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Abstract. We study the robustness of symmetrically coupled and clustering-based weighted heterogeneous
inter-connected networks with respect to load-failure-induced cascades. This is done under the assump-
tion that the flow dynamics are governed by global redistribution of loads based on weighted betweenness
centrality. Our results indicate that no weighting bias should be assigned to inter-links when calculat-
ing shortest path between node pairs under the clustering-based weighting scheme; i.e., inter-links shall
be treated no differently than intra-links. In contrast with local load redistribution cases, we show that
increasing connectivity is preferred for the robustness against global load redistribution-based cascading
failures in clustering-based weighted inter-connected networks. Furthermore, comparisons among weight-
ing schemes reveal that, both the clustering-based and degree-based schemes outperform the random one
in the sense of requiring lower initial and total investments required to ensure robustness. We also find
that clustering-based scheme outperforms degree-based one in terms of requiring lower initial investments.
Except in a limited range where weighting is heavily suppressed, clustering-based scheme is shown to
outperform degree-based one in terms of total investments. Finally, when there exists a hard investment
budget constraint, clustering-based weighting scheme would be a better choice against a two-nodes-induced
failure than the degree-based weighting, and the clustering-based scheme is more stable than degree-based
scheme against one-or-two-nodes-induced failure. We expect our findings to be significantly useful in de-
signing real-world weighted inter-connected networks that are robust against load-failure-induced cascades.

1 Introduction

Major outages in critical infrastructure networks, such as
power grids, telecommunications, and transportation, are
a main threat to the society’s well-being [1]. To that end,
the robustness of network of networks has attracted a
great deal of attention recently [2–12]. This line of research
was primarily inspired by the observation that many sys-
tems are characterized by the inter-connections (or, inter-
dependence) between small sub-networks [13–18]. In par-
ticular, the seminal works on the percolation phenomena
in interdependent networks [2,19] arrived at a surprising
conclusion that the vulnerability of interdependent net-
works increases as their degree distribution (both intra-
[2] and inter-degree [19] distribution) gets broader, which
is in contrast with how isolated networks behave [20].

It is therefore of fundamental importance to charac-
terize the robustness of the interdependent and inter-
connected networks. Along these lines, a number of
important extensions have been made recently. In partic-
ular, [6] considered robustness against intentional attacks,
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whereas [19,21] extended the model from one-to-one cor-
respondence to multiple support-dependence relations.
Along this fruitful line of research, the case where the
networks are weighted [22] has received very little atten-
tion although it was pointed out that structural network
properties such as the weighting distribution have great
influence on the robustness of networks [23]. Therefore, we
find it natural and important to investigate the effect of
weighting schemes on the robustness of coupled networks
against load-failure induced cascades.

Many cascade models have been proposed thus far to
study the robustness and load cascading dynamics on iso-
lated networks; e.g., the sand-pile model, the fiber bundle
model, local weighted flow redistribution rule [24], global
load-based cascading model [25–28] and its application in
the problem of the diameter changes by the deletion of
a single vertex for various in silico and real-world scale-
free networks [29]. Among them, only the sand-pile model
has been extended to inter-connected networks [30,31],
which utilized a multi-type branching process [31] to ana-
lyze robustness and cascading dynamics. However, in the
sand-pile model, it is assumed that flow is shed only to
neighbor sites, ruling out the possibility of resetting the
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equilibrium via global redistribution. This makes it hard
for the sand-pile model to capture a real-world situation,
raising an immediate need to study the robustness of
weighted inter-connected networks under global flow re-
distribution mechanisms.

The degree-based weighting scheme was discussed ex-
tensively in the literature owing to its applicability to real-
world networks [24]; recently, it was also used for interde-
pendent networks [32]. The clustering-based weighting is
considered as a good alternative to degree-based weighting,
which captures the relation between the clustering proper-
ties and the strength of interactions between constituents
of the network [33].

