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Abstract We study the diffusion behavior of real-time in-
formation in an overlaying social-physical network. Typi-
cally, real-time information is valuable only for a limited
time duration and needs to be delivered before its deadline,
indicating that real-time information is more likely to spread
among friends within a “social proximity.” With this insight,
we consider a physical information network which consists
of many cliques and assume that real-time information can
spread quickly within a clique. Conjoint to this physical in-
formation network, there are online social networks where
the information can propagate via websites such as Face-
book, twitter, Youtube, etc.

Capitalizing on the theory of inhomogeneous random
graph, we analytically characterize the size of information
epidemic. One interesting finding is that a larger size online
social network, with the same degree distribution, may not
necessarily yield a larger size of information epidemic in
this overlaying social-physical network. In fact, under cer-
tain conditions, the size of information epidemic could even
decrease with the growing size of the online social network.
This is in stark contrast to that in a single network.
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1 Introduction

1.1 Motivation and Background

In today’s modern society, people are becoming increasingly
connected over social networks. Thanks to online social net-
works, such as Facebook and Twitter, people can share mes-
sages quickly with their friends. Meanwhile, physical infor-
mation networks [2], based on traditional face-to-face inter-
actions, still remain as an important medium for message
spreading. These networks are increasingly becoming cou-
pled together [3] due to individuals that participate in mul-
tiple of them. As a result of such coupling, the information
propagation in one network can trigger further propagation
in another, and vice versa, greatly facilitating the diffusion of
information [4]. This leads today’s hot spot news or fashion
behaviors to generate pronounced influence over the popu-
lation more than ever before.

The main thrust of this study is dedicated to understand-
ing the diffusion behavior of real-time information over cou-
pled networks. Typically, the real-time information is valu-
able only for a limited time duration [5] and hence needs to
be delivered before its deadline. For example, once a time-
limited coupon is released from Groupon or Dealsea.com,
people can share this news either by talking to friends or
posting it on Facebook. However, the interest on this deal
would die down after it expires.

Clearly, due to the timeliness requirement, the influence
of real-time information depends on its propagation speed.
The faster the message passes from one to another, the more
people can learn this news before it expires, indicating that
its diffusion behavior hinges heavily on how fast the mes-
sage can spread along different social connections.

In this study, we assume that information could spread
amongst people through both face-to-face contacts and on-
line communications. Observe that the efficiency of face-
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to-face communications depends on the physical distance
between individuals, but in an online social network, mes-
sage spreading depends mainly on online connections (not
on physical distance). Recent works [2,6] have explored the
structure of physical information network by tracking in-
person interactions over the population, and their findings
indicate that such interactions would give rise to a social
graph consisting of a large number of small cliques, which
are somewhat loosely connected to each other. Each clique
therein stands for a group of people who are close to each
other. The message can spread quickly within a clique via
frequent face-to-face interactions, but takes longer time to
spread across cliques separated by longer distances. Clearly,
constrained by its limited propagation time, the real-time in-
formation is less likely to propagate across cliques via face-
to-face contacts. Needless to say, in order to characterize the
diffusion behavior of real-time information, we need to con-
sider the impact of the clique structure, which is missing in
other related works [3,7,8].

1.2 Summary of Main Contributions

We study the diffusion of real-time information in an over-
laying social-physical network. In this study, we consider
a physical information network where the message could
spread amongst people through face-to-face contacts. Fur-
thermore, the information could also propagate via an on-
line social network conjoint to this physical information net-
work. For convenience, we refer to the physical informa-
tion network simply as the physical network and refer to the
online social network simply as the social network. Hence,
the overall system is termed as the coupled (or overlaying)
social-physical network.

Specifically, we investigate the information diffusion un-
der two scenarios, namely, coupled-network model I and
coupled-network model II, as illustrated in Fig. 1. In model
I, we assume that all nodes in the social network are also in
the physical network, i.e., the collection of online users is a
proper subset of the individuals in the physical network. In
model II, we consider a more general case where the social
network also has online users who do not belong to the phys-
ical network. As illustrated in Fig. 1, the social and phys-
ical networks are “partially overlapping” and the overlap-
ping fraction represents the collection of online users who
are also in the physical network.

