar settings and for similar
properties of interest; e.g., see [16], [17]. The on/off channel
model induces a standard Erdős-Rényi (ER) graph G(n;α)
[18], defined on the vertices V = {v1, . . . , vn} such that vx
and vy are adjacent, denoted Cxy , if Bxy(α) = 1.

We model the overall topology of a WSN by the intersection
of an inhomogeneous random key graph K(n;µµµ,KKK,P ) and an
ER graph G(n;α). Namely, nodes vx and vy are adjacent in
K(n;µµµ,KKK,P ) ∩ G(n;α), denoted Exy , if and only if they
are adjacent in both K and G. In other words, the edges
in the intersection graph K(n;µµµ,KKK,P ) ∩ G(n;α) represent
pairs of sensors that can securely communicate as they have
i) a communication link in between that is on, and ii) a
shared cryptographic key. Therefore, studying the connectivity
properties of K(n;µµµ,KKK,P )∩G(n;α) amounts to studying the
secure connectivity of heterogenous WSNs under the on/off
channel model.

Hereafter, we denote the intersection graph K(n;µµµ,KKK,P )∩
G(n;α) by the graph H(n;µµµ,KKK,P, α). To simplify the nota-
tion, we let θθθ = (KKK,P ), and ΘΘΘ = (θθθ, α). The probability of
edge existence between a class-i node vx and a class-j node
vy in H(n;ΘΘΘ) is given by

P[Exy

∣∣∣ tx = i, ty = j] = P[Kxy∩Cxy | tx = i, ty = j] = αpij

by independence. Similar to (3), the mean edge probability for
a class-i node in H(n;µµµ,ΘΘΘ) as Λi is given by

Λi =

r∑
j=1

µjαpij = αλi, i = 1, . . . , r. (4)

Throughout, we assume that the number of classes r is
fixed and does not scale with n, and so are the probabilities
µ1, . . . , µr. All of the remaining parameters are assumed to
be scaled with n.

We close this section with some additional notation that will
be useful in the rest of the paper. For any three distinct nodes
vx , vy and vj , we define Exj∩yj := Exj ∩ Eyj , Exj∩yj :=

Exj ∩Eyj , Exj∩yj := Exj ∩Eyj , and Exj∩yj := Exj ∩Eyj .

3. MAIN RESULTS AND DISCUSSION

A. Results

We refer to a mapping K1, . . . ,Kr, P : N0 → Nr+1
0 as a

scaling (for the inhomogeneous random key graph) as long as
the conditions

2 ≤ K1,n ≤ K2,n ≤ . . . ≤ Kr,n ≤ Pn/2 (5)

are satisfied for all n = 2, 3, . . .. Similarly any mapping α :
N0 → (0, 1) defines a scaling for the ER graphs. As a result,
a mapping ΘΘΘ : N0 → Nr+1

0 × (0, 1) defines a scaling for the
intersection graph H(n;µµµ,ΘΘΘn) given that condition (5) holds.
We remark that under (5), the edge probabilities pij will be
given by (2).

We first present a zero-one law for the minimum node
degree being no less than k in the inhomogeneous random
key graph intersecting ER graph.

Theorem 3.1. Consider a probability distribution µµµ =
{µ1, . . . , µr} with µi > 0 for i = 1, . . . , r and a scaling
ΘΘΘ : N0 → Nr+1

0 × (0, 1). Let the sequence γ : N0 → R be
defined through

Λ1(n) = αnλ1(n) =
log n+ (k − 1) log log n+ γn

n
, (6)

for each n = 1, 2, . . ..
(a) If λ1(n) = o(1), we have

lim
n→∞

P

[
Minimum node degree
of H(n;µµµ,ΘΘΘn) ≥ k

]
= 0 if lim

n→∞
γn = −∞

(b) We have

lim
n→∞

P

[
Minimum node degree
of H(n;µµµ,ΘΘΘn) ≥ k

]
= 1 if lim

n→∞
γn =∞.

Next, we present a zero-one law for the k-connectivity of
H(n;µµµ,ΘΘΘ).

Theorem 3.2. Consider a probability distribution µµµ =
{µ1, . . . , µr} with µi > 0 for i = 1, . . . , r and a scaling
ΘΘΘ : N0 → Nr+1

0 × (0, 1). Let the sequence γ : N0 → R be
defined through (6) for each n = 1, 2, . . ..

(a) If λ1(n) = o(1), we have

lim
n→∞

P [H(n;µµµ,ΘΘΘn) is k-connected] = 0 if lim
n→∞

γn = −∞

(b) If

Pn = Ω(n), (7)
Kr,n

Pn
= o(1), (8)

Kr,n

K1,n
= o(log n), (9)

we have

lim
n→∞

P [H(n;µµµ,ΘΘΘn) is k-connected] = 1 if lim
n→∞

γn =∞.
(10)

In words, Theorem 3.1 (respectively Theorem 3.2) states
that the minimum node degree in H(n;µµµ,ΘΘΘn) is greater than
or equal to k (respectively H(n;µµµ,ΘΘΘn) is k-connected) whp
if the mean degree of class-1 nodes, i.e., nΛ1(n), is scaled as
(log n+ (k − 1) log log n+ γn) for some sequence γn satis-
fying limn→∞ γn = ∞. On the other hand, if the sequence
γn satisfies limn→∞ γn = −∞, then whp H(n;µµµ,ΘΘΘn) has at
least one node with degree strictly less than k, and hence is
not k-connected. This shows that the critical scaling for the
minimum node degree of H(n;µµµ,ΘΘΘn) being greater than or
equal to k (respectively for H(n;µµµ,ΘΘΘn) to be k-connected)
is given by Λ1(n) = logn+(k−1) log logn

n , with the sequence
γn : N0 → R measuring the deviation of Λ1(n) from the
critical scaling.

The scaling condition (6) can be given a more explicit form
under some additional constraints. In particular, it was shown
in [7, Lemma 4.2] that if λ1(n) = o(1) then

λ1(n) ∼
K1,nKavg,n

Pn
(11)
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where Kavg,n =
∑r
j=1 µjKj,n denotes the mean key ring size

in the network. This shows that the minimum key ring size
K1,n is of paramount importance in controlling the connec-
tivity and reliability of the WSN; as explained previously, it
then also controls the number of mobile sensors that can be
accommodated in the network. For example, with the mean
number Kavg,n of keys per sensor is fixed, we see that reducing
K1,n by half means that the smallest αn (that gives the largest
link failure probability 1−αn) for which the network remains
k-connected whp is increased by two-fold for any given k;
e.g., see Figure 3 for a numerical example demonstrating this.

B. Comments on the additional technical conditions

We first comment on the additional technical condition
λ1(n) = o(1). This is enforced here mainly for technical
reasons for the proof of the zero-law of Theorem 3.1 (and thus
of Theorem 3.2) to work. A similar condition was also required
in [19, Thm 1] for establishing the zero-law for the minimum
node degree being no less than k in the homogeneous random
key graph intersecting ER graph. In view of (11), this condition
is equivalent to

K1,nKavg,n = o(Pn). (12)

In real-world WSN applications the key pool size Pn is
envisioned to be orders of magnitude larger than any key
ring size in the network [5], [20]. As discussed below in
more details, this is needed to ensure the resilience of the
network against adversarial attacks. Concluding, (12) (and thus
λ1(n) = o(1)) is indeed likely to hold in most applications.

Conditions (7) and (8) are also likely to be needed in
practical WSN implementations in order to ensure the re-
silience of the network against node capture attacks; e.g., see
[5], [20]. To see this, assume that an adversary captures a
number of sensors, compromising all the keys that belong to
the captured nodes. If Pn = O(Kr,n) contrary to (8), then it
would be possible for the adversary to compromise a positive
fraction of the key pool (i.e., Ω(Pn) keys) by capturing only
a constant number of sensors that are of type r. Similarly, if
Pn = o(n), contrary to (7), then again it would be possible for
the adversary to compromise Ω(Pn) keys by capturing only
o(n) sensors (whose type does not matter in this case). In
both cases, the WSN would fail to exhibit the unassailability
property [21], [22] and would be deemed as vulnerable against
adversarial attacks. We remark that both (7) and (8) were
required in [7], [19] for obtaining the one-law for connectivity
and k-connectivity, respectively, in similar settings to ours.

Finally, the condition (9) is enforced mainly for technical
reasons and takes away from the flexibility of assigning very
small key rings to a certain fraction of sensors when k-
connectivity is considered; we remark that (9) is not needed
for the minimum node degree result given at Theorem 3.1. An
equivalent condition was also needed in [7] for establishing
the one-law for connectivity in inhomogeneous random key
graphs. We refer the reader to [7, Section 3.2] for an extended
discussion on the feasibility of (9) for real-world WSN imple-
mentations, as well as possible ways to replace it with milder
conditions.

We close by providing a concrete example that demonstrates
how all the conditions required by Theorem 3.2 can be met in
a real-world implementation. Consider any number r of sensor
types, and pick any probability distribution µµµ = {µ1, . . . , µr}
with µi > 0 for all i = 1, . . . , r. For any channel probability
αn = Ω( logn

n ), set Pn = n log n and use

K1,n =
(log n)1/2+ε

√
αn

and Kr,n =
(1 + ε)(log n)3/2−ε

µr
√
αn

with any ε > 0. Other key ring sizes K1,n ≤
K2,n, . . . ,Kr−1,n ≤ Kr,n can be picked arbitrarily. In view
of Theorem 3.2 and the fact [7, Lemma 4.2] that λ1(n) ∼
K1,nKavg,n

Pn
, the resulting network will be k-connected whp for

any k = 1, 2, . . .. Of course, there are many other parameter
scalings that one can choose.

C. Comparison with related work

In comparison with the existing literature on similar models,
our result can be seen to extend the work by Zhao et al.
[19] on the homogeneous random key graph intersecting ER
graph to the heterogeneous setting. There, zero-one laws for
the property that the minimum node degree is no less than k
and the property that the graph is k-connected were established
for H(n,K, P, αn). With r = 1, i.e., when all nodes belong to
the same class and thus receive the same number K of keys,
Theorem 3.1 and Theorem 3.2 recover the result of Zhao et
al. (See [19, Theorems 1-2]).

Our paper also extends the work by Yağan [7] who con-
sidered the inhomogeneous random key graph K(n,µµµ,KKK,P )
under full visibility; i.e., when all pairs of nodes have a
communication channel in between. There, Yağan established
zero-one laws for the absence of isolated nodes (i.e., absence
of nodes with degree zero) and 1-connectivity. Our work
generalizes Yağan’s results on two fronts. Firstly, we con-
sider more practical WSN scenarios where the unreliability
of wireless communication channels are taken into account
through the on/off channel model. Secondly, in addition to
the properties that the graph has no isolated nodes (i.e., the
minimum node degree is no less than 1) and is 1-connected,
we consider general minimum node degree and connectivity
values, k = 0, 1, . . ..

Finally, our work (with αn = 1 for each n = 2, 3, . . .)
improves upon the results by Zhao et al. [12]; therein, this
model was referred to as the general random intersection
graph. Our main argument is that the additional conditions
required by their main result renders them inapplicable in
practical WSN implementations. This issue is discussed at
length in [7, Section 3.3], but we give a summary here
for completeness. With Xn denoting the random variable
representing the number of keys assigned to an arbitrary node
in the network, the main result in [12] requires

var[Xn] = o

(
(E[Xn])

2

n (log n)
2

)
(13)

that puts a prohibitively stringent limit on the variance of the
key ring sizes. For instance, it precludes using K2,n = cK1,n

for some c > 1, and forces key ring sizes to be asymptotically
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equivalent; i.e., Kr,n ∼ K1,n. In fact, under (13), even the
simplest case where key ring sizes vary by a constant is
possible only when E[Xn] = ω (

√
n log n). Put differently,

the results in [12] are useful only if the mean number of keys
assigned to a sensor node is much larger than

√
n log n; and

even then only small variations among key ring sizes would be
possible. However, in most WSN applications, sensor nodes
will have very limited memory and computational capabilities
[1] and such large key ring sizes are not likely to be feasible;
typically key rings on the order of log n are envisioned in
applications [5], [20]. These arguments show that conditions
enforced in [12] are not likely to hold in practice. In contrast,
our results allow for much larger variation in key ring sizes and
require parameter conditions that are likely to hold in practice;
e.g., we only need E[Xn] = o(Pn).

4. NUMERICAL RESULTS

We now present numerical results to support Theorems 3.1
and 3.2 in the finite node regime. In all experiments, we fix
the number of nodes at n = 500 and the size of the key pool
at P = 104. To help better visualize the results, we use the
curve fitting tool of MATLAB.

In Figure 1, we consider the channel parameters α = 0.2,
α = 0.4, α = 0.6, and α = 0.8, while varying the parameter
K1, i.e., the smallest key ring size, from 5 to 40. The number
of classes is fixed to 2, with µµµ = {0.5, 0.5}. For each value of
K1, we set K2 = K1 + 10. For each parameter pair (KKK,α),
we generate 200 independent samples of the graph H(n;µµµ,ΘΘΘ)
and count the number of times (out of a possible 200) that the
obtained graphs i) have minimum node degree no less than
2 and ii) are 2-connected. Dividing the counts by 200, we
obtain the (empirical) probabilities for the events of interest.
In all cases considered here, we observe that H(n;µµµ,ΘΘΘ) is
2-connected whenever it has minimum node degree no less
than 2 yielding the same empirical probability for both events.
This supports the fact that the properties of k-connectivity and
minimum node degree being larger than k are asymptotically
equivalent in H(n;µµµ,ΘΘΘn).