In this paper, we start with an inter-connected net-
work model, where each intra-link (resp. each inter-link) is
assigned a weight according to the intra-clustering (resp.
inter-clustering) coefficients of the nodes that it is con-
necting together. We wish to quantify the robustness of
this network against single-node failures. We assume that
when a node fails, a global (i.e., network-wide) load re-
distribution takes place leading to some nodes carrying
larger loads than before, which possibly triggers further
cascading failures if some of the nodes are loaded above
their capacity. Our goal is to understand what proactive
measures can be implemented to prevent such cascading
failures when a single node fails. More specifically, we com-
pute the average load per node in the network when ev-
ery node sends to (and receives from) every other node a
unit package via the weighted shortest paths. This quan-
tity will be referred to as the initial investment with the
understanding that it is the “investment” (in terms of the
average node capacity) that needs to be made for the net-
work to function properly in the initial set-up. Then, we
consider the situation where a single node has failed and
removed from the system. Calculating the new weighted
shortest paths, we compute the new average load corre-
sponding to the failure of any one of the nodes. The max-
imum of these quantities taken over all nodes gives us the
total investment, defined as the “total investment” one has
to make (in terms of average node capacity) to ensure that
the network is robust against one-node failures.

To see additional benefits of clustering-based scheme
on inter-connected networks and reveal the cascading dy-
namics, we also carry on a two-node-removal analysis as
an example of multiple node failures. More specifically,
we calculate the relative size of the giant component left
behind when the two nodes that carry the highest loads
fail.

With these in mind, we run an extensive simulation
study to understand the robustness of two symmetrically
coupled scale-free (SF) networks that are inter-connected.
Our study leads to a number of interesting conclusions:
first of all, we find that no weighting bias should be as-
signed to inter-links when calculating the shortest paths
between node pairs under the clustering-based weight-
ing scheme. In other words, inter-links and intra-links
shall be treated equivalently for robustness costs to be
minimum. Second, we show that in contrast with local
load redistribution cases, increasing connectivity is pre-

ferred for robustness under global load redistribution based
cascades (for clustering-based weighted inter-connected
networks). Furthermore, comparisons among weighting
schemes reveal that, both the clustering-based and degree-
based weighting schemes outperform the random weight-
ing scheme in the sense of requiring lower amount of
initial and total investments. In addition, we show that
clustering-based scheme outperforms degree-based one in
the sense of requiring smaller initial investments. Except
in a limited regime where weighting is heavily suppressed,
we see that clustering-based scheme outperforms degree-
based one in the sense of requiring lower total investments.
Finally, in the multiple-node-failure analysis, we demon-
strate that under hard budget constraints, i.e., when the
average capacity per node cannot exceed a certain level,
the clustering-based scheme outperforms the degree-based
one, in the sense of resulting in a larger giant component
size when the two most loaded nodes fail. We also show
that clustering-based scheme leads to a more consistent
robustness performance across one-or-two-node-induced
failure, whereas in the degree-based scheme, the optimal
parameter values that leads to highest robustness change
significantly between the one-node failure case, and two-
node failure case. We expect these findings to be helpful in
designing real-world weighted inter-connected networks.

The rest of the paper is organized as follows: in Sec-
tion 2, the global load-based cascading model on inter-
connected networks is briefly introduced. In Section 3,
simulation results that reveal the investment costs for
robustness under clustering-based weighting scheme are
presented. Finally, Section 4 is devoted to concluding
remarks.

2 Robustness of inter-connected networks
under clustering-based weighting scheme

Our network model is an extension of the model intro-
duced in [25] to inter-connected networks. Namely, we
consider two networks, A and B, with the same num-
ber of nodes, N . Nodes in each network are connected
by intra-links, i.e., links within each network; this is char-
acterized by intra-degree distribution PA(k) and PB(k),
for network A and network B, respectively. In addition,
nodes in network A are connected to nodes in network B,
and vice versa, via inter-links; i.e., links between the two
networks. The inter-degree distributions are characterized
by the distributions [21] P̃A(k) and P̃B(k) for network A
and network B, respectively.

We expect this model to capture various real-world ap-
plications. In particular, the model applies to cases where
two wireless sensor networks that belong to different op-
erators are inter-connected, e.g., see [34] for a study on
real-world inter-connected wireless sensor networks.