In both models, we characterize the information diffu-
sion process by studying the phase transition behaviors of
the underlying random graph models (see Section 2.3 for
details). Specifically, we show that the system model has a
critical threshold above which information epidemics can
take place, i.e., the information can reach a non-trivial frac-
tion of individuals. We also quantify the number of indi-
viduals that finally receive the message by computing the
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Fig. 1 An illustration of two models. The blank ellipse and the dotted
ellipse stand for the physical network and the social network, respec-
tively. In coupled-network model II, the overlapping fraction between
two networks represents the collection of online users who are also
in the physical network, while the other fraction in the social network
represents the collection of online users who are outside the physical
network.

size of the giant component in the induced random graph
model. One interesting finding is that a larger size social
network may not always yield a larger size of information
epidemic in this coupled social-physical network. Specifi-
cally, we show that given the fixed degree distribution, the
growing size of the social network could essentially reduce
the coupling strength between two networks. Under certain
conditions, due to the reduction in the network coupling, the
size of information epidemic could decrease with the grow-
ing size of the social network while fixing its degree distri-
bution. This is in stark contrast to the information diffusion
behavior in a single network.

In related work, it is assumed [7,8] that the message
propagates at the same speed along different social relation-
ships. Clearly, this assumption is not appropriate for the dif-
fusion of real-time information, where propagation speeds
play a key role. Very recent work [3] considered online con-
nections and face-to-face connections for general informa-
tion diffusion, but did not study the impact of the clique
structure on information diffusion. To the best of our knowl-
edge, this paper is the first attempt on the diffusion of real-
time information while considering the clique structure in
social networks. We believe that our work will offer initial
steps towards understanding the diffusion behaviors of real-
time information in a coupled social-physical network.

2 Coupled-Network Model I

2.1 Illustration of Model Structure

Fig. 2 illustrates the structure of model I. We consider an
overlaying social-physical network H that consists of a phys-
ical network W and a social network F. The collection of the
nodes NW = {1,2, ...,N} in the physical network W stand
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Fig. 2 Structure of coupled-network model I

for the human beings in the real world. Meanwhile, each
node in W is also a member of the social network F with
probability α , and the collection of nodes in F, denoted by
NF , stand for their online memberships1. We also refer to
the nodes in W and F as “individuals” and “online users,”
respectively.

Cliques in the physical information network. Based
on empirical studies in [2,6], we assume that the physical
network has N nodes which are gathered into many cliques
with different sizes. Each clique represents a group of peo-
ple with frequent face-to-face interactions, e.g., family in a
house or colleagues in an office. It is assumed that the clique
size follows the distribution {µw

n ,n = 1,2, ...,D}, where D is
the largest possible size. Therefore, an arbitrary clique could
contain n nodes with probability µw

n . We generate these cliques
as follows: at step t = 1, we randomly choose n nodes from
the collection NW and create a clique with the selected n
nodes, where n is a random number following the distribu-
tion {µw

n ,n = 1,2, ...,D}. We also denote the collection of
the remaining nodes in NW by N1. At each step t, we re-
peat the above procedure to create a new clique from the
collection Nt−1

2, and assume that we can finally generate
Nc cliques in W 3. It follows that N = Nc ∑n nµw

n . Generally
speaking, the existence of large size cliques indicates that
many individuals are close to each other.

As we elaborate in the following, the links connecting
the nodes in W stand for traditional face-to-face connec-
tions, while the links in F represent online connections.

Type-0 (intra-clique) links in W. Since the nodes within
the same cliques could interact to each other frequently, we
assume these nodes are fully connected by type-0 links. Note
that in this study, the concept of clique is different from
the well-studied “community” in social networks [9], in the

1 Throughout, we use “nodes in W” and “nodes in NW ” inter-
changeably. So it is the same with the social network F and NF .