In Figure 1 as well as the ones that follow we show the
critical threshold of connectivity “predicted” by Theorem 3.2
by a vertical dashed line. More specifically, the vertical dashed
lines stand for the minimum integer value of K1 that satisfies

λ1(n)=

2∑
j=1

µj

(
1−

(
P−Kj
K1

)(
P
K1

) ) >
1

α

log n+ (k − 1) log log n

n

(14)
with any given k and α. We see from Figure 1 that the
probability of k-connectivity transitions from zero to one
within relatively small variations in K1. Moreover, the critical
values of K1 obtained by (14) lie within the transition interval.

In Figure 2, we consider four different values for k, namely
we set k = 4, k = 6, k = 8, and k = 10 while varying K1

from 15 to 40 and fixing α to 0.4. The number of classes
is fixed to 2 with µµµ = {0.5, 0.5} and we set K2 = K1 + 10
for each value of K1. Using the same procedure that produced
Figure 1, we obtain the empirical probability that H(n;µµµ,θθθ, α)
is k-connected versus K1. The critical threshold of connectiv-
ity asserted by Theorem 3.2 is shown by a vertical dashed
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Fig. 1. Empirical probability that H(n;µµµ,θθθ, α) is 2-connected as a function
of KKK for α = 0.2, α = 0.4, α = 0.6, α = 0.8 with n = 500 and P =
104; in each case, the empirical probability value is obtained by averaging
over 200 experiments. Vertical dashed lines stand for the critical threshold of
connectivity asserted by Theorem 3.2.
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Fig. 2. Empirical probability that H(n;µµµ,θθθ, α) is k-connected as a function
of K1 for k = 4, k = 6, k = 8, and k = 10, with n = 500 and P =
104; in each case, the empirical probability value is obtained by averaging
over 200 experiments. Vertical dashed lines stand for the critical threshold of
connectivity asserted by Theorem 3.2.

line in each curve. Again, we see that numerical results are in
parallel with Theorem 3.2.

Figure 3 is generated in a similar manner with Figure 1,
this time with an eye towards understanding the impact of the
minimum key ring size K1 on network connectivity. To that
end, we fix the number of classes at 2 with µµµ = {0.5, 0.5} and
consider four different key ring sizes KKK each with mean 40;
we consider KKK = {10, 70}, KKK = {20, 60}, KKK = {30, 50}, and
KKK = {40, 40}. We compare the probability of 2-connectivity
in the resulting networks while varying α from zero to one.
We see that although the average number of keys per sensor is
kept constant in all four cases, network connectivity improves
dramatically as the minimum key ring size K1 increases; e.g.,
with α = 0.2, the probability of connectivity is one when
K1 = K2 = 40 while it drops to zero if we set K1 = 10
while increasing K2 to 70 so that the mean key ring size is
still 40.

Finally, we examine the reliability of H(n;µµµ,θθθ, α) by
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Fig. 3. Empirical probability that H(n;µµµ,θθθ, α) is 2-connected with n =
500,µµµ = (1/2, 1/2), and P = 104; we consider four choices of KKK =
(K1,K2) each with the same mean.

looking at the probability of 1-connectivity as the number
of deleted (i.e., failed) nodes increases. From a mobility
perspective, this is equivalent to investigating the probability
of a WSN remaining connected as the number of mobile
sensors leaving the network increases. In Figure 4, we set
n = 500,µµµ = {1/2, 1/2}, α = 0.4, P = 104, and select K1

and K2 = K1 + 10 from (14) for k = 8, k = 10, k = 12, and
k = 14. With these settings, we would expect (for very large
n) the network to remain connected whp after the deletion of
up to 7, 9, 11, and 13 nodes, respectively. Using the same
procedure that produced Figure 1, we obtain the empirical
probability that H(n;µµµ,θθθ, α) is connected as a function of the
number of deleted nodes1 in each case. We see that even with
n = 500 nodes, the resulting reliability is close to the levels
expected to be attained asymptotically as n goes to infinity. In
particular, we see that the probability of remaining connected
when (k − 1) nodes leave the network is around 0.75 for the
first two cases and around 0.90 for the other two cases.

5. PRELIMINARIES

A number of technical results are collected here for easy
referencing.

Proposition 5.1 ([7, Proposition 4.1]). For any scaling
K1,K2, . . . ,Kr, P : N0 → Nr+1

0 , we have

λ1(n) ≤ λ2(n) ≤ . . . ≤ λr(n), n = 2, 3, . . . . (15)

In view of (4), Proposition 5.1 implies that

Λ1(n) ≤ Λ2(n) ≤ . . . ≤ Λr(n), n = 2, 3, . . . . (16)

1We choose the nodes to be deleted from the minimum vertex cut of H,
defined as the minimum cardinality set whose removal renders it disconnected.
This captures the worst-case nature of the k-connectivity property in a
computationally efficient manner (as compared to searching over all k-sized
subsets and deleting the one that gives maximum damage).
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Fig. 4. Empirical probability that H(n;µµµ,θθθ, α) remains connected after
deleting nodes from the minimum vertex cut set. We fix n = 500,µµµ =
(1/2, 1/2), α = 0.4, P = 104, and choose K1 and K2 = K1 + 10
from (14) for each k = 8, k = 10, k = 12, and k = 14; i.e., we use
K1 = 30, 33, 36, 38, respectively.

Proposition 5.2 ([7, Proposition 4.4]). For any set of positive
integers K1, . . . ,Kr, P and any scalar a ≥ 1, we have(

P−daKie
Kj

)(
P
Kj

) ≤

((P−Ki
Kj

)(
P
Kj

) )a , i, j = 1, . . . , r (17)

Proposition 5.3. Consider a random variable Z defined as

Z = 1−p1i =

(
P−K1

Ki

)(
P
Ki

) , with probability µi, i = 1, . . . , r.

We have var [Z] ≤ 1
4 (p1r)

2
.

Proof. Recalling (15), we see that pij increases with both i
and j, and it follows that

1− p1r ≤ Z ≤ 1− p11,

From Popoviciu’s inequality [23, pp. 9], we see that

var [Z] ≤ 1

4
(Zmax − Zmin)

2
=

1

4
(p1r − p11)

2 ≤ 1

4
(p1r)

2

since p1r ≥ p11 ≥ 0. �

Proposition 5.4. Consider a scaling K1,K2, . . . ,Kr, P :
N0 → Nr+1

0 and a scaling α : N0 → (0, 1). Let the sequence
γ : N0 → R be defined through (6) for each n = 1, 2, . . ..
Under (7) and (9), we have

K1,n = ω(1) (18)

when limn→∞ γn = +∞.

Proof. From (6), we clearly have

λ1(n) >
log n

nαn
(19)

for all n sufficiently large when limn→∞ γn = +∞. We also
know from [24, Lemmas 7.1-7.2] that

p1j(n) ≤ K1,nKj,n

Pn −Kj,n
≤ 2

K1,nKj,n

Pn
, j = 1, . . . , r
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where the last bound follows from (5). This leads to

λ1(n) =

r∑
j=1

µjp1j ≤ 2

r∑
j=1

µj
K1,nKj,n

Pn
≤ 2

K1,nKr,n

Pn
(20)

Combining (19) and (20) we get

K2
1,n

Kr,n

K1,n
>
Pn
2

log n

nαn

for all n sufficiently large. Under (7) and (9), this immediately
establishes (18) since αn ≤ 1. �

Fact 5.5. If λ1(n) = o(1), then

p1i(n) = o(1), i = 1, . . . , r

Proof. Recalling (3), we obtain

p1i(n) ≤
(

1

µi

)
λ1(n) = O (λ1(n)) = o(1)

under the given assumption that λ1(n) = o(1). �

Fact 5.6. For any positive constants `1, `2, the function

f(x) = x`1(1− x)n−`2 , x ∈ (0, 1) (21)

is monotone decreasing in x for all n sufficiently large.

Proof. Differentiating f(x) with respect to x ∈ (0, 1), we get

d

dx
f(x) = `1x

`1−1(1− x)n−`2 − (n− `2)x`1(1− x)n−`2−1

= x`1−1(1− x)n−`2−1(`1(1− x)− (n− `2)x).

The conclusion follows since (`1(1−x)−(n−`2)x) < 0 for all
n sufficiently large, for any positive `1, `2 and x ∈ (0, 1). �

Fact 5.7. For 0 ≤ x ≤ 1, the following properties hold.
(a) [19, Fact 2] If 0 < y < 1, then (1− x)

y ≤ 1− xy.
(b) Let a > 1. Then, 1− xa ≤ a(1− x).

Proof. By a crude bounding, we have

1− xa =

∫ 1

x

ata−1 dt ≤
∫ 1

x

a dt = a(1− x).

�

Fact 5.8 ([19, Fact 3]). Let x and y be both positive functions
of n. If x = o(1), and x2y = o(1) hold, then

(1− x)
y ∼ e−xy

Fact 5.9 ([19, Fact 5]). Let a, x, and y be positive integers
satisfying y ≥ (2a+ 1)x. Then,(

y−ax
x

)(
y
x

) ≥

[(
y−x
x

)(
y
x

) ]2a

Fact 5.10. Let x ∈ (0, 1) and a > 1. Then,

1− xa ≤ a(1− x)

We will use several bounds given below throughout the
paper:

(1± x) ≤ e±x, x ∈ (0, 1) (22)

(x+ y)
p ≤ 2p−1 (xp + yp) (23)(

n

`

)
≤
(en
`

)`
, ` = 1, . . . , n, n = 1, 2, . . . (24)

bn2 c∑
`=2

(
n

`

)
≤ 2n (25)(

n

`

)
≤ n`, ` = 1, . . . , n, n = 1, 2, . . . (26)

6. PROOF OF THEOREM 3.1

A. Establishing the one-law

The proof of Theorem 3.1 relies on the method of first and
second moments applied to the number of nodes with degree
` in H(n;µµµ,ΘΘΘn). Let X`(n;µµµ,ΘΘΘn) denote the total number
of nodes with degree ` in H(n;µµµ,ΘΘΘn), namely,

X`(n;µµµ,ΘΘΘn) =

n∑
i=1

111 [vi is of degree ` in H(n;µµµ,ΘΘΘn)]

The method of first moment [25, Eqn. (3.10), p. 55] gives

P [X`(n;µµµ,ΘΘΘn) = 0] ≥ 1− E [X`(n;µµµ,ΘΘΘn)] (27)

The one-law states that the minimum node degree in
H(n;µµµ,ΘΘΘn) is no less than k asymptotically almost surely
(a.a.s.); i.e., limn→∞ P [X`(n;µµµ,ΘΘΘn) = 0] = 1, for all ` =
0, 1, . . . , k− 1. Thus, the one-law will follow if we show that

lim
n→∞

E [X`(n;µµµ,ΘΘΘn)] = 0, ` = 0, 1, . . . , k − 1. (28)

We let Di,`(n;µµµ,ΘΘΘn) denote the event that node vi
in H(n;µµµ,ΘΘΘn) has degree ` for each i = 1, 2, . . . , n.
Throughout, we simplify the notation by writing Di,` instead
of Di,`(n;µµµ,ΘΘΘn). By definition, we have X`(n;µµµ,ΘΘΘn) =∑n
i=1 111 [Di,`] and it follows that

E [X`(n;µµµ,ΘΘΘn)] =

n∑
i=1

P [Di,`] = nP [Dx,`] (29)

by the exchangeability of the indicator rvs
{111 [Di,`] ; i = 1, . . . , n}.

In view of (27) and (29), we see that (28) and hence the
one-law would follow upon showing

lim
n→∞

nP [Dx,`] = 0, ` = 0, 1, . . . , k − 1. (30)

We start by deriving the probability of Dx,`. For any node
vx, the events E1x, E2x, . . . , E(x−1)x, E(x+1)x, . . . , Enx are
mutually independent conditionally on the type tx. It follows
from (4) that the degree of a node vx, i.e., Dx, is conditionally
binomial leading to

Dx =st Bin(n− 1,Λi), with probability µi, i = 1, . . . , r

Thus, we get

P [Dx,`] =

r∑
i=1

µiP [Dx,` | tx = i]
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=

r∑
i=1

µi

(
n− 1

`

)
(Λi(n))

`
(1− Λi(n))

n−`−1

≤

(
r∑
i=1

µi (nΛi(n))
`
(1− Λi(n))

n−`−1

)
≤ (`! )

−1
(nΛ1(n))

`
(1− Λ1(n))

n−`−1

≤ (`! )
−1

(nΛ1(n))
`
e−(n−`−1)Λ1(n)

for all n sufficiently large, as we invoke Fact 5.6 together
with (16), and note that ` is a non-negative integer constant.
Combining (6) and (23), and using the fact that Λ1(n) ≤ 1,
we see that

nP [Dx,`]

≤ n (`! )
−1

(log n+ (k − 1) log log n+ γn)
` ·

· e− logn−(k−1) log logn−γne(`+1)Λ1(n)

≤ 2`−1
(

(log n)
`
(1 + o(1))

`
+ γ`n

)
e−(k−1) log logn−γneO(1)

= O(1)e−(k−1−`) log logn−γn +O(1)γ`ne
−(k−1) log logn−γn .