We assume that each node receives (sends) a unit
package from (to) every other node of the network. The
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weighted path length is given by:

di,j =
2N−1∑
n,m=1

δ(i,j)
n,m wn,m, (1)

where δ
(i,j)
n,m = 1 when the link ln,m exists and is on the

path p(i,j), and δ
(i,j)
n,m = 0 otherwise. Here, wn,m stands for

the weight of the link between nodes n and m, and will be
specified shortly. The package flows from the origin node
i to the destination node j along the weighted shortest
path. The load of a particular node n is defined as:

Ln =
2

(2N − 1)(2N − 2)

∑
i,j

L(i,j)
n , (2)

where L
(i,j)
n is the contribution of the ordered pair (i, j)

to the load on node n, and L
(i,j)
n = 1 when node n is

on the shortest path between the ordered pair (i, j). Note
that the load Ln is also the weighted relative between-
ness centrality [35,36] of node n by definition. The initial
investments/cost of the network [25] is defined as:

I0 =
1

2N

2N∑
n=1

Ln, (3)

when the investments/cost of a unit package is normal-
ized to one. The quantity I0 is referred to as the initial
investment since it is the minimum average capacity (per
node) required to ensure that no node is overloaded in the
initial set-up and all pairs of nodes can exchange a unit
packet of flow.

Under these assumptions, a heterogeneous network
structure will lead to a heterogeneous load distribu-
tion [25]. In other words, a few nodes in the network will
have to carry an exceptionally large load as compared to
other nodes. We demonstrate the distribution of loads for
the heterogeneous inter-connected networks in Figure 1,
where it is seen that a few nodes carry around five times
more load than the average. If some of the nodes suffer
from failure or targeted attacks, the shortest flow paths
will be readjusting, resulting in a global redistribution of
load. As a consequence, some nodes may take on a larger
load than their capacity and fail, which in turn may trigger
new load redistribution and subsequent overload failures
if the loads of some nodes exceed their capacities.

To quantify the robustness under these assumptions,
or more specifically to understand the cost/investment re-
quired for robustness against one-node failures, we con-
duct the following 2N−1 contingency analysis: begin with
the inter-connected network structure introduced earlier.
For a fixed node m, 1 ≤ m ≤ 2N , suppose that m has
failed and removed from the network, and calculate the
corresponding weighted shortest paths between the re-
maining (2N − 1) nodes. Then, compute the resulting
readjusted loads Ln(m) of the remaining (2N − 1) nodes
according to (2). Finally, repeat this process from scratch
(i.e., start from the case when all nodes are functional) for

Fig. 1. Distributions of load and (inset) centrality distance
following from the unweighted (circle) and the clustering-based
weighted (triangle) case. We set N = 100, 〈k〉 = 〈kA〉 = 〈kB〉 =
4, and generate the support degree distribution from a BA

network with
〈
k̃
〉

=
〈
k̃A

〉
=
〈
k̃B

〉
= 2, and with α = 1,

θ = 0.25 for the clustering-based weighting. The distributions
were calculated from 50 independent realizations of the random
inter-connected scale-free networks.

each one of the 2N nodes in the inter-connected network.
We define the minimum capacity of a node n as:

Φn = max
0≤m≤2N

Ln(m) (4)

in which Ln(0) denotes the load from the full network
with all 2N nodes. Here the understanding is that Φn is
the minimum capacity required for node n to not get over-
loaded (hence fail) when any one of the other nodes fail.
As a result, if all nodes n (1 ≤ n ≤ 2N) are assigned a
capacity of at least Φn, then the corresponding network
would be robust against the one-node failures. The “to-
tal investment” required for robustness against one-node
failure is now given by:

I1 =
1

2N

2N∑
n=1

Φn. (5)

Since the investment I1 is associated with the cost of mak-
ing the network robust, it is desirable to have smaller I1.