2 Note that the last generated clique may not follow the expected
size distribution, since there would be only too few nodes left to
choose. However, such impact on clique size distribution would be neg-
ligible if the number of cliques is large enough.

3 Throughout, we use “clique in W” and “clique in H” interchange-
ably, in the sense that the network W is also a part of system model
H.

sense that the nodes in a clique are fully connected to each
other.

Type-1 (inter-clique) links in W. We assume that a face-
to-face interaction is still possible to happen between cliques,
e.g., a person may talk to a remote friend by walking across
a long distance. Suppose each node can randomly connect
to kw nodes from other cliques through type-1 links where
kw is a random variable drawn independently from the dis-
tribution {pw

k ,k = 0,1, ...}.
Online users and type-2 (online) links. The nodes in

the social network F represent the online users. As in [3],
we assume each online user randomly connects to k f online
neighbors in F, where k f is a random variable whose dis-
tribution is drawn independently from {p f

k ,k = 0,1, ...}. We
denote such online connection as type-2 link. Furthermore,
we draw a virtual type-3 link from an online user in F to
the actual person it corresponds to in the physical informa-
tion network W; this indicates that the two nodes actually
correspond to the same person.

Online users associated with a clique. To avoid confu-
sions, we say “size-n clique with m online members” when
referring to the case that a clique contains n individuals and
only m of them participate in the social network F. Specifi-
cally, for the collection of size-n cliques with m online mem-
bers, m ≤ n ≤ D, we assume that their fractional size in the
whole collection of cliques is µnm. It is easy to see that

µnm = µw
n

(
n
m

)
αm(1−α)n−m and µw

n =
n

∑
m=1

µnm. (1)

2.2 Information Transmissibility

The message can propagate at different speeds along dif-
ferent types of social connections in H. Due to timeliness
requirement, the real-time information is easier to pass over
a link with fast propagation speed. With this insight, we as-
sign each link with a transmissibility as in [3,8], i.e., the
probability that the message can successfully pass through.

For ease of exposition, we set the transmissibility along
type-0 link as Tc = 1 since the message spreads quickly
within a clique. We also define the transmissibilities along
type-1 and type-2 links as Tw and Tf , respectively. Through-
out, we say a link is occupied if the message can success-
fully pass through that link. Hence, in H each type-1 link is
occupied independently with probability Tw, whereas each
type-2 link is occupied independently with probability Tf .

2.3 Information Cascade

We give a brief description of the information diffusion pro-
cess in the following. All individuals in network W, i.e., the
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collection of nodes in NW , are potential information recip-
ients. Suppose that the message starts to spread from an ar-
bitrary node i in a clique of W. Then, the other nodes in
this clique will quickly receive that message through type-
0 links. The message can also propagate to nodes in other
cliques through occupied type-1 and type-2 links. This pro-
cess could continue iteratively in this manner and may even-
tually lead to an information epidemic; i.e., a non-zero frac-
tion of individuals may receive the information in the limit
N → ∞ [3].

Clearly, an arbitrary individual can spread the informa-
tion to nodes that are reachable from itself via the occupied
edges of H. Hence, the size of an information outbreak (i.e.,
the number of individuals that are informed) is closely re-
lated to the size of the largest connected components of H,
which contains only the occupied type-1 and type-2 links [3,
8,7] of H. Thus, the information diffusion process consid-
ered here is equivalent to a heterogeneous bond-percolation
process over H; the corresponding bond percolation is het-
erogeneous since the occupation probabilities are different
for type-1 and type-2 links. In this paper, we will exploit
this relation and find the condition and the size of informa-
tion epidemics by studying the phase transition behaviors of
H. A key observation is that the system H exhibits a phase
transition behavior at a critical threshold [3]. Specifically,
a giant connected component GH that covers a non-trivial
fraction of H is likely to appear above the critical thresh-
old, meaning that information epidemics are possible. Be-
low that critical threshold, all the connected components in
H are small indicating that the influenced individuals frac-
tion tends to zero in the large network size limit.