When limn→∞ γn =∞, we readily get the desired conclusion
(30). This establishes the one-law.

B. Establishing the zero-law

Our approach in establishing the zero-law relies on the
method of second moment applied to a variable that counts
the number of nodes in H(n;µµµ,ΘΘΘn) that are class-1 and
with degree `. Similar to the discussion given before, we let
Y`(n;µµµ,ΘΘΘn) denote the total number of nodes that are class-1
and with degree ` in H(n;µµµ,ΘΘΘn), namely,

Y`(n;µµµ,ΘΘΘn) (31)

=

n∑
i=1

111 [vi is class 1 and has degree ` in H(n;µµµ,ΘΘΘn)]

Clearly, if we can show that whp there exists at least one class-
1 node with a degree strictly less than k under the enforced
assumptions (with limn→∞ γn = −∞) then the zero-law
immediately follows.

With a slight abuse of notations, we let Di,`(n;µµµ,ΘΘΘn)
denote the event that node vi in H(n;µµµ,ΘΘΘn) is class-1 and
has degree ` for each i = 1, 2, . . . , n. Throughout, we simplify
the notation by writing Di,` instead of Di,`(n;µµµ,ΘΘΘn). Thus,
we have Y`(n;µµµ,ΘΘΘn) =

∑n
i=1 111 [Di,`]. The method of second

moments [25, Remark 3.1, p. 55] gives

P [Y`(n;µµµ,ΘΘΘn) = 0] ≤ 1− E [Y`(n;µµµ,ΘΘΘn)]
2

E [Y`(n;µµµ,ΘΘΘn)2]
. (32)

We have E [Y`(n;µµµ,ΘΘΘn)] = nP [Dx,`] and

E
[
Y`(n;µµµ,ΘΘΘn)2

]
= nP [Dx,`] + n(n− 1)P [Dx,` ∩Dy,`] ,

whence
E
[
Y`(n;µµµ,ΘΘΘn)2

]
E [Y`(n;µµµ,ΘΘΘn)]

2 =
1

nP [Dx,`]
+
n− 1

n

P [Dx,` ∩Dy,`]

(P [Dx,`])
2 .

(33)
From (32) and (33), we see that the zero-law will follow if

we show that
lim
n→∞

nP [Dx,`] =∞, (34)

and
P [Dx,` ∩Dy,`] ∼ (P [Dx,`])

2 (35)

for some ` = 0, 1, . . . , k − 1 under the enforced assumptions.
The next two results will help establish (34) and (35).

Lemma 6.1. If Λ1(n) = o
(

1√
n

)
, then for any non-negative

integer constant ` and any node vx, we have

P [Dx,`] ∼ µ1 (`! )
−1

(nΛ1(n))
`
e−nΛ1(n) (36)

Proof. Considering any class-1 node vi, and recalling (4), we
know that the events E1i, E2i, . . . , E(i−1)i, E(i+1)i, . . . , Eni
are mutually independent. Thus, it follows that the degree
of a given node vi, conditioned on being class-1, follows a
Binomial distribution Bin(n− 1,Λ1(n)). Thus,

P [Di,`] = µ1P [Di,` | ti = 1]

= µ1

(
n− 1

`

)
Λ1(n)` (1− Λ1(n))

n−`−1

Next, given that Λ1(n) = o
(

1√
n

)
and ` is constant, it

follows that Λ1(n) = o(1) and Λ1(n)2(n − ` − 1) = o(1).
Invoking Fact 5.8, and the fact that

(
n−1
`

)
∼ (`! )

−1
n`, the

conclusion (36) follows. �

Lemma 6.2. Consider scalings K1, . . . ,Kr, P : N0 → Nr+1
0

and α : N0 → (0, 1), such that λ1(n) = o(1) and (6) holds
with limn→∞ γn = −∞. The following two properties hold

(a) If nΛ1(n) = Ω(1), then for any non-negative integer
constant ` and any two distinct nodes vx and vy , we have

P [Dx,` ∩Dy,`] ∼ µ2
1 (`! )

−2
(nΛ1(n))

2`
e−2nΛ1(n) (37)

(b) For any two distinct nodes vx and vy , we have

P [Dx,0 ∩Dy,0] ∼ µ2
1e
−2nΛ1(n) (38)

The proof of Lemma 6.2 is given in Appendix B. We
now show why the zero-law follows from Lemma 6.1 and
Lemma 6.2 by means of establishing (34) and (35) for some
` = 0, 1, . . . , k − 1. First, we see from (6) that Λ1(n) ≤
logn+(k−1) log logn

n = o
(

1√
n

)
when limn→∞ γn = −∞.

Invoking Lemma 6.1, this gives

nP [Dx,`] ∼ nµ1 (`! )
−1

(nΛ1(n))
`
e−nΛ1(n) (39)

for each ` = 0, 1, . . .. We will obtain (34) and (35) using
subsubsequence principle [25, p. 12] and considering the cases
where nΛ1(n) = Ω(1) and nΛ1(n) = o(1) separately.

1) The case where there exists an ε > 0 such that nΛ1(n) >
ε for all n sufficiently large: In this case we will establish (34)
and (35) for ` = k− 1. Setting ` = k− 1 and substituting (6)
into (39), we get

nP [Dx,`]

∼ nµ1 [(k − 1) ! ]
−1

(nΛ1(n))
k−1

e− logn−(k−1) log logn−γn

= µ1 [(k − 1) ! ]
−1

(log n+ (k − 1) log log n+ γn)
k−1 ·

· e−(k−1) log logn−γn (40)
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Let

fn(k; γn)

:= (log n+ (k − 1) log log n+ γn)
k−1

e−(k−1) log logn−γn ,

and note that (log n+ (k − 1) log log n+ γn) ≥ ε for all n
sufficiently large by virtue of the fact that nΛ1(n) > ε. Fix n
sufficiently large, pick ζ ∈ (0, 1) and consider the cases when
γn ≤ −(1− ζ) log n and γn > −(1− ζ) log n, separately. In
the former case, we get

fn(k; γn) ≥ εe−(k−1) log logn+(1−ζ) logn,

and in the latter case, we get

fn(k; γn) ≥ (ζ log n)
k−1

e−(k−1) log logn−γn = ζk−1e−γn .

Thus, for all n sufficiently large, we have

fn(k; γn) ≥ min
{
εe−(k−1) log logn+(1−ζ) logn, ζk−1e−γn

}
.

It is now clear that

lim
n→∞

fn(k; γn) =∞, (41)

since ζ ∈ (0, 1) and limn→∞ γn = −∞. Reporting (41) into
(40), we establish (34). Furthermore, from Lemma 6.1 and
Lemma 6.2, it is clear that (35) follows for ` = k − 1.

2) The case where limn→∞ nΛ1(n) = 0: In this case, we
will establish (34) and (35) for ` = 0. Setting ` = 0 in (39),
we obtain

nP [Dx,0] ∼ nµ1e
nΛ1(n) ∼ nµ1

by virtue of the fact that nΛ1(n) = o(1). This readily
gives (34). Furthermore, from Lemma 6.1 (with ` = 0) and
Lemma 6.2, (35) immediately follows.

The two cases considered cover all the possibilities for the
limit of nΛ1(n). By virtue of the subsubsequence principle
[25, p. 12], we get (34) and (35) without any condition on the
sequence nΛ1(n); i.e., we obtain the zero-law even when the
sequence nΛ1(n) does not have a limit!

7. PROOF OF THEOREM 3.2

A. Establishing the zero-law

Let κ denote the the vertex connectivity of H(n,µµµ,ΘΘΘn),
i.e., the minimum number of nodes to be deleted to make
the graph disconnected. Also, let δ denote the minimum node
degree in H(n,µµµ,ΘΘΘn). It is clear that if a random graph is
k-connected, meaning that κ ≥ k, then it does not have any
node with degree less than k. Thus [κ ≥ k] ⊆ [δ ≥ k] and the
conclusion

P[κ ≥ k] ≤ P[δ ≥ k] (42)

immediately follows. In view of (42), we obtain the zero-law
for k-connectivity, i.e., that

lim
n→∞

P[H(n;µµµ,ΘΘΘn) is k-connected] = 0,

when limn→∞ γn = −∞ from the zero-law part of Theo-
rem 3.1. Put differently, the conditions that lead to the zero-
law part of Theorem 3.1, i.e., λ1(n) = o(1) and limn→∞ γn =
−∞, automatically lead to the zero-law part of Theorem 3.2.

B. Establishing the one-law

An important step towards establishing the one-law of
Theorem 3.2 is presented in Appendix C. There, we show
that it suffices to establish the one law in Theorem 3.2
under the additional condition that γn = o (log n), which
leads to a number of useful consequences. Let a sequence
β`,n : N× N0 → R be defined through the relation

Λ1(n) =
log n+ ` log log n+ β`,n

n
(43)

for each n ∈ N0 and ` ∈ N. In view of the arguments in
Appendix C, the one-law (10) follows from the next result.

Theorem 7.1. Let ` be a non-negative constant integer.
Under (7), (8), (9), and (43) with β`,n = o (log n) and
limn→∞ β`,n = +∞, we have

lim
n→∞

P [κ = `] = 0.

Before we give a formal proof, we first explain why the
one-law (10) follows from Theorem 7.1. Comparing (43) with
(6) and noting that γn = o (log n), we get

β`,n = (k − 1− `) log log n+ γn = o (log n) (44)

Moreover, for ` = 0, 1, . . . , k − 1, we have

lim
n→∞

β`,n = +∞ (45)

by recalling the fact that limn→∞ γn = +∞. Recalling (44)
and (45), we notice that the conditions needed for Theo-
rem 7.1 are met when ` = 0, 1, . . . , k − 1; thus, we have
P [κ = `] = o(1) for ` = 0, 1, . . . , k−1, which in turn implies
that limn→∞ P [κ ≥ k] = 1, i.e., the one-law.

We now give a road map to the proof of Theorem 7.1. By
a simple union bound, we get

P [κ = `] ≤ P [δ ≤ `] + P [(κ = `) ∩ (δ > `)] .

It is now immediate that Theorem 7.1 is established once we
show that

lim
n→∞

P [δ ≤ `] = 0 (46)

and
lim
n→∞

P [(κ = `) ∩ (δ > `)] = 0 (47)

under the enforced assumptions of Theorem 7.1. We start by
establishing (46). Following the analysis of Section 6-A, it is
easy to see that

nP [Dx,`] ≤ 2`−1
(

(log n)
`
(1 + o(1))

`
+ β``,n

)
·

· e−` log logn−β`,neO(1)

= O(1)e−β`,n +O(1)β``,ne
−` log logn−β`,n ,

and it follows that limn→∞ nP [Dx,`] = 0 as long as
limn→∞ β`,n = +∞. From (27) and (29), this yields

lim
n→∞

P [δ = `] = 0 when lim
n→∞

β`,n = +∞ (48)
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However, from (43) it is easy to see that β`,n is monotonically
decreasing in `. Thus, the fact that limn→∞ β`,n = +∞ for
some ` implies

lim
n→∞

βˆ̀,n = +∞, ˆ̀= 0, 1, . . . , `

From (48) this in turn implies that P[δ = ˆ̀] = o(1) for ˆ̀ =
0, 1, . . . , `, or equivalently (46).

We now focus on establishing (47) under the enforced
assumptions of Theorem 7.1. The proof is based on finding a
tight upper bound on the probability P [(κ = `) ∩ δ > `] and
showing that this bound goes to zero as n goes to infinity.
Let N denote the collection of all non-empty subsets of
{v1, v2, . . . , vn}. Define N∗ = {T : T ∈ N , |T |≥ 2} and

E(JJJ) = ∪T∈N∗
[
|∪vi∈TΣi|≤ J|T |

]
where JJJ = [J2, J3, . . . , Jn] is an (n− 1)-dimensional integer-
valued array. E(JJJ) encodes the event that for at least one |T |=
2, . . . , n, the total number of distinct keys held by at least one
set of |T | sensors is less than or equal to J|T |. Now, define

mn := min

(⌊
Pn
K1,n

⌋
,
⌊n

2

⌋)
(49)

and let

Ji =

{
max (b(1 + ε)K1,nc , biζK1,nc) i = 2, . . . ,mn

bψPnc i = mn + 1, . . . , n
(50)

for some ζ, ψ in (0, 1) to be specified later at (51) and (52),
respectively. A crude bounding argument gives

P [(κ = `) ∩ δ > `] ≤ P [E(JJJ)] + P
[
(κ = `) ∩ δ > ` ∩ E(JJJ)

]
Hence, establishing (47) consists of establishing the follow-

ing two results.