As mentioned previously, we assume that weighting of
the links is done based on the clustering coefficients of the
nodes that are connected together. Namely, the weight of
a link i ∼ j within a network is given by:

wij = (CiCj)θ, j ∈ Γi, (6)

where Γi is the set of neighboring nodes of i in its
own isolated sub-network and Ci is the normalized intra-
clustering coefficient of node i; i.e.,

Ci = exp
(

Si

Ti

)
, (7)

where Si is the total number of connections between neigh-
bors of node i which are within the same sub-network of
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node i, and Ti is the total number of pairs of neighbors of
node i which are within the same sub-network of node i.
Since we are interested in inter-connected networks, we
have to specify weights of another type of links as well,
namely the inter-links. We assume that the weight of an
inter-link i ∼ j is given by

wij = α(C̃iC̃j)θ, j ∈ Γ̃i, (8)

where Γ̃i is the set of neighboring nodes of i in the other
network; e.g., if node i belongs to network A, then Γ̃i

denotes its neighbors in network B. The inter-clustering
coefficient C̃i for node i is defined by

C̃i = exp

(
S̃i

T̃i

)
, (9)

where S̃i is the total number of connections between neigh-
bors of node i with at least one of them in Γ̃i, and T̃i is
the total number of pairs of neighbors of node i with at
least one of them in Γ̃i. The clustering coefficient is nor-
malized so that the weight of any link is larger than zero,
thus no link is virtually removed by the weighting scheme.
The multiplier α ≥ 1 is introduced to capture the possi-
ble asymmetric flow dynamics on different types of links
in the inter-connected networks. When α = 1, there is
no weighting bias on inter-links when calculating short-
est path between node pairs; they are considered to be
equivalent to intra-links. When α > 1, inter-links are less
preferable than intra-links, meaning that the inter-links
are more likely to be avoided when calculating the short-
est paths between node pairs. In this work, we do not
consider the cases where α < 1.

Throughout, we will present several advantages of
the clustering-based weighting scheme as compared to
the degree-based and random weighting schemes. But,
our starting point in using the clustering-based weighting
scheme is to understand the effect of using the information
on “neighbors of neighbors” in the robustness of inter-
connected networks. Similar considerations have led to
more stable systems in the literature before; e.g., see [37]
for a work on traffic flow. Furthermore, as compared to the
load-based (i.e., betweenness centrality based) weighting
scheme used in [25], clustering-based weights are easier to
compute as they only require local information about the
nodes; clustering-based weight of a link can be computed
from only the neighborhood information of the two nodes
that the link is connecting together, whereas load-based
weight of a link requires the knowledge of the whole net-
work topology.

Finally, we demonstrate that the clustering-based
weighting scheme homogenizes the load distribution in the
network. Namely, as in [25], we calculated the flow paths
based on the hop counts, i.e. when links are unweighted,
and also the clustering-based weighted path lengths given
by (1) with

wn,m =
{

(CnCm)θ if n ∼ m is an intra-link
α(C̃nC̃m)θ if n ∼ m is an inter-link.

(10)

As can be seen from Figure 1, although the distributions of
load and centrality distance still contain some heterogene-
ity, they are more homogeneous under the clustering-based
weighting than that under the unweighted situation, i.e.,
more nodes are centering around the mean load and mean
centrality distance under clustering-based scheme. Here,
the centrality distance between node i and node f is de-
fined as the sum of betweenness centrality of the nodes
on the shortest path between node i and node f , i.e., the
centrality distance di,f =

∑2N
n=1 δ

(n)
i,f Ln, in which δ

(n)
i,f = 1

if node n is on the shortest path between node i and
node f , otherwise δ

(n)
i,f = 0.

3 Numerical results for the cascading
dynamics under the clustering-based
weighting scheme

3.1 The role of connectivity and asymmetric
flow dynamics

First, we are interested in the effect of possible asym-
metric treatment of inter-links (with respect to intra-
links) in the robustness of inter-connected networks un-
der the clustering-based weighting scheme. Meanwhile, the
variation of the cost/investment (for ensuring robustness
against 1-node failures) with the increasing network con-
nectivity is also of interest. Since there are two ways to
increase the connectivity of inter-connected networks, i.e.,
either by increasing intra-connectivity or by increasing
inter-connectivity, we will consider the effect of both on
the cost/investment.

In our initial set of experiments, the weighting param-
eter θ is set to θ∗ = 0.125, which is optimal as will be
shown in the following subsection. As shown in Figures 2a
and 2b, when the intra-connectivity was increased, even
though inter-connectivity is constant, both the initial cost
and the total cost of the network are lower. This means
that increasing intra-connectivity on inter-connected net-
works improves the robustness in the sense that the aver-
age node capacity required for initial stability of the net-
work as well as for ensuring the robustness against 1-node
failures is smaller. Furthermore, the initial cost and the
total cost are also the lowest when α = 1, which suggests
that no weighting bias should be assigned to the inter-
links when calculating shortest paths between node pairs.
In other words, in the weighting scheme, inter-links shall
be treated in the same manner with intra-links in order
for the robustness costs to be the lowest.