It is easy to see that the influenced individuals and cliques
correspond to the nodes and cliques in W that are contained
inside GH . Hence, we introduce two parameters to evaluate
the size of information epidemic:

– Sc: The fractional size of the influenced cliques in W.
Specifically, Sc is the ratio of the number of the cliques
contained in GH to the total number of cliques in W.

– Sn: The fractional size of the influenced individuals in
W. Specifically, Sn is the ratio of the number of the indi-
viduals contained in GH to the total number of nodes in
NW .

With this insight, we can explore the information diffusion
process by characterizing the phase transition behavior of
the giant component GH .

3 Abstract Mapping Graph: a Clique Level Approach

In this study, we are particularly interested in the following
two questions:

a

c

b

d

type-1 link

type-2 link

Fig. 3 Abstract mapping graph E. Nodes {a,b,c,d} in this graph cor-
responds to the cliques {a,b,c,d} of H in Fig. 2. We assign type-1
and type-2 links in E according to the same types of links connecting
cliques in Fig. 2.

– What is the critical threshold of H? In other words, un-
der what condition, the information reaches a non-trival
fraction of the network rather than dying out quickly?

– What is the expected size of an information epidemic? In
other words, to what nodes fraction and cliques fraction
does the information reach? Or, equivalently, what are
the sizes Sc and Sn?

These two questions can be answered by quantifying the
phase transition behaviors of H. Due to the clique structure
in our system model, the techniques employed in existing
works [3,7,8] cannot be directly applied here. To tackle this
challenge, we develop an abstract mapping random graph E
that exhibits the same phase transition behavior as H. Then,
we characterize the phase transition behaviors in the graph E
by capitalizing on the recent results in inhomogeneous ran-
dom graph [10,11].

We first construct a graph E which is an abstract map-
ping of the graph H. Specifically, each node in the graph E
represents a cluster in the graph H and each link in the graph
E corresponds to a link connecting two clusters in the graph
H. Since the nodes within the same clique can immediately
share the message, we treat each clique including affiliated
online users as a single virtual node in E. Furthermore, we
assign type-1 and type-2 links between two virtual nodes ac-
cording to the original connections in H. To get a more con-
crete sense, we depict the abstract mapping graph in Fig. 3
that corresponds to the original model I in Fig. 2. It is easy to
see that the (type-1 and type-2) link degree of a virtual node
equals the total number of (type-1 and type-2) links that are
incident on the nodes within the corresponding clique. The
graph E is expected to exhibit the same phase transition be-
havior as the original model H since both graphs have the
similar graph interconnection pattern. In particular, the frac-
tional size of the giant component GE in the graph E (the
ratio of the number of nodes in GE to the number of nodes
in E) is equal to the aforementioned fraction Sc. Thus, with
a slight abuse of notation, we use Sc to denote the fractional
size of GE .

The degree of an arbitrary node in E can be represented
by a two-dimensional vector d = [dw d f ] where dw and d f

correspond to the numbers of type-1 and type-2 links inci-
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dent on that node, respectively. For a node in E that cor-
responds to a size-n clique in W, we use Kw

n to denote its
type-1 link degree, where Kw

n is a random variable follow-
ing the distribution {Pw

nk,k = 0,1,2, ...;n = 1,2, ...,D}. Sim-
ilarly, for a node in E that corresponds to a clique with m
online users, we use K f

m to denote its type-2 link degree
where K f

m follows the distribution {P f
mk,k = 0,1,2, ...;m =

0,1, ...,D}. It is clear to see that an arbitrary node in E has
link degree [i j] with probability

p(i, j) =
D

∑
n=1

n

∑
m=0

µnmPw
niP

f
m j i, j ∈ N. (2)

Let E[dw] and E[d f ] be the mean numbers of type-1 and
type-2 links for a node in E, i.e., E[dw] = ∑∞

i=0 ∑∞
j=0 p(i, j)i

and E[d f ] = ∑∞
i=0 ∑∞

j=0 p(i, j) j. We also define E[dwd f ] =

∑∞
i=0 ∑∞

j=0 p(i, j)i j. Furthermore, let E[(dw)
2] and E[(d f )

2]

denote the second moments of the number of type-1 and
type-2 links for a node in E, respectively; i.e., E[(dw)

2] =

∑∞
i=0 ∑∞

j=0 p(i, j)i2 and E[(d f )
2] = ∑∞

i=0 ∑∞
j=0 p(i, j) j2.