Proposition 7.2. Let ` be a non-negative constant integer.
Assume that (43) holds with β`,n > 0, and that we have (8)
and (9). Also, assume that (7) holds such that

Pn ≥ σn

for some σ > 0 for all n sufficiently large. Then

lim
n→∞

P [E(JJJ)] = 0,

where JJJ is as defined in (50) with arbitrary ε ∈ (0, 1), constant
ζ ∈ (0, 1

2 ) selected small enough such that

max

(
2ζσ, ζ

(
e2

σ

) ζ
1−2ζ

)
< 1 (51)

and ψ ∈ (0, 1
2 ) selected small enough such that

max

(
2

(√
ψ

(
e

ψ

)ψ)σ
,
√
ψ

(
e

ψ

)ψ)
< 1 (52)

Proof. The proof follows the same steps with [7, Proposition
7.2] to show that it suffices to establish Proposition 7.2 for
the homogenous case where all key rings are of the same
size K1,n. This is evident upon realizing that with U`(µµµ,θθθ) =

|∪`i=1Σi| and U`(K1,n, Pn) =st U`(µµµ = {1, 0, . . . , 0}, θθθ), we
have

U`(K1,n, Pn) � U`(µµµ,θθθ),

where � denotes the usual stochastic ordering. After this
reduction, the proof reduces to [19, Proposition 3]. Results
only require conditions (7), (18), and K1,n = o(Pn) to hold.
We note that K1,n = o(Pn) follows from (8) and the fact
that K1,n ≤ Kr,n. Also, (18) follows under the enforced
assumptions as shown in Proposition 5.4. �

Proposition 7.3. Let ` be a non-negative constant integer.
Under (7), (8), (9), and (43) with β`,n = o (log n) and
limn→∞ β`,n = +∞, we have

lim
n→∞

P
[
(κ = `) ∩ (δ > `) ∩ E(JJJ)

]
= 0

The proof of Proposition 7.3 is given in Section 8. Proposi-
tion 7.2 and Proposition 7.3 establish (47) which, combined
with (46), establish Theorem 7.1. We remark that Theorem 7.1
establishes the one-law.

8. PROOF OF PROPOSITION 7.3

For notation simplicity, we denote H(n;µµµ,KKK,P, α) by H.
Let H(U) be a subgraph of H restricted to the vertex set U .
For any subset of nodes U , define U c := {v1, . . . , vn} \ U .
We also let NUc denote the collection of all non-empty subsets
of {v1, v2, . . . , vn} \ U . We note that a subset T of NUc is
isolated in H(U c) if there are no edges in H between nodes
in T and nodes in U c \ T , i.e.,

Eij , vi ∈ T, vj ∈ U c \ T.

Next, we present key observations that pave the way to
establishing Proposition 7.3. If κ = ` but δ > `, then there
exists subsets U and T of nodes with U ∈ N , |U |= `,
T ∈ NUc , |T |≥ 2 such that H(T ) is connected while T is
isolated in H(U c). This ensures that H can be disconnected
by deleting a properly selected set of ` nodes, i.e., the set U .
This would not be possible for sets T ∈ NUc with |T |= 1
since we have δ ≥ `+ 1 which implies that the single node in
T is connected to at least one node in U c \T . Finally, having
κ = ` ensures that H remains connected after removing (`−1)
nodes. Then, if there exists a subset U with |U |= ` such that
some T ∈ NUc is isolated in H(U c), each node in U must be
connected to at least one node in T and at least one node in
U c \T . This can be proved by contradiction. Consider subsets
U ∈ N with |U |= `, and T ∈ NUc with |T |≥ 2, such that T
is isolated from U c \ T . Suppose there exists a node vi ∈ U
such that vi is connected to at least one node in T but not
connected to any node in U c \T . In this case, it is easy to see
that there are no edges between nodes in U c \T and nodes in
{vi}∪T . Thus, the graph could have been made disconnected
by removing nodes in U \ {vi}. But |U \ {vi}|= ` − 1, and
this contradicts the fact that κ = `.

We now present several events that characterize the afore-
mentioned observations. For each non-empty subset T ⊆ U c,
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we define CT as the event that H(T ) is itself connected, and
DU,T as the event that T is isolated in H(U c), i.e.,

DU,T :=
⋂
vi∈T

vj∈Uc\T

Eij ,

Moreover, we define BU,T as the event that each node in U
has an edge with at least one node in T , i.e.,

BU,T :=
⋂
vi∈U

⋃
vj∈T

Eij ,

and finally, we let AU,T := BU,T ∩DU,T ∩ CT . It is clear that
AU,T encodes the event that H(T ) is itself connected, each
node in U has an edge with at least one node in T , but T is
isolated in H(U c). The aforementioned observations enable us
to express the event [(κ = `) ∩ (δ > `)] in terms of the event
sequence AU,T . In particular, we have

[(κ = `) ∩ (δ > `)] ⊆
⋃

U∈Nn,`,T∈NUc ,|T |≥2

AU,T

withNn,` denoting the collection of all subsets of {v1, . . . , vn}
with exactly ` elements. We also note that the union need only
to be taken over all subsets T with 2 ≤ |T |≤

⌊
n−`

2

⌋
. This is

because if the vertices in T form a component then so do the
vertices in NUc \ T . Now, using a standard union bound, we
obtain

P
[
(κ = `) ∩ (δ > `) ∩ E(JJJ)

]
≤

∑
U∈Nn,`,T∈NUc ,2≤|T |≤bn−`2 c

P
[
AU,T ∩ E(JJJ)

]

=

bn−`2 c∑
m=2

∑
U∈Nn,`,T∈NUc,m

P
[
AU,T ∩ E(JJJ)

]
where NUc,m denotes the collection of all subsets of U c

with exactly m elements. Now, for each m = 1, . . . , n −
` − 1, we simplify the notation by writing A`,m :=
A{v1,...,v`},{v`+1,...,v`+m}, D`,m := D{v1,...,v`},{v`+1,...,v`+m},
B`,m := B{v1,...,v`},{v`+1,...,v`+m}, and Cm := C{v`+1,...,v`+m}.
From exchangeability, we get

P [AU,T ] = P [A`,m] , U ∈ Nn,`, T ∈ NUc,m

and the key bound

P
[
(κ = `) ∩ (δ > `) ∩ E(JJJ)

]
≤
bn−`2 c∑
m=2

(
n

`

)(
n− `
m

)
P
[
A`,m ∩ E(JJJ)

]
(53)

is obtained readily upon noting that |Nn,`|=
(
n
`

)
and

|NUc,m|=
(
n−`
m

)
. Thus, Proposition 7.3 will be established

if we show that

lim
n→∞

bn−`2 c∑
m=2

(
n

`

)(
n− `
m

)
P
[
A`,m ∩ E(JJJ)

]
= 0. (54)

We now derive bounds for the probabilities
P
[
A`,m ∩ E(JJJ)

]
. First, for m = 2, . . . , n − ` − 1, we

have

D`,m :=

n⋂
j=m+`+1

[(
∪i∈νm,jΣi

)
∩ Σj = ∅

]
(55)

where νm,j is defined as

νm,j := {i = `+ 1, . . . , `+m : Cij}

for each j = 1, . . . , ` and j = m+`+1, . . . , n. Put differently,
νm,j is the set of indices in i = ` + 1, . . . , ` + m for which
nodes vj and vi are adjacent in the ER graph G(n;αn). Then,
(55) follows from the fact that for vj to be isolated from
{v`+1, . . . , v`+m} in H, Σj needs to be disjoint from each
of the key rings {Σi : i ∈ νm,j}.

Now, using the law of iterated expectation, we get

P
[
D`,m

∣∣∣ Σ`+1, . . . ,Σ`+m

]
= E

[
111 [D`,m]

∣∣∣ Σ`+1, . . . ,Σ`+m

]
= E

[
E
[
111 [D`,m]

∣∣∣ Σ`+1,...,Σn
Cij ,i=`+1,...,`+m

j=`+m+1,...,n

] ∣∣∣∣∣ Σ`+1, . . . ,Σ`+m

]

= E

 n∏
j=`+m+1

(P−|∪i∈νm,jΣi|
|Σj |

)(
P
|Σj |
)

 ∣∣∣∣∣ Σ`+1, . . . ,Σ`+m


= E

(P−|∪i∈νmΣi|
|Σ|

)(
P
|Σ|
) ∣∣∣∣∣ Σ`+1, . . . ,Σ`+m

n−`−m (56)

by independence of the random variables νm,j and |Σj | for
j = `+m+ 1, . . . , n. Here we define νm and |Σ| as generic
random variables following the same distribution with any of
{νm,j , j = `+m+1, . . . , n} and {|Σj |, j = `+m+1, . . . , n},
respectively. Put differently, νm is a Binomial rv with param-
eters m and α, while |Σ| is a rv that takes the value Kj with
probability µj .

Next, we bound the probabilities P [B`,m]. We know that

B`,m := ∩`i=1 ∪mj=`+1 Eij .

Thus,

P
[
B`,m

∣∣∣ Σ`+1, . . . ,Σ`+m

]
= E

[
111 [B`,m]

∣∣∣ Σ`+1, . . . ,Σ`+m

]
= E

[
E
[
111 [B`,m]

∣∣∣ Σ1,...,Σ`+m
Cij ,i=`+1,...,`+m

j=1,...,`

] ∣∣∣∣∣ Σ`+1, . . . ,Σ`+m

]

= E

∏̀
j=1

1−

(P−|∪i∈νm,jΣi|
|Σj |

)(
P
|Σj |
)

 ∣∣∣∣∣ Σ`+1, . . . ,Σ`+m


= E

1−

(P−|∪i∈νmΣi|
|Σ|

)(
P
|Σ|
) ∣∣∣∣∣ Σ`+1, . . . ,Σ`+m

` (57)

by independence of the random variables νm,j and |Σj | for
j = 1, . . . , `.
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We note that, on the event E(JJJ), we have

|∪i∈νmΣi|≥
(
J|νm| + 1

)
1 [|νm|> 1]

and it is always the case that |∪i∈νmΣi|≥ K11 [|νm|> 0] and

|∪i∈νmΣi|≤ |νm|Kr. (58)

Next, we define

L(νm) = max
(
K11 [|νm|> 0] ,

(
J|νm| + 1

)
1 [|νm|> 1]

)
so that on E(JJJ), we have

|∪i∈νmΣi|≥ L(νm). (59)

Using (59) in (56) and (58) in (57), we get

P
[
A`,m ∩ E(JJJ)

]
(60)

= E
[
111 [Cm] 111 [B`,m] 111

[
D`,m ∩ E(JJJ)

]]
= E

[
E
[
111 [Cm] 111 [B`,m] 111[D`,m ∩ E(JJJ)]

∣∣∣ Σ`+1,...,Σ`+m
Cij ,i,j=`+1,...,`+m

]]
≤ P [Cm]E

[
1−

(
P−|νm|Kr
|Σ|

)(
P
|Σ|
) ]`

E

[(P−L(νm)
|Σ|

)(
P
|Σ|
) ]n−`−m

since Cm is fully determined by the rvs Σ`+1, . . . ,Σ`+m and
{Cij , i, j = ` + 1, . . . , ` + m} while B`,m, D`,m, and E(JJJ)
are independent from {Cij , i, j = ` + 1, . . . , ` + m}. Here,
we also used the fact that given {Σ`+1, . . . ,Σ`+m}, D`,m is
independent from B`,m.

The following lemma provides upper bounds for (60).

Lemma 8.1. Let JJJ be defined as in (50) for some ε ∈ (0, 1),
ζ ∈

(
0, 1

2

)
such that (51) holds, ψ ∈

(
0, 1

2

)
such that (52)

holds. Assume that Λ1(n) = o(1) and (7), (8), and (9) hold.
Then for all n sufficiently large, and for each m = 2, 3, . . . , n,
we have

P
[
A`,m ∩ E(JJJ)

]
(61)

≤ min
{

1,mm−2 (αnprr(n))
m−1

}(
111

[
m>

⌊
Pn −Kr,n

2Kr,n

⌋]

+ 111

[
m ≤

⌊
Pn −Kr,n

2Kr,n

⌋](
1− e−3mαnprr(n)

)`)
·

·

(
min

{
1− Λ1(n), e

−
(

1+ ε
2

)
Λ1(n)

, e−ψK1,n111 [m > mn] +

min
{

1−µr+µre
−αnp1r(n)ζm, e−αnp11(n)ζm

}})n−m−`
The proof of Lemma 8.1 is given in Appendix D. Now, the

proof of Proposition 7.3 will be completed upon establishing
(54) by means of Lemma 8.1. We devote Section 9 to
establishing (54).

9. ESTABLISHING (54)

We start by defining fn,`,m as

fn,`,m =

(
n

`

)(
n− `
m

)
P
[
A`,m ∩ E(JJJ)

]

Thus, establishing (54) becomes equivalent to showing

lim
n→∞

bn−`2 c∑
m=2

fn,`,m = 0. (62)

We will establish (62) in several steps with each step focusing
on a specific range of the summation over m. Throughout,
we consider scalings K1, . . . ,Kr, P : N0 → Nr+1

0 and α :
N0 → (0, 1) such that (43) holds with limn→∞ β`,n = +∞
and β`,n = o(log n), and (7), (8), (9) hold. We will make
repeated use of the bounds (24), (25), (26), and (92).