In Figures 3a and 3b, we observe a similar behavior of
the robustness costs as the inter-connectivity is increased.
Namely, we see that when the inter-connectivity is in-
creased, even though intra-connectivity is constant, both
the initial cost and the total cost of the network are lower.
This means that as inter-connectivity increases, the min-
imum average capacity required to ensure initial stability
and robustness against one-node failures will be lower. We
also observe that the initial cost and the total cost are low-
est when α = 1, indicating again that inter-links shall be
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(a)

〈k〉 I0(α = 1) I0(α = 2) I0(α = 5) I0(α = 10)
4 0.0100804 0.0103205 0.0103770 0.0103839
6 0.0087239 0.0088960 0.0089135 0.0089152
8 0.0078516 0.0079319 0.0079340 0.0079341
10 0.0073208 0.0073685 0.0073686 0.0073690
12 0.0069124 0.0069433 0.0069433 0.0069433

(b)

Fig. 2. Simulation results of the global load-based model on
symmetrically coupled and clustering-based weighted scale-free
networks. (a) The initial investments I0 vs. 〈k〉; (b) the to-
tal investments I1 vs. 〈k〉. The parameters for the coupled
BA networks are N = 100. The support degree distribu-
tion was generated from a BA network with N = 100 and〈
k̃
〉

=
〈
k̃A

〉
=
〈
k̃B

〉
= 2.

treated equally with the intra-links in order to achieve the
lowest possible costs for robustness.

3.2 Comparisons of the weighting schemes

To further see the benefits of clustering-based weighting
scheme on the robustness of inter-connected networks, in
the following simulation, we compare it with two other
weighting schemes.

First, we consider the degree-based weighting scheme
in which the weight of an intra-link i ∼ j is taken to be

wij = (kikj)θ, j ∈ Γi, (11)

(a)

〈k̃〉 I0(α = 1) I0(α = 2) I0(α = 5) I0(α = 10)
2 0.0069124 0.0069433 0.0069433 0.0069433
4 0.0062060 0.0062990 0.0062990 0.0062996
6 0.0058119 0.0059962 0.0059965 0.0060106
8 0.0054084 0.0056290 0.0056323 0.0056635
10 0.0051741 0.0054953 0.0054973 0.0055248

(b)

Fig. 3. Simulation results of the global load-based model on
symmetrically coupled and clustering-based weighted scale-free
networks. (a) The initial investments I0 vs. 〈k̃〉 and (b) the
total investments I1 vs. 〈k̃〉. The parameters for the coupled
BA networks are N = 100 and 〈k〉 = 12. The support degree
distribution was generated from a BA network with N = 100

and
〈
k̃
〉

=
〈
k̃A

〉
=
〈
k̃B

〉
.

where ki and kj are the intra-degrees of node i and node j,
respectively. Similarly, the weight of an inter-link i ∼ j is
assumed to be given by:

wij = α(k̃ik̃j)θ, j ∈ Γ̃i, (12)

where k̃i and k̃j are the inter-degree of node i and node j,
respectively.

Second, we consider the random weighting scheme, in
which we first compute the degree-based weights distri-
bution and then reshuffle these weights randomly in the
network.
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(a)

(b)

Fig. 4. Comparison of three weighting schemes. (a) The initial
investments I0 vs. weighting parameter θ and (b) the total
investments I1 vs. weighting parameter θ for random, degree-
based and clustering-based weighting schemes, respectively.

We show the results of Monte-Carlo simulations for
the model on symmetrically coupled scale-free networks
generated by the Barabási-Albert (BA) algorithm [38]
with 〈k〉 = 〈kA〉 = 〈kB〉 = 4, and the support de-
gree distribution was generated from a BA network with〈
k̃
〉

=
〈
k̃A

〉
=
〈
k̃B

〉
= 2 in Figure 4. The asymmetric

flow dynamics parameter is set to α = 1.
As seen from Figures 4a and 4b, it is evident that both

clustering-based and degree-based weighting schemes out-
perform random weighting scheme in the sense of requiring
lower initial and/or total investments.