4 Analytical Solutions

In this section, we analyze information diffusion process by
characterizing the phase transition behaviors in the graph E.
We present our analytical results in the following two steps.
We first quantify the conditions for the emergence of a giant
component as well as the fractional sizes Sc and Sn for the
special case Tw = 1 and Tf = 1. We next show that these
results can be easily extended to a more general case with
0 ≤ Tw ≤ 1 and 0 ≤ Tf ≤ 1.

In what follows, we characterize the phase transition be-
havior of the giant component in E by capitalizing on the
theory of inhomogeneous random graphs [10,11,12]. Specif-
ically, we define a11 =E[(dw)

2]/E[dw]−1, a12 =E[dwd f ]/E[dw],
a21 = E[dwd f ]/E[d f ] and a22 = E[(d f )

2]/E[d f ]− 1. Along
the same line in [3,10,12], we have the following result.

Lemma 4.1 Let

σ =
1
2

(
a11 +a22 +

√
(a11 −a22)

2 +4a12a21

)
(3)

if σ > 1, with high probability (whp) there exists a giant
component in E, i.e., a non-trival fraction of nodes in E are
connected; otherwise, a giant component does no exist in E
whp.

The proof of Lemma 4.1 is relegated to Appendix 8.1.
As we discussed in Section 2.3, the existence of a giant com-
ponent in E indicates that the information can reach a non-
trival fraction of cliques in H rather than dying out quickly.

Next, let h1 and h2 in (0,1] be given by the smallest so-
lution to the following recursive equations:

h1 =
1

E[dw]

D

∑
n=1

n

∑
m=0

µnmE[Kw
n hKw

n −1
1 ]E[hK f

m
2 ], (4)

h2 =
1

E[d f ]

D

∑
n=1

n

∑
m=0

µnmE[hKw
n

1 ]E[K f
mhK f

m−1
2 ]. (5)

We have the following results on the size and probability
of an information epidemic.

Lemma 4.2 The fractional size of the giant component in E
(equivalently, the fractional size of influenced cliques in W)
is given by

Sc =
D

∑
n=1

n

∑
m=0

µnm

(
1−E[hKw

n
1 ]E[hK f

m
2 ]

)
. (6)

The fractional size of influenced individuals in W (equiva-
lently, the influenced nodes fraction in NW ) is given by

Sn =
1
C

D

∑
n=1

n

∑
m=0

nµnm

(
1−E[hKw

n
1 ]E[hK f

m
2 ]

)
, (7)

with the normalization term C =
D
∑

n=1
nµn.

The proof of Lemma 4.2 is relegated to Appendix 8.1. For
any given set of parameters, Lemma 4.2 reveals the individ-
uals fraction and cliques fraction that are likely to receive an
information that is started from an arbitrary individual.

We next generalize Lemma 4.1 and Lemma 4.2 to the
case 0 ≤ Tw ≤ 1 and 0 ≤ Tf ≤ 1. We first break down the
first/second moments of dw and d f from the condition (3) in
Lemma 4.1 into the linear combinations of the first/second
moments of kw and k f as follows:

E[dw] =
D

∑
n=1

µw
n nE[kw] E[d f ] =

D

∑
m=1

µ f
mmE[k f ], (8)

E[dwd f ] =
D

∑
n=1

n

∑
m=1

µnmnmE[kw]E[k f ], (9)

E[(dw)
2] =

D

∑
n=1

µw
n

(
nE[(kw)2]+ (n2 −n)(E[kw])2

)
, (10)