1) The case where 2 ≤ m ≤M : This range considers fixed
values of m. Pick an integer M to be specified later at (69).
We note that on this range we have m ≤ bPn−Kr,n2Kr,n

c for all n
sufficiently large by virtue of (8). On the same range we also
have

1− e−3mαnprr(n) ≤ 3mαnprr(n) (63)

by virtue of (92), (22), and the fact that m is bounded.
Using (92), (26), (61), and (63), and noting that Λ1(n) =

o(1) under (43) with β`,n = o(log n), we get

fn,`,m

≤ n`nmmm−2 (αnprr(n))
m−1

(3m)
`
(αnprr(n))

` ·

· e−(1+ ε
2 )(n−m−`)Λ1(n)

= O(1)n`+m (αnprr(n))
`+m−1 · e−(1+ ε

2 )(n−m−`)Λ1(n)

= o(1)n`+m
(

(log n)2

n

)`+m−1

e−(1+ ε
2 )(logn+` log logn+β`,n)

= o(1)n−
ε
2 (log n)

`(1− ε2 )+2(m−1)
e−(1+ ε

2 )β`,n

= o(1)

since ` is non-negative integer constant, m is bounded, and
limn→∞ β`,n = +∞. This establishes

lim
n→∞

M∑
m=2

fn,`,m = 0.

2) The case where M+1 ≤ m ≤ min{mn, b µrn
2ζ lognc}: Our

goal in this and the next subsubsection is to cover the range
M + 1 ≤ m ≤ b µrn

2ζ lognc. Since the bound given at (61) takes
a different form when m > mn (with mn defined at (49)), we
first consider the range M + 1 ≤ m ≤ min{mn, b µrn

2ζ lognc};
we note from (8) and (5) that limn→∞mn =∞.

On the range considered here, we have from (24), (26), and
(61) that

min{mn,b µrn
2ζ logn c}∑

m=M+1

fn,`,m

≤
min{mn,b µrn

2ζ logn c}∑
m=M+1

n`
(en
m

)m
mm−2 (αnprr(n))

m−1 ·

·
(

1− µr
(

1− e−αnp1r(n)ζm
))n−m−`

(64)

From the upper bound in (94) and the fact that m ≤ µrn
2ζ logn

for all n sufficiently large, we have

αnp1r(n)ζm ≤ 2 log n

µrn
ζ

µrn

2ζ log n
= 1.
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Using the fact that 1− e−x ≥ x
2 for all 0 ≤ x ≤ 1, we get

1− µr
(

1− e−αnp1r(n)ζm
)
≤ 1− µrαnp1r(n)ζm

2

≤ e−ζmµr
logn
4n (65)

as we invoke the lower bound in (94). Reporting this last bound
and (92) into (64), and noting that

n−m− ` ≥ n− `
2
≥ n

3
, m = 2, 3, . . . ,

⌊
n− `

2

⌋
, (66)

we get
min{mn,b µrn

2ζ logn c}∑
m=M+1

fn,`,m

≤
min{mn,b µrn

2ζ logn c}∑
m=M+1

n`+mem
(

(log n)2

n

)m−1

e−ζmµr lognn−m−`4n

≤ n`+1
∞∑

m=M+1

(
e (log n)

2
e−ζ

µr
12 logn

)m
(67)

for all n sufficiently large. Given that ζ, µr > 0 we have

e (log n)
2
e−ζ

µr
12 logn = o(1). (68)

Thus, the geometric series in (67) is summable, and we have
min{mn,b µrn

2ζ logn c}∑
m=M+1

fn,`,m ≤ O(1)n`+1−(M+1)ζ µr12 (e log n)
2(M+1)

and it follows that

lim
n→∞

min{mn,b µrn
2ζ logn c}∑

m=M+1

fn,`,m = 0

for any positive integer M with

M >
12(`+ 1)

ζµr
. (69)

This choice is permissible given that ζ, µr > 0.
3) The case where min{b µrn

2ζ lognc,mn} < m ≤ b µrn
2ζ lognc:

Clearly, this range becomes obsolete if mn ≥ b µrn
2ζ lognc. Thus,

it suffices to consider the subsequences for which the range
mn + 1 ≤ m ≤ b µrn

2ζ lognc is non-empty. On this range,
following the same arguments that lead to (64) and (67) gives
b µrn

2ζ logn c∑
m=mn+1

f`,n,m (70)

≤
b µrn

2ζ logn c∑
m=mn+1

n`+1
(
e(log n)2

)m ·
·
(

1− µr
(

1− e−ζmαnp1r(n)
)

+ e−ψK1,n

)n
3

≤ n`+1

b µrn
2ζ logn c∑

m=mn+1

(
e (log n)

2
)m(

e−ζmµr
logn
4n + e−ψK1,n

)n
3

where in the last step we used (65) in view of m ≤ µrn
2ζ logn .

Next, we write

e−ζmµr
logn
4n + e−ψK1,n

= e−ζmµr
logn
4n

(
1 + e−ψK1,n+ζmµr

logn
4n

)
≤ exp

{
−ζmµr

log n

4n
+ e−ψK1,n+ζmµr

logn
4n

}

≤ exp

−ζmµr log n

4n

1− e−ψK1,n+
µ2
r
8

ζmµr
logn
4n

 (71)

where the last inequality is obtained from m ≤ µrn
2ζ logn . Using

the fact that m > mn = min{b Pn
K1,n
c, bn2 c} and that Pn ≥ σn

for some σ > 0 under (7), we have

e−ψK1,n+
µ2
r
8

ζmµr
logn
4n

≤ max

{
K1,n

Pn
,

2

n

}
4n

e−ψK1,n

ζµr log n
· e

µ2
r
8

≤ max

{
4K1,ne

−ψK1,n

ζµrσ log n
,

8e−ψK1,n

ζµr log n

}
· e

µ2
r
8

= o(1)

by virtue of (18) and the facts that ζ, µr, σ > 0. Reporting
this into (71), we see that for for any ε > 0, there exists a
finite integer n∗(ε) such that(

e−ζmµr
logn
4n + e−ψK1,n

)
≤ e−ζmµr

logn
4n (1−ε) (72)

for all n ≥ n∗(ε). Using (72) in (70), we get
b µrn

2ζ logn c∑
m=mn+1

f`,n,m

≤ n`+1

b µrn
2ζ logn c∑

m=mn+1

(
e (log n)

2
)m (

e−ζmµr
logn
4n (1−ε)

)n
3

≤ n`+1
∞∑

m=mn+1

(
e (log n)

2
e−ζµr

logn
12 (1−ε)

)m
(73)

Similar to (68), we have e (log n)
2
e−ζµr

logn
12 (1−ε) = o(1) so

that the sum in (73) converges. Following a similar approach
to that in Section 9-2, we then see that
b µrn

2ζ logn c∑
m=mn+1

fn,`,m = O(1)n`+1−mnζµr(1−ε)
12 (e log n)2(mn+1) = o(1)

since limn→∞mn =∞ under the enforced assumptions.
4) The case where b µrn

2ζ lognc+1 ≤ m ≤ bνnc: We consider
b µrn

2ζ lognc+1 ≤ m ≤ bνnc for some ν ∈ (0, 1
2 ) to be specified

later at (75). Recalling (24), (26), (61), (66), and (94), and
noting that

(
n
m

)
is monotone increasing in m when 0 ≤ m ≤⌊

n
2

⌋
, we get

bνnc∑
m=b µrn

2ζ logn c+1

fn,`,m

≤
bνnc∑

m=b µrn
2ζ logn c+1

n`
(

n

bνnc

)
·

·
(

1− µr + µre
−ζmαnp1r(n) + e−ψK1,n

)n
3

≤ n`
bνnc∑

m=b µrn
2ζ logn c+1

( e
ν

)νn
·
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·
(

1− µr + µre
−ζ µrn

2ζ logn
logn
2n + e−ψK1,n

)n
3

≤ n`
( e
ν

)νn (
1− µr + µre

−µr4 + e−ψK1,n

)n
3

= n`
(( e

ν

)3ν (
1− µr + µre

−µr4 + e−ψK1,n

))n
3

(74)

for all n sufficiently large.
We have 1−µr+µre

−µr4 < 1 from µr > 0 and e−ψK1,n =
o(1) from (18). Also, it holds that limν→0

(
e
ν

)3ν
= 1. Thus,

if we pick ν small enough to ensure that( e
ν

)3ν (
1− µr + µre

−µr4
)
< 1, (75)

then for any 0 < ε < 1 − (e/ν)
3ν (

1− µr + µre
−µr4

)
there

exists a finite integer n?(ε) such that( e
ν

)3ν (
1− µr + µre

−µr4 + e−ψK1,n

)
≤ 1−ε, ∀n ≥ n?(ε).

Reporting this into (74), we get

lim
n→∞

bνnc∑
m=b µrn

2ζ logn c+1

fn,`,m = 0

since limn→∞ n`(1− ε)n/2 = 0 for any positive integer `.
5) The case where bνnc+ 1 ≤ m ≤ bn−`2 c: In this range,

we use (25), (26), (61), and (66) to get

bn−`2 c∑
m=bνnc+1

fn,`,m

≤ n`
bn−`2 c∑

m=bνnc+1

(
n

m

)(
e−ζmαnp11(n) + e−ψK1,n

)n
3

≤ n`

 bn−`2 c∑
m=bνnc+1

(
n

m

)(e−ζνnαnp11(n) + e−ψK1,n

)n
3

≤ n`
(

8e−ζνnαnp11(n) + 8e−ψK1,n

)n
3

Noting that ζ, ν, ψ > 0 and recalling (93) and the lower
bound of (94), we get

e−ζνnαnp11(n) = e−ζνn
wn

lognαnp1r(n) ≤ e−
ζνwn

2

for some sequence wn satisfying limn→∞ wn = +∞. It is
now obvious that e−ζνnαnp11(n) = o(1). Moreover, we have
e−ψK1,n = o(1) from (18). The conclusion

lim
n→∞

bn−`2 c∑
m=bνnc+1

fn,`,m = 0

immediately follows and the proof of one-law is completed.
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APPENDIX A
ADDITIONAL LEMMAS

Lemma A.1. Consider a scaling K1, . . . ,Kr, P : N0 → Nr+1
0

such that (5) holds, a scaling α : N0 → (0, 1), and Λ1(n) =
logn+(k−1) log logn+γn

n . The following properties hold for any
three distinct nodes vx, vy , and vj .

(a) We have

P
[
(Kxj ∩Kyj) |Kxy, tx = 1, ty = 1

]
≤
(

1 +
1

4µ2
r

)
λ1(n)2

(76)
(b) If λ1(n) = o(1), then for any u = 0, 1, . . . ,K1,n, we

have

P [(Kxj ∩Kyj) | (|Sxy|= u) , tx = 1, ty = 1]

=
u

K1,n
λ1(n)±O

(
(λ1(n))

2
)
,

and

P [Exj∪yj | (|Sxy|= u) , tx = 1, ty = 1]

= 2Λ1(n)− αnu

K1,n
Λ1(n)±O

(
(Λ1(n))

2
)

(77)

Proof. We know that

P
[
(Kxj ∩Kyj)

∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

]
= 1− P

[(
Kxj ∪Kyj

) ∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

]
= 1− P

[
Kxj

∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

]
(78)

− P
[
Kyj

∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

]
+ P

[(
Kxj ∩Kyj

) ∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

]
It is easy to see that

P
[
Kxj

∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

]
= P

[
Kxj

∣∣∣ tx = 1
]

=

r∑
i=1

µi (1− p1i(n))

= 1− λ1(n) (79)

Similarly, it is easy to see that

P
[
Kyj

∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

]
= 1− λ1(n) (80)

Next, by recalling (17), we observe that

P
[(
Kxj ∩Kyj

) ∣∣∣∣Kxy, tx = 1, ty = 1

]
= P

[
Σj ∈ P \ {Σx ∪ Σy}

∣∣∣ tx = 1, ty = 1
]

=

r∑
i=1

µi

(
Pn−2K1,n

Ki,n

)(
Pn
Ki,n

)

≤
r∑
i=1

µi

((Pn−K1,n

Ki,n

)(
Pn
Ki,n

) )2

= E
[
Zn (µµµ,θθθn)

2
]

= (E [Zn (µµµ,θθθn)])
2

+ var [Zn (µµµ,θθθn)] (81)

where Zn (µµµ,θθθn) is a rv that takes the value 1− p1i(n) with
probability µi for i = 1, . . . , r. Note that

E [Zn (µµµ,θθθn)] =

r∑
i=1

µi (1− p1i) = 1− λ1(n), (82)

and

λ1(n) =

r∑
i=1

µip1i(n) ≥ µrp1r (83)

for positive µµµ. Recalling Proposition 5.3, and using (82) and
(83) in (81), we get

P
[(
Kxj ∩Kyj

) ∣∣∣∣Kxy, tx = 1, ty = 1

]
≤ (1− λ1(n))

2
+

1

4

λ1(n)2

µ2
r

= 1− 2λ1(n) + λ1(n)2

(
1 +

1

4µ2
r

)
(84)

The desired conclusion (76) follows from (78) in view of (79),
(80), and (84). �

Proof of part (b) of the lemma is very similar to that of [19,
Lemma 9], and therefore is skipped here for brevity. Interested
reader can find the details in [26].