As shown from Figure 4a, the initial investments I0

is lower under clustering-based weighting scheme as com-
pared to the degree-based one, meaning that clustering-
based weighting scheme leads to a smaller average ca-
pacity requirement in the initial configuration of network
for ensuring that no node fails. Furthermore, from Fig-
ure 4b, it is seen that the total investments I1 is larger
under clustering-based weighting scheme than that under
degree-based one only in a small range of θ values. Outside
that range, the clustering-based weighting scheme is bet-
ter than the degree-based one from the total cost point of

Fig. 5. Seemingly symmetric case under the degree-based
weighting scheme. With N = 100, 〈k〉 = 〈kA〉 = 〈kB〉 = 2,
and the support degree distribution was generated from a BA

network with
〈
k̃
〉

=
〈
k̃A

〉
=
〈
k̃B

〉
= 2, and α = 1.

view. A possible explanation for this phenomenon might
be that extra protections were introduced by considering
the impact of neighbors of neighbors which is embedded
in the clustering coefficient. Except for a limited range
where the weighting was suppressed heavily, the benefits
from the consideration of neighbors of neighbors outweigh
those from the pure consideration of neighbors, which
is witnessed in other disciplines like traffic flow [37,39]
as well. Another interesting observation is that the opti-
mal configuration of the inter-connected networks under
degree-based clustering is achieved at θ∗ = 0.125, not at
θ = 0.4 which is the optimal weighting for isolated net-
works as shown in [40]. The shift of the optimal weighting
parameter might be attributed to the break of symmetry
in inter-connected networks between intra-degree distri-
bution and inter-degree distribution.

To clear the possible uncertainty, we investigate the
case of 〈k〉 = 〈kA〉 = 〈kB〉 = 2, and the support de-
gree distribution was generated from a BA network with〈
k̃
〉

=
〈
k̃A

〉
=
〈
k̃B

〉
= 2 for the degree-based weighting

scheme, which is seemingly a symmetric case. As shown
in Figure 5, the optimal weighting parameter θ∗ was still
0.125. We also tested the case of 〈k〉 = 〈kA〉 = 〈kB〉 = 4,
and the support degree distribution was generated from a
BA network with

〈
k̃
〉

=
〈
k̃A

〉
=
〈
k̃B

〉
= 4. The result is

the same.
The reason for observing different optimal θ values in

inter-connected networks (as compared to isolated net-
works) even in the seemingly symmetric case is explained
as follows. Even when the inter-degree distribution is set
to be equivalent to the intra-degree distribution, an inter-
connected network is never equivalent to an isolated net-
work. This is so even if one generates an isolated net-
work whose degree distribution is equal to the total degree
distribution of the inter-connected network; total degree
distribution of an inter-connected network can be com-
puted by taking the convolution of the inter-degree distri-
bution and the intra-degree distribution. This is already
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pointed out in the literature [41] and is related to the mul-
tiplex nature of inter-connected networks. In particular,
consider the construction of an inter-connected network
via the configuration model, where each node is given
a random number of intra-stubs drawn from the intra-
degree distribution, and another random number of inter-
stubs drawn from the inter-degree distribution. Note that
intra-stubs can only be combined with other intra-stubs
to form intra-links with nodes from the same sub-network,
whereas inter-stubs can only be connected to other inter-
stubs to form inter-links with the nodes in the other sub-
network. Since no such constraint exists in an isolated
network with the same total degree distribution, i.e., any
stub can be combined with any other stub, the resulting
network would be significantly different than the inter-
connected network case; e.g., in [41] the percolation of
thresholds of the two cases are shown to differ significantly.
Therefore, even in the case where inter-links are treated
the same with intra-links in the weighting scheme, the sole
fact that inter-links are distinguished from intra-links in
the network construction leads to a significant difference
in network behavior which manifests from a significant
shift of the optimal weighting parameter in our case.