E[(d f )
2] =

D

∑
m=1

µ f
m

(
mE[(k f )

2
]+ (m2 −m)

(
E[k f ]

)2
)
. (11)

Similarly, E[hKw
n

1 ], E[Kw
n hKw

n −1
1 ], E[hK f

m
2 ] and E[K f

mhK f
m−1

2 ]
in (4)-(7) can boil down to the integrals with respect to the
distributions of kw and k f by utilizing the following trans-
formations:

E[hKw
n

1 ] = (E[hkw

1 ])n E[hK f
m

2 ] = (E[hk f

2 ])m, (12)

E[Kw
n hKw

n −1
1 ] = n

(
E[hkw

1 ]
)n−1

E[kwhkw−1
1 ], (13)

E[K f
mhK f

m−1
2 ] = m

(
E[hk f

2 ]
)m−1

E[k f hk f −1
2 ]. (14)

In this way, the calculations in (3)-(7) can be simplified by
utilizing (8)-(14).
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As aforementioned in Section 2.2, for the case with 0 ≤
Tw ≤ 1 and 0 ≤ Tf ≤ 1, the original degree distributions kw

and k f should be replaced by the degree distributions of oc-
cupied links. Specifically, we maintain the occupied links in
the graph E by deleting each type-1 and type-2 link with
probability 1−Tw and 1−Tf , respectively. Let k̃w and k̃ f be
the occupied link degrees (instead of kw and k f ) with the dis-
tributions { p̃w

k ,k = 0,1, ...} and { p̃ f
k ,k = 0,1, ...}. According

to [8], the generating functions corresponding to k̃w and k̃ f

can be given by

g̃(x) = g(1+Tw(x−1)) q̃(x) = q
(
1+Tf (x−1)

)
. (15)

From (8)-(14), we observe that the critical threshold and
the giant component size are determined by the distributions
of kw and k f . Therefore, Lemma 4.1 and Lemma 4.2 still
hold if we replace the terms associated with kw and k f in
(8)-(14) by those associated with k̃w and k̃ f , respectively. To
this end, by using the generating functions (15), we find

E[k̃w] = TwE[kw],

E[(k̃w)2] = T 2
w

(
E[(kw)2]−E[kw]

)
+TwE[kw].

In the same manner, we can compute E[k̃ f ] and E[(k̃ f )2]. The
critical threshold (in the general case) can now be computed
by replacing E[kw], E[k f ], E[(kw)2], E[(k f )2] with E[k̃w], E[k̃ f ],
E[(k̃w)2], E[(k̃ f )2], respectively, in (8)-(11).

In order to compute the giant component size, we only
need to replace the corresponding terms in (12)-(14) with

E[hk̃w

1 ], E[hk̃ f

2 ], E[k̃whk̃w−1
1 ] and E[k̃ f hk̃ f −1

2 ]. By using (15),
we have

E[hk̃w

1 ] = g̃(h1) = E[(1+Tw(h1 −1))kw
],

E[k̃whk̃w−1
1 ] = [g̃(h1)]

′ = TwE[kw(1+Tw(h1 −1))kw−1].

Similar relations can be obtained for E[hk̃ f

1 ] and E[k̃ f hk̃ f −1
1 ].

The size of the giant component (in the general case) can
now be computed by reporting the updated (12)-(14) into
(4)-(7).

5 Coupled-Network Model II

In practical scenarios, the social networks, e.g., Facebook
and Twitter, enable the message to reach remote online users
from other cities or countries. With this insight, we consider
a more realistic model II, where the social network also has
online users outside the physical network. Specifically, we
assume that the physical network has the same clique struc-
ture as in model I. A fraction α of the total N nodes in the
physical network are also online users in social network F.
For convenience, we denote the collection of these online
users from the physical network as NF1 and hence |NF1 | =
αN. In contrast to model I, we assume that the nodes in NF1

only occupy a fraction β of the total online users, β ∈ (0,1],
since the social network also has online users who do not
belong to physical network W. Therefore, the size of social
network F turns out to be |NF |= αN