Lemma A.2. Consider a scaling K1, . . . ,Kr, P : N0 → Nr+1
0

such that (5) holds, a scaling α : N0 → (0, 1), Λ1(n) =
logn+(k−1) log logn+γn

n , with limn→∞ γn = −∞. Let m1, m2,
and m3 be non-negative integer constants. We define event F
as follows.

F := [|Nxy|= m1] ∩ [|Nxy|= m2] ∩ [|Nxy|= m3] . (85)

Then, given u in {0, 1, . . . ,K1,n} and Λ1(n) = o( 1√
n

)
under limn→∞ γn = −∞, we have

P
[
F
∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

]
∼ nm1+m2+m3

m1!m2!m3!
e
−2nΛ1(n)+ uαn

K1,n
nΛ1(n)·

·
(
P
[
Exj∩yj

∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

])m1

·
(
P
[
Exj∩yj

∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

])m2

·
(
P
[
Exj∩yj

∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

])m3

with j distinct from x and y.

Proof. The proof of Lemma A.2 is very similar with [19,
Lemma 4]; in fact, it would follow directly from [19, Eq.
(212)-(213)] if we show that(

P
[
Exj∩yj

∣∣∣ (|Sxy|= u) , tx = 1, ty = 1
])n−m1−m2−m3−2
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∼ e−2nΛ1(n)+ uαn
K1,n

nΛ1(n)
. (86)

Recalling Lemma A.1 and the fact that Λ1(n) ≤
logn+(k−1) log logn

n for all n sufficiently large under
limn→∞ γn = −∞, we get

P
[
Exj∩yj

∣∣∣ (|Sxy|= u) , tx = 1, ty = 1
]

= 1− P
[
Exj∪yj

∣∣∣ (|Sxy|= u) , tx = 1, ty = 1
]

(87)

= 1−
(

2Λ1(n)− αnu

K1,n
Λ1(n)±O

(
(Λ1(n))

2
))

= 1−O
(

log n

n

)
= 1− o(1). (88)

Also,

(n−m1 −m2 −m3 − 2) ·

·
(
P
[
Exj∪yj

∣∣∣ (|Sxy|= u) , tx = 1, ty = 1
])2

= (n−m1 −m2 −m3 − 2)

[
O

(
log n

n

)]2

= o(1) (89)

Invoking Fact 5.8 for (87), and using (88) and (89), we get(
P
[
Exj∩yj

∣∣∣ (|Sxy|= u) , tx = 1, ty = 1
])n−m1−m2−m3−2

∼ e(n−m1−m2−m3)P[Exj∪yj | (|Sxy|=u),tx=1,ty=1]

∼ e−n
[
2Λ1(n)− αnu

K1,n
Λ1(n)±o( 1

n )
]
e(m1+m2+m3+2)o(1)

∼ e−2nΛ1(n)+ uαn
K1,n

nΛ1(n)
. (90)

This gives (86) and Lemma A.2 is established in view of [19,
Lemma 4]. �

Lemma A.3 ([19, Lemma 10]). If Pn ≥ 2K1,n, we have

P
[
|Sxy|= u

∣∣∣ tx = 1, ty = 1
]
≤ 1

u!

(
K2

1,n

Pn −K1,n

)u

Lemma A.4. Consider a scaling K1,K2, . . . ,Kr, P : N0 →
Nr+1

0 and a scaling α : N0 → (0, 1) such that (43) holds with
β`,n = o(log n). We have

αnp1r(n) = Θ

(
log n

n

)
. (91)

If in addition (9) holds, we have

αnprr(n) = o (log n)αnp1r(n) = o

(
(log n)2

n

)
(92)

and
αnp1r(n) = o (log n)αnp11(n) (93)

Proof. From (43) and the fact that β`,n = o(log n), we clearly
have

1

2

log n

n
≤ Λ1(n) ≤ 2

log n

n

for all n sufficiently large. We also have

Λ1(n) = αn

r∑
j=1

µjp1j ≥ µrαnp1r(n)

Now, since p1j is monotone increasing in j = 1, . . . , r by
virtue of (15), we also see that

Λ1(n) = αn

r∑
j=1

µjp1j(n) ≤ αnp1r(n)

r∑
j=1

µj = αnp1r(n)

Thus, we obtain that

Λ1 ≤ αnp1r(n) ≤ 1

µr
Λ1

and the conclusion (91) follows by virtue of the fact

1

2

log n

n
≤ αnp1r(n) ≤ 2

µr

log n

n
(94)

for all n sufficiently large.
Next, we establish (92). Here this will be established by

showing that

prr(n) ≤ max

(
2, 4

log n

wn

)
p1r(n), n = 2, 3, . . . (95)

for some sequence wn such that limn→∞ wn = ∞. Fix n =
2, 3, . . . . We have either p1r(n) > 1

2 , or p1r(n) ≤ 1
2 . In the

former case, it automatically holds that

prr(n) ≤ 2p1r(n) (96)

by virtue of the fact that prr(n) ≤ 1.
Assume now that p1r(n) ≤ 1

2 . We know from [24, Lem-
mas 7.1-7.2] that

1− e−
Kj,nKr,n

Pn ≤ pjr(n) ≤ Kj,nKr,n

Pn −Kj,n
, j = 1, . . . , r (97)

and it follows that
K1,nKr,n

Pn
≤ log

(
1

1− p1r(n)

)
≤ log 2 < 1. (98)

Using the fact that 1− e−x ≥ x
2 with x in (0, 1), we then get

p1r(n) ≥ K1,nKr,n

2Pn
. (99)

In addition, using the upper bound in (97) with j = r gives

prr(n) ≤
K2
r,n

Pn −Kr,n
≤ 2

K2
r,n

Pn

as we invoke (5). Combining the last two bounds we obtain

prr(n)

p1r(n)
≤ 4

Kr,n

K1,n
(100)

Next, combining (9) and (100), we get

prr(n) ≤ 4
log n

wn
p1r(n) (101)

for some sequence wn such that limn→∞ wn =∞. Combining
(96) and (101), we readily obtain (95).

It is easy to see that (93) can be established using the same
steps with the proof of (95). �

Lemma A.5. With m ≥ 2 and Λ1(n) = o(1), we have

E

[(Pn−Q(νm)
|Σ|

)(
Pn
|Σ|
) ]

≤ e−(1+ ε
2 )Λ1(n),
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for all n sufficiently large and any ε ∈ (0, 1), where we define

Q(νm) = K1,n111 [|νm|= 1]+(b(1 + ε)K1,nc+ 1)111 [|νm|> 1] .

Proof. Consider fixed KKK,P . We have

Q(νm) ≥ K1 (111 [|νm|= 1] + (1 + ε)111 [|νm|> 1])

Thus, by recalling (17), we get

E

[(P−Q(νm)
|Σ|

)(
P
|Σ|
) ]

≤ E

(P−K1

|Σ|
)(

P
|Σ|
) 111[|νm|=1]+(1+ε)111[|νm|>1]


= E

[
Z111[|νm|=1]+(1+ε)111[|νm|>1]

]
where Z =

(P−K1
|Σ| )

( P|Σ|)
. Taking the expectation over |νm|, we get

E

[(P−Q(νm)
|Σ|

)(
P
|Σ|
) ]

≤ E
[

(1− α)
m

+mα (1− α)
m−1

Z

+
(

1− (1− α)
m −mα (1− α)

m−1
)
Z1+ε

]
≤ E

[
(1− α)

2
+ 2α (1− α)Z

+
(

1− (1− α)
2 − 2α (1− α)

)
Z1+ε

]
= (1− α)

2
+ 2α (1− α)E[Z] + α2E

[
Z1+ε

]
by virtue of the fact that

(1− α)
m

+mα (1− α)
m−1

T

+
(

1− (1− α)
m −mα (1− α)

m−1
)
T 1+ε

is monotonically decreasing in m (see [19, Lemma 12]).
Next, we have

E [Z] =

r∑
j=1

µj

(
P−K1

Kj

)(
P
Kj

) = 1− λ1

Also by recalling Fact 5.7, we get

E
[
Z1+ε

]
= E

((P−K1

|Σ|
)(

P
|Σ|
) )1+ε


=

r∑
j=1

µj

((P−K1

Kj

)(
P
Kj

) )1+ε

=

r∑
j=1

µj(1− p1j)(1− p1j)
ε

≤
r∑
j=1

µj(1− p1j)(1− εp1j)

= 1− λ1(1 + ε) + ε

r∑
j=1

µjp
2
1j .

Note that
r∑
j=1

µj (1− p1j)
2

= 1− 2λ1 +

r∑
j=1

µjp
2
1j

and we have from (81) and (84) that
r∑
j=1

µj (1− p1j)
2 ≤ 1− 2λ1 + λ2

1

(
1 +

1

4µ2
r

)
This gives

r∑
j=1

µjp
2
1j ≤ λ2

1

(
1 +

1

4µ2
r

)
and we get

E

[(P−Q(νm)
|Σ|

)(
P
|Σ|
) ]

≤ (1− α)
2

+ 2α (1− α) (1− λ1)

+ α2

(
1− λ1 (1 + ε) + ελ2

1

(
1 +

1

4µ2
r

))
= 1− Λ1

(
2− (1− ε)α− ε

(
1 +

1

4µ2
r

)
Λ1

)
Now, consider a scaling such that Λ1(n) = o(1). We have

Λ1(n) ≤ 4µ2
r

2(4µ2
r+1) for all n sufficiently large. Given also that

αn ≤ 1, we get

E

[(Pn−Q(νm)
|Σ|

)(
Pn
|Σ|
) ]

≤ 1− Λ1

(
2− (1− ε)− ε

2

)
≤ e−(1+ ε

2 )Λ1(n)

for all n sufficiently large. This completes the proof. �

APPENDIX B
PROOF OF LEMMA 6.2

The law of total probability gives

P [Dx,` ∩Dy,`]

= P
[
Dx,` ∩Dy,` ∩ Exy

]
+ P [Dx,` ∩Dy,` ∩ Exy] .

(102)

Thus, Lemma 6.2 will be established upon showing the next
two results.

Proposition B.1. Consider scalings K1, . . . ,Kr, P : N0 →
Nr+1

0 and α : N0 → (0, 1), such that λ1(n) = o(1) and (6)
holds with limn→∞ γn = −∞. The following hold

(a) If nΛ1(n) = Ω(1), then for any non-negative integer
constant ` and any two distinct nodes vx and vy , we have

P
[
Dx,` ∩Dy,` ∩ Exy

]
∼ µ2

1 (`! )
−2

(nΛ1(n))
2`
e−2nΛ1(n)

(103)
(b) For any two distinct nodes vx and vy , we have

P
[
Dx,0 ∩Dy,0 ∩ Exy

]
∼ µ2

1e
−2nΛ1(n) (104)

Proposition B.2. Consider scalings K1, . . . ,Kr, P : N0 →
Nr+1

0 and α : N0 → (0, 1), such that λ1(n) = o(1) and (6)
holds with limn→∞ γn = −∞. If nΛ1(n) = Ω(1), then for
any non-negative integer ` and any distinct nodes vx and vy ,
we have

P [Dx,` ∩Dy,` ∩ Exy] = o
(
P
[
Dx,` ∩ Dy,` ∩ Exy

])
(105)
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We establish Propositions B.1 and B.2 in the following
two subsections respectively. Next, we show why Lemma 6.2
follows from Propositions B.1 and B.2. If nΛ1(n) = Ω(1),
then for any non-negative integer constant `, we observe
that (37) follows from (103) and (105) in view of (102).
Now, considering the case when ` = 0, we see that (104)
directly implies (38) by virtue of (102) and the fact that
P [Dx,0 ∩Dy,0 ∩ Exy] = 0 since it is impossible for nodes
vx and vy to be adjacent to each other (i.e., under Exy) when
both nodes have zero degree.

A. Proof of Proposition B.1

Consider the vertex set V = {v1, . . . , vn}. For each node
vi ∈ V , we define Ni as the set of neighbors of node vi. Also,
for any pair of vertices vx, vy , we let Nxy be the set of nodes
in V \ {vx, vy} that are neighbors of both vx and vy; i.e.,
Nxy = Nx ∩Ny . We also let Nxy denote the set of nodes in
V \{vx, vy} that are neighbors of vx, but are not neighbors of
vy . Similarly, Nxy is defined as the set of nodes in V\{vx, vy}
that are not neighbors of vx, but are neighbors of vy . Finally,
Nxy is the set of nodes in V \ {vx, vy} that are not connected
to either vx or vy . We also define Sxy = Σx ∩ Σy .

We start by defining the series of events Ah as follows

Ah := [|Nxy|= h] ∩ [|Nxy|= `− h] ∩ [|Nxy|= `− h] .