3.3 Multiple nodes failure

Similar to [25], we want to explore the effect of clustering-
based weighting on the robustness against two-node-
failures. Since 2N − 1 contingency analysis does not
guarantee robustness against two-or-more-nodes-induced
failure, we assume that every node takes on the same ex-
tra protection [25] and has a capacity given by:

Cn(γ) = (1 + γ)Cn(0). (13)

The larger γ is, the larger robustness will be against a
failure of two or more nodes. For two-node-induced failure,
the investment cost is given by:

I2 = (1 + γ)I0. (14)

When I2 is not large enough, the failure of two nodes may
induce a cascading failure, leaving behind a network not
necessarily connected. As shown in Figures 6 and 7, the
relative size Ngc/N of giant component is increased with
tolerance parameter γ after removal of two most-loaded
nodes.

From Figure 6, it is evident that when the tolerance
parameter γ is relatively small, say, γ < 0.2, i.e., when
there is a hard investment budget constraint, clustering-
based weighting scheme would be a better choice against
a two-node-induced failures even though the degree-based
weighting is shown to perform better through 2N −1 con-
tingency analysis with the same parameters.

From Figure 7, we can see that the best degree-based
weighting through 2N−1 contingency analysis is no longer
the best one against a two-nodes-induced failure, indi-
cating that degree-based weighting is not so stable a
scheme under multiple nodes’ failure. In other words, it

Fig. 6. Relative size of the giant component which is left
behind a cascading failure after removal of the two most
loaded nodes, as a function of the investment parameter γ.
With N = 100, 〈k〉 = 〈kA〉 = 〈kB〉 = 4, and the support
degree distribution was generated from a BA network with〈
k̃
〉

=
〈
k̃A

〉
=
〈
k̃B

〉
= 2, and α = 1, θ = 0.125. Each curve

is averaged over 50 independent realizations of random inter-
connected scale-free networks.

Fig. 7. Relative size of the giant component which is left
behind a cascading failure after removal of the two most
loaded nodes, as a function of the investment parameter γ.
With N = 100, 〈k〉 = 〈kA〉 = 〈kB〉 = 4, and the support
degree distribution was generated from a BA network with〈
k̃
〉

=
〈
k̃A

〉
=
〈
k̃B

〉
= 2, and α = 1.

would be hard if not impossible to optimize the degree-
based weighting scheme simultaneously against the fail-
ure of one, two, and more nodes. On the other hand, the
clustering-based scheme is seen to yield a relatively stable
robustness performance against one-or-two-node-induced
failures.

4 Conclusions

In conclusion, we have investigated the robustness of inter-
connected networks under a clustering based weighting
scheme through a global load redistribution based con-
tingency analysis. In particular, our contributions include

http://www.epj.org
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(i) extending the clustering based weighting scheme to
inter-connected networks, (ii) analyzing the cost of initial
stability and robustness against one-or-two-nodes failures
in inter-connected networks, and (iii) comparing the clus-
tering based scheme with the random and degree-based
weighting schemes in terms of initial and total costs. Our
main findings are that, no weighting bias should be as-
signed to inter-links when calculating shortest path be-
tween node pairs under the clustering-based weighting
scheme. Furthermore, we show that increasing connec-
tivity reduces robustness costs in inter-connected net-
works, which is in contrast with local flow redistribu-
tion cases [42]. Also, we show that except for a limited
range where weighting is heavily suppressed, clustering-
based weighting scheme outperforms both the random and
degree-based ones in terms of requiring a lower initial and
total cost in the symmetrically inter-connected scale-free
networks. Last but not least, we show that, when there ex-
ists a hard investment budget constraint, clustering-based
weighting scheme would be a better choice for resisting
against two-node-failures than the degree-based weight-
ing, and the clustering-based scheme has a more stable
robustness performance than degree-based scheme against
one-or-two-node-induced failures.

All results presented so far are restricted to symmetri-
cally coupled scale free networks. Other types of networks,
like symmetrically coupled Erdõs-Rényi (ER) networks or
small-world networks as well as asymmetrically coupled
networks could be also studied. More interesting findings
are to be expected from follow-up extensions including
the consideration of the transient dynamics. In case of the
existence of relaxation time for the node to overload, tran-
sient oscillations or overshooting could be expected. The
role of intra- and inter- connectivity might be carefully
reviewed under that circumstance.
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