It is simple to see that

Dx,` ∩Dy,` ∩ Exy =
⋃̀
h=0

(
Ah ∩ Exy ∩ [tx = 1] ∩ [ty = 1]

)
,

whence we get

P
[
Dx,` ∩Dy,` ∩ Exy

]
=
∑̀
h=0

P
[
Ah ∩ Exy ∩ [tx = 1] ∩ [ty = 1]

]
(106)

since the events {Ah, h = 0, . . . , `} are mutually exclusive.
Furthermore, since Exy = Kxy∪Cxy = Kxy∪

(
Kxy ∩ Cxy

)
and

Kxy ∩ [tx = 1] ∩ [ty = 1] = ∪K1,n

u=1 (|Sxy|= u)

we have under tx = ty = 1 that

Exy = Kxy ∪


K1,n⋃
u=1

(|Sxy|= u)

 ∩ Cxy


= Kxy ∪

K1,n⋃
u=1

Xu

 (107)

where we define the event Xu as

Xu = (|Sxy|= u) ∩ Cxy, u = 1, . . . ,K1,n (108)

Now, we get

P
[
Ah ∩ Exy ∩ [tx = 1] ∩ [ty = 1]

]
= P

[
Ah ∩Kxy ∩ [tx = 1] ∩ [ty = 1]

]

+

K1,n∑
u=1

P [Ah ∩ Xu ∩ [tx = 1] ∩ [ty = 1]] , (109)

by virtue of (107) and the fact that the events
Kxy,X1,X2, . . . ,XK1,n

are mutually disjoint. Combining
(106) and (109) we obtain

P
[
Dx,` ∩Dy,` ∩ Exy

]
= µ2

1

∑̀
h=0

P
[
Ah ∩Kxy

∣∣∣ tx = 1, ty = 1
]

+ µ2
1

∑̀
h=0

K1,n∑
u=1

P
[
Ah ∩ Xu

∣∣∣ tx = 1, ty = 1
]
. (110)

Proposition B.1 is established by virtue of (110) and the
following two results.

Proposition B.3. Consider scalings K1, . . . ,Kr, P : N0 →
Nr+1

0 and α : N0 → (0, 1), such that λ1(n) = o(1) and (6)
holds with limn→∞ γn = −∞. Then for any non-negative
integer `, we have∑̀
h=0

P
[
Ah ∩Kxy | tx = ty = 1

]
∼ (`! )

−2
(nΛ1(n))

2`
e−2nΛ1(n)

(111)

Proposition B.4. Consider scalings K1, . . . ,Kr, P : N0 →
Nr+1

0 and α : N0 → (0, 1), such that λ1(n) = o(1) and (6)
holds with limn→∞ γn = −∞. If nΛ1(n) = Ω(1), then∑̀

h=0

K1,n∑
u=1

P
[
Ah ∩ Xu

∣∣∣ tx = 1, ty = 1
]

= o

(∑̀
h=0

P
[
Ah ∩Kxy

∣∣∣ tx = 1, ty = 1
])

(112)

for any ` = 0, 1, . . .. Furthermore, we have (112) for ` = 0
without requiring the condition nΛ1(n) = Ω(1).

Before we prove Propositions B.3 and B.4, we explain why
Proposition B.1 follows from these two results. Combining
(111) and (112) we establish (103) in view of (110). Further-
more, by using (111) and (112) with ` = 0, we readily obtain
(104) in view of (110). This establishes Proposition B.1.

1) Proof for Proposition B.3: We write∑̀
h=0

P
[
Ah ∩Kxy

∣∣∣ tx = 1, ty = 1
]

=
∑̀
h=0

P
[
Ah

∣∣∣Kxy, tx = 1, ty = 1
]
P
[
Kxy

∣∣∣ tx = 1, ty = 1
]
,

where

P
[
Kxy

∣∣∣ tx = 1, ty = 1
]

= 1− p11(n) ∼ 1 (113)

under the assumption λ1(n) = o(1) and Fact 5.5. Also, using
Lemma A.2 with u = 0, m1 = h, and m2 = m3 = `− h, we
see that

P
[
Ah

∣∣∣Kxy, tx = 1, ty = 1
]

∼ n2`−h

h! ((`− h) ! )
2 e
−2nΛ1(n)·
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·
(
P
[
Exj∩yj

∣∣∣Kxy, tx = 1, ty = 1
])h

·
(
P
[
Exj∩yj

∣∣∣Kxy, tx = 1, ty = 1
])`−h

·
(
P
[
Exj∩yj

∣∣∣Kxy, tx = 1, ty = 1
])`−h

. (114)

Next, we evaluate the three probability terms appearing in
(114). We know that

P
[
Exj∩yj

∣∣∣Kxy, tx = 1, ty = 1
]

= P [Cxj ∩ Cyj ] · P
[
Kxj ∩Kyj

∣∣∣Kxy, tx = 1, ty = 1
]

= α2
nP
[
Kxj ∩Kyj

∣∣∣Kxy, tx = 1, ty = 1
]

≤
(

1 +
1

4µ2
r

)
Λ1(n)2 (115)

by virtue of Lemma A.1. We also see that

P
[
Exj∩yj

∣∣∣Kxy, tx = 1, ty = 1
]

= P
[
Exj

∣∣∣Kxy, tx = 1, ty = 1
]

− P
[
Exj∩yj

∣∣∣Kxy, tx = 1, ty = 1
]

= P
[
Exj

∣∣∣ tx = 1
]
− P

[
Exj∩yj

∣∣∣Kxy, tx = 1, ty = 1
]

= Λ1(n)−O
(
Λ1(n)2

)
∼ Λ1(n) (116)

as we invoke (115) and use the fact that Λ1(n) = o(1) under
limn→∞ γn = −∞. It is also easy to see that

P
[
Exj∩yj

∣∣∣Kxy, tx = 1, ty = 1
]
∼ Λ1(n) (117)

via similar arguments.
For h = 1, 2, . . . , `, we observe from (114), (115), (116),

and (117) that

P
[
Ah

∣∣∣Kxy, tx = 1, ty = 1
]

P
[
A0

∣∣∣Kxy, tx = 1, ty = 1
]

∼ n−h (`! )
2

h! ((`− h) ! )
2

(
P
[
Exj∩yj

∣∣∣Kxy, tx = 1, ty = 1
]

P
[
Exj∩yj

∣∣∣Kxy, tx = 1, ty = 1
] ·

· 1

P
[
Exj∩yj

∣∣∣Kxy, tx = 1, ty = 1
])h

≤ n−h (`! )
2

h! ((`− h) ! )
2


(

1 + 1
4µ2
r

)
Λ1(n)2

Λ1(n)2(1− o(1))

h

= o(1) (118)

Similarly, setting h = 0, we obtain

P
[
A0

∣∣∣Kxy, tx = 1, ty = 1
]
∼ (`! )

−2
(nΛ1(n))

2`
e−2nΛ1(n)

(119)
The conclusion (111) follows by combining (113), (118),

(119), and noting that ` is constant.

2) Proof of Proposition B.4: Our approach is to find an
upper bound to the left hand side of (112) and show that this
upper bound is o

(∑`
h=0 P

[
Ah ∩Kxy

∣∣∣ tx = 1, ty = 1
])

. It
will be clear that the condition nΛ1(n) = Ω(1) needed to
establish (112) is not needed for the case when ` = 0.

We know that

P
[
Ah ∩ Xu

∣∣∣ tx = 1, ty = 1
]

= P
[
Ah ∩ |Sxy|= u ∩ Cxy

∣∣∣ tx = 1, ty = 1
]

≤ P
[
Ah ∩ |Sxy|= u

∣∣∣ tx = 1, ty = 1
]

Thus,∑̀
h=0

K1,n∑
u=1

P
[
Ah ∩ Xu

∣∣∣ tx = 1, ty = 1
]

≤
∑̀
h=0

K1,n∑
u=1

P
[
Ah ∩ |Sxy|= u

∣∣∣ tx = 1, ty = 1
]

=

K1,n∑
u=1

P
[
|Sxy|= u

∣∣∣ tx = 1, ty = 1
]
·

·
∑̀
h=0

P
[
Ah

∣∣∣ (|Sxy|= u) , tx = 1, ty = 1
]

Now, since Exj = Cxj ∩ Kxj and Eyj = Cyj ∩ Kyj , it
is clear that Exj and Eyj are each independent of the event
|Sxy|= u. It follows that

P
[
Exj∩yj

∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

]
≤ P

[
Exj

∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

]
= Λ1(n). (120)

Similarly, we have

P
[
Exj∩yj

∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

]
≤ Λ1(n) (121)

and

P
[
Exj∩yj

∣∣∣∣ (|Sxy|= u) , tx = 1, ty = 1

]
≤ Λ1(n) (122)

Now, using Lemma A.2 with m1 = h, and m2 = m3 =
`− h, (120), (121), and (122), it follows that

P
[
Ah

∣∣∣ (|Sxy|= u) , tx = 1, ty = 1
]

≤ 2n2`−he
−2nΛ1(n)+ uαn

K1,n
nΛ1(n)

(Λ1(n))
2`−h (123)

for all n sufficiently large. Thus, we get

∑̀
h=0

K1,n∑
u=1

P
[
Ah ∩ Xu

∣∣∣ tx = 1, ty = 1
]

≤
K1,n∑
u=1

(
P
[
|Sxy|= u

∣∣∣ tx = 1, ty = 1
]
·

· 2e−2nΛ1(n)+ uαn
K1,n

nΛ1(n)
∑̀
h=0

(nΛ1(n))
2`−h

)
(124)
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Now, if nΛ1(n) = Ω(1) it follows that∑̀
h=0

(nΛ1(n))
2`−h

= O
(

(nΛ1(n))
2`
)
. (125)

Note that (125) follows trivially for ` = 0 with no condition
on nΛ1(n). Combining (124), (125) and Lemma A.3, we get

∑̀
h=0

K1,n∑
u=1

P
[
Ah ∩ Xu

∣∣∣ tx = 1, ty = 1
]

(126)

≤ O
(

(nΛ1(n))
2`
e−2nΛ1(n)

)K1,n∑
u=1

(
K2

1,n

Pn −K1,n
e
αn
K1,n

nΛ1(n)

)u
In view of Proposition B.3 (and the fact that ` is constant), we
will immediately establish the desired result (112) from (126)
if we show that

K2
1,n

Pn −K1,n
e
αn
K1,n

nΛ1(n)
= o(1). (127)

Next, we establish (127). From (5), we get for all n
sufficiently large that

K2
1,n

Pn −K1,n
≤ 2

K2
1,n

Pn
≤ 4p11(n)

where the last bound used the fact that
K2

1,n

Pn
∼ p11(n) when

p11(n) = o(1) (e.g., see [7, Lemma 4.2]); this in turn follows
from the assumption that λ1(n) = o(1) in view of Fact 5.5. It
is also clear from the definition λ1(n) =

∑r
i=1 µip1i(n) that

p11(n) ≤ 1
µ1
λ1(n). Thus, for all n large, we get

K2
1,n

Pn −K1,n
≤ 4

µ1
λ1(n). (128)

Now, with Λ1(n) ≤ logn+(k−1) log logn
n for all n sufficiently

large under limn→∞ γn = −∞, we see that

nΛ1(n) = nαnλ1(n) ≤ 3

2
log n (129)

for all n sufficiently large. Combining (128) and (129) and the
fact that K1,n ≥ 2, we obtain

K2
1,n

Pn −K1,n
e
αn
K1,n

nΛ1(n)
= O(1)λ1(n)e

3
4αn logn. (130)

Next, we define F (n) = λ1(n)e
3
4αn logn. Fix n sufficiently

large such that (128) and (129). We consider the cases when
αn ≤ 1

logn and αn > 1
logn . In the former case, F (n) ≤

λ1(n)e3/4 follows directly. In the latter case we use (129) to
get

F (n) ≤ 3

2

log n

nαn
e

3
4αn logn ≤ 3

2

(log n)
2

n
n

3
4

by virtue of the fact that αn log n ≤ log n. Combining the two
bounds, we have

F (n) ≤ max
{
λ1(n)e0.75, 1.5n−0.25 (log n)

2
}

for all n sufficiently large. In view of λ1(n) = o(1) this
immediately gives limn→∞ F (n) = 0, and the conclusion
(127) follows in view of (130). The desired result (112) is now

established from (126) and (127) for constant `. Note that for
` = 0, we have (112) without requiring nΛ1(n) = Ω(1), since
that extra condition is used only once in obtaining (125) which
holds trivially for ` = 0. This establishes Proposition B.4.

B. Proof of Proposition B.2

Recalling Proposition B.4 and (110), Proposition B.2 will
follow if we show that

P [Dx,` ∩Dy,` ∩ Exy]

= o

(∑̀
h=0

P
[
Ah ∩Kxy

∣∣∣ tx = 1, ty = 1
])

, (131)

for each ` = 1, . . .. To establish (131), we define the series of
events Bh as follows

Bh := [|Nxy|= h]∩ [|Nxy|= `− h− 1]∩ [|Nxy|= `− h− 1] ,

for each h = 0, 1, . . . , `− 1. Now, it is easy to see that

Dx,` ∩Dy,` ∩ Exy =

`−1⋃
h=0

(Bh ∩ Exy ∩ [tx = 1] ∩ [ty = 1]) .

(132)
Note that h varies from 0 to `−1 in (132) because given the

event Exy , nodes x and y are adjacent; thus, they could have
at most `−1 nodes in common when their degrees are `. Since
the events Bh are mutually exclusive for h = 0, . . . , `−1, we
get

P [Dx,` ∩Dy,` ∩ Exy]

=

`−1∑
h=0

P [Bh ∩ Exy ∩ [tx = 1] ∩ [ty = 1]]

Thus, the proof of Proposition B.2 will be completed upon
showing

`−1∑
h=0

P [Bh ∩ Exy ∩ [tx = 1] ∩ [ty = 1]]

= o

(∑̀
h=0

P
[
Ah ∩Kxy

∣∣∣ tx = 1, ty = 1
])

(133)

under the enforced assumptions of Proposition B.2, namely,
with limn→∞ γn = −∞, and nΛ1(n) = Ω(1). Proceeding as
before, and noting that P[Exy] = αP[Kxy] we write

`−1∑
h=0

P [Bh ∩ Exy ∩ [tx = 1] ∩ [ty = 1]] (134)

= µ2
1α

`−1∑
h=0

K1,n∑
u=1

P
[
Bh ∩ (|Sxy|= u)

∣∣∣ tx = 1, ty = 1
]

≤ µ2
1

K1,n∑
u=1

P [(|Sxy|= u)]

`−1∑
h=0

P
[
Bh

∣∣∣ |Sxy|= u, tx = ty = 1
]

Next, by recalling Lemma A.2 with m1 = h, m2 = m3 =
`− h− 1, we get

P
[
Bh

∣∣∣ (|Sxy|= u) , tx = 1, ty = 1
]
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∼ n2`−h−2

h! ((`− h− 1) ! )
2 e
−2nΛ1(n)+

uαnΛ1(n)
K1,n

n

×
{
P
[
Exj∩yj

∣∣∣ (|Sxy|= u) , tx = 1, ty = 1
]}h

×
{
P
[
Exj∩yj

∣∣∣ (|Sxy|= u) , tx = 1, ty = 1
]}`−h−1

×
{
P
[
Exj∩yj

∣∣∣ (|Sxy|= u) , tx = 1, ty = 1
]}`−h−1

.

Recalling (120), (121), and (122), we get

P
[
Bh

∣∣∣ (|Sxy|= u) , tx = 1, ty = 1
]

≤ 2e
−2nΛ1(n)+ uαn

K1,n
nΛ1(n)

(nΛ1(n))
2`−h−2 (135)

for all n sufficiently large. Using (135) in (134), we get for
all n sufficiently large that

`−1∑
h=0

P [Bh ∩ Exy ∩ [tx = 1] ∩ [ty = 1]]

≤ µ2
1

K1,n∑
u=1

(
P
[
|Sxy|= u

∣∣∣ tx = 1, ty = 1
]
·

· 2e−2nΛ1(n)+ uαn
K1,n

nΛ1(n)
∑̀
h=0

(nΛ1(n))
2`−h−2

)
= µ2

1 (nΛ1(n))
−2 × right hand side of (124)

= O ( right hand side of (124)) (136)

since nΛ1(n) = Ω(1). We have shown in the proof of
Proposition B.4 that

right hand side of (124)=o

(∑̀
h=0

P
[
Ah ∩Kxy | tx = ty = 1

])
Together with (136) this establishes (133) and the proof of
Proposition B.2 is complete.

APPENDIX C
CONFINING γn

In this section, we show that establishing the one-law of
Theorem 3.2 under the additional constraint

γn = o(log n) (137)

establishes the one-law for the case when that additional
constraint is not present. Namely, we will show that for any
scaling that satisfies conditions (7), (8), (9), and (6) with
limn→∞ γn = +∞, there exists a scaling that satisfies the
same conditions with limn→∞ γn = +∞ and γn = o(log n),
such that the probability of k-connectivity under the latter
scaling (with γn = o(log n)) is less than or equal to that under
the former scaling.

Firstly, consider a probability distribution µµµ = {µ1, . . . , µr}
with µi > 0 for i = 1, . . . , r, a scaling K∗1 ,K

∗
2 , . . . ,K

∗
r , P

∗ :
N0 → Nr+1

0 , and a scaling α∗ : N0 → (0, 1) such that

Λ∗1(n) = α∗nλ
∗
1(n) =

log n+ (k − 1) log log n+ γ∗n
n

, (138)

for each n = 1, 2, . . .. Assume that

P ∗n = Ω(n),
K∗r,n
P ∗n

= o(1), and
K∗r,n
K∗1,n

= o(log n)

(139)

and that we have limn→∞ γ∗n = +∞; i.e., the ∗-scaling
satisfies all conditions enforced by part (b) of Theorem 3.2.

Now, with the same distribution µµµ, consider a scaling
K̂1, K̂2, . . . , K̂r, P̂ : N0 → Nr+1

0 and a scaling α̂ : N0 →
(0, 1) such that P̂n = P ∗n and K̂KKn = KKK∗n. Obviously, we have
λ̂1(n) = λ∗1(n) by recalling (2) and (3) and also that

P̂n = Ω(n),
K̂r,n

P̂n
= o(1), and

K̂r,n

K̂1,n

= o(log n).

Next, let γ̂n := min (γ∗n, log log n) and define α̂n through

α̂nλ̂1(n) =
log n+ (k − 1) log log n+ γ̂n

n
. (140)

Clearly, we have γ̂n = o(log n) and limn→∞ γ̂n = +∞.
This establishes that for any scaling satisfying the conditions
of part (b) of of Theorem 3.2, there exists another scaling
(with the same µµµ,KKKn, and Pn) that satisfies all of the same
conditions and (137). In addition, this latter scaling has a
smaller probability of a channel being on than the original
scaling; i.e., we have

α̂n ≤ α∗n, n = 2, 3, . . . (141)

by virtue of the fact that γ̂n ≤ γ∗n for all n.
In view of the above, we will establish that part (b) of

Theorem 3.2 under γn = o(log n) implies Theorem 3.2 if
we show that

P

[
H(n;µµµ,KKK∗n, P

∗
n , α

∗
n)

is k − connected

]
≥ P

[
H(n;µµµ,K̂KKn, P̂n, α̂n)

is k − connected

]
(142)

This is clear since (142) would ensure that if
H(n;µµµ,K̂KKn, P̂n, α̂n) is k-connected asymptotically almost
surely (as would be deduced from Theorem 3.2 under
γn = o(log n)), then so would H(n;µµµ,KKK∗n, P

∗
n , α

∗
n).

In view of (141), we get (142) by means of an easy coupling
argument showing that H(n;µµµ,K̂KKn, P̂n, α̂n) is a spanning
subgraph of H(n;µµµ,KKK∗n, P

∗
n , αn). This follows from the fact

that under (141) the corresponding ER graphs satisfy

G(n; α̂n) ⊆ G(n;α∗n)

meaning that for any monotone increasing graph property P
(e.g., k-connectivity), the probability of that G(n;α∗n) has P is
larger than that of G(n; α̂n); see [19, Section V.B] for details.

APPENDIX D
PROOF OF LEMMA 8.1

Lemma 8.1 will be established by bounding each term in
(60). First, we note from [7, Proposition 9.1] that

P [Cm] ≤ mm−2 (αnprr(n))
m−1
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Next, we derive upper bounds on the terms

E
[
1− (P−|νm|Kr|Σ| )

( P|Σ|)

]
and E

[
(P−L(νm)

|Σ| )
( P|Σ|)

]
, respectively. It

is clear that Lemma 8.1 will follow if we show that

E

1−

(Pn−|νm|Kr,n
|Σ|

)(
Pn
|Σ|
)

 ≤ 1− e−3αnprr(n)m (143)

for all m ≤ bP−Kr,n2Kr,n
c and that

E

[(Pn−L(νm)
|Σ|

)(
Pn
|Σ|
) ]

(144)

≤ min

(
1− Λ1(n), e−(1+ ε

2 )Λ1(n),

min
(

1− µr + µre
−αnp1r(n)ζm, e−αnp11(n)ζm

)
+ e−ψK1,n111 [m > mn]

)
.

We establish (143) and (144) in turn in the next two sections.

A. Establishing (143)

First, with m ≤ P−Kr
2Kr

, we have |νm|≤ m ≤ P−Kr
2Kr

and
using Fact 5.9 we get

E
[
1−

(
P−|νm|Kr
|Σ|

)(
P
|Σ|
) ]

≤ E
[
1−

((
P−Kr
|Σ|

)(
P
|Σ|
) )2|νm| ]

=1−E
[
W 2|νm|

]
(145)

where we set W =
(P−Kr|Σ| )
( P|Σ|)

. We also have

E
[
W 2|νm|

]
= E

 m∑
j=0

(
m

j

)
αj (1− α)

m−j
W 2j


= E

[(
1− α

(
1−W 2

))m]
≥ E [(1− 2α (1−W ))

m
] (146)

using Fact 5.7 in the last step. We also know that

W =

(
P−Kr
|Σ|

)(
P
|Σ|
) ≥

(
P−Kr
Kr

)(
P
Kr

) = 1− prr (147)

Thus,

αn(1−Wn) ≤ αnprr(n) ≤ 1

4

for all n sufficiently large by virtue of (92) and that β`,n =
o (log n). Using the fact that 1−2x ≥ e−3x for all 0 ≤ x ≤ 1

4 ,
we then get from (146) and (147) that

E
[
W 2|νm|
n

]
≥ E

[
e−3αn(1−Wn)m

]
≥ e−3αnprr(n)m

for all n sufficiently large. The desired conclusion (143) now
follows immediately by means of (145).

B. Establishing (144)

Let YYY be defined as follows

Yi =

{
biζK1,nc i = 2, . . . ,mn

bψPnc i = mn + 1, . . . , n

where ζ ∈ (0, 1
2 ) selected small enough such that (51) holds,

and ψ ∈ (0, 1
2 ) selected small enough such that (52) holds.

Recalling (50), we see that

Ji =

{
max (b(1 + ε)K1,nc , Yi) i = 2, . . . ,mn

Yi i = mn + 1, . . . , n

Next, we let

M(νm)

= K1,n111 [|νm|= 1] + max
(
K1,n, Y|νm| + 1

)
111 [|νm|> 1] ,

and

Q(νm) = K1,n111 [|νm|= 1]+(b(1 + ε)K1,nc+ 1)111 [|νm|> 1] .

We also recall that

L(νm) = max
(
K1,n111 [|νm|> 0] ,

(
J|νm| + 1

)
111 [|νm|> 1]

)
Let’s consider the following three cases

1) |νm|= 0: In this case we have L(νm) = M(νm) =
Q(νm) = 0.

2) |νm|= 1: In this case we have L(νm) = M(νm) =
Q(νm) = K1,n.

3) |νm|≥ 2: In this case we have
– L(νm) = max

(
K1,n, J|νm| + 1

)
.

– M(νm) = max
(
K1,n, Y|νm| + 1

)
.

– Q(νm) = b(1 + ε)K1,nc+ 1.
More specifically, considering the case when |νm|=
2, 3, . . . ,mn, we have

J|νm| = max
(
(1 + ε)K1,n, Y|νm|

)
and it follows that

L(νm) = max
(
K1,n, b(1 + ε)K1,nc+ 1, Y|νm| + 1

)
= max (b(1 + ε)K1,nc+ 1,M(νm))

= max (Q(νm),M(νm))

Also, when |νm|= mn + 1, . . . , n, we clearly have J|νm| =
Y|νm|, and thus

L(νm) = M(νm) = max (K1,n, bψPnc+ 1) .

Since K1,n ≤ Kr,n = o(Pn) in view of (8), we have

bψPnc ≥ b(1 + ε)K1,nc

for all n sufficiently large. Thus, we can rewrite L(νm) as

L(νm) = max (K1,n, bψPnc+ 1, b(1 + ε)K1,nc+ 1)

= max (Q(νm),M(νm)) .

Combining, we conclude that it always holds that L(νm) =
max (Q(νm),M(νm)), whence

E

[(P−L(νm)
|Σ|

)(
P
|Σ|
) ]

≤ min

(
E

[(P−M(νm)
|Σ|

)(
P
|Σ|
) ]

,E

[(P−Q(νm)
|Σ|

)(
P
|Σ|
) ])

(148)
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Note that it was shown in [9, Lemma 7.2] that

E

[(P−M(νm)
|Σ|

)(
P
|Σ|
) ]

≤ min
(

1− Λ1(n),min
(

1− µr + µre
−αnp1r(n)ζm, e−αnp11(n)ζm

)
+ e−ψK1,n1 [m > mn]

)
for all n sufficiently large. On the same range, we also get
from Lemma A.5 that

E

[(Pn−Q(νm)
|Σ|

)(
Pn
|Σ|
) ]

≤ e−(1+ ε
2 )Λ1(n)

upon noting that Λ1(n) = o(1) under (43) with β`,n =
o(log n). Reporting the last two bounds into (148), we es-
tablish (144).