/
β . Moreover, we use

NF2 to denote the collection of the online users outside the
physical network and hence |NF2 |= αN(1−β )

/
β . Clearly,

when β = 1, model II reduces to model I as a special case.
By doing so, the collection of the potential information

recipients extends from NW to NW ∪NF2 . We are particu-
larly interested to see the size of information epidemic among
the overall population, equivalently, the number of the in-
fluenced nodes in NW ∪NF2 . We tackle this problem by
transforming the coupled networks into an abstract map-
ping graph defined in Section 3. Specifically, we assume
that each node in NF2 has a virtual counterpart node in W,
which has no type-1 links. Each pair of these two nodes can
be treated as a single virtual node in the abstract mapping
graph E and this node only has type-2 links with degree
distribution {p f

k ,k = 0,1, ...}. By definition of the abstract
mapping graph in Section 3, the fractional size of such vir-

tual nodes can be given by νw
0 =

|NF2 |
Nc+|NF2 |

. Furthermore, we

use νw
n to denote the fractional size of the virtual nodes in E

which correspond to size-n cliques and it follows that νw
n =

Nc
Nc+|NF2 |

µw
n . We also use νw

nm to denote the fractional size

of the virtual nodes which correspond to the size-n cliques
with m online users, following the similar definitions as (1).

The abstract mapping graph E is an inhomogeneous ran-
dom graph with two types of links. As in Section 3, an arbi-
trary node in E has link degree [i j] with probability

p(i, j) =
D

∑
n=1

n

∑
m=0

νnmPw
niP

f
m j +νw

0 Pw
0iP

f
1 j i, j ∈ N, (16)

where Pni and Pm j follow the same definitions in (2) and

Pw
0i =

{
1 if i = 0,
0 if i > 0.

Based on the abstract mapping graph, the phase transi-
tion behaviors in model II can be characterized in the same
way as in model I, only with a different degree distribution
in E. Therefore, we can still use Lemma 4.1 to characterize
the existence condition of the giant component in E, which
indicates the outbreak of the information epidemic.

Next, let h1 and h2 in (0,1] be given by the smallest so-
lution to the following recursive equations:

h1 =
1

E[dw]

D

∑
n=1

n

∑
m=0

νnmE[Kw
n hKw

n −1
1 ]E[hK f

m
2 ], (17)

h2 =

1
E[d f ]

(
D
∑

n=1

n
∑

m=0
νnmE[hKw

n
1 ]E[K f

mhK f
m−1

2 ]+νw
0 E[K f

mhK f
m−1

2 ]

)
.

(18)

We have the following results on the size of an information
epidemic.
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Lemma 5.3 The fractional size of the giant component in E
is given by

Sc =
D

∑
n=1

n

∑
m=0

νnmn
(

1−E[hKw
n

1 ]E[hK f
m

2 ]

)
+νw

0

(
1−E[hK f

m
2 ]

)
. (19)

The fractional size of influenced nodes in NW ∪NF2 is given
by

Sn =

1
C

(
D
∑

n=1

n
∑

m=0
nνnm

(
1−E[hKw

n
1 ]E[hK f

m
2 ]

)
+ν0

(
1−E[hK f

m
2 ]

))
(20)

with the normalization term C =
D
∑

n=1
nνn +ν0.

Lemma 5.3 can be proved in the same way as in Lemma 4.2.
Note that in model II the collection of information recipients
becomes NW ∪NF2 . Therefore, the total number of the in-
fluenced nodes turns out to be (N + |NF2 |)Sn. Furthermore,
Lemma 5.3 can be generalized to the case with 0 ≤ Tw ≤ 1
and 0 ≤ Tf ≤ 1 along the same line as in model I.

6 Numerical Results

In Section 4 and 5 we analyzed the critical threshold and
the size of information epidemic in both model I and model
II. To get a more concrete sense of the analytical results,
we study the diffusion behavior of real-time information via
numerical examples. Particularly, we focus on two main fea-
tures in our models, i.e., the clique structure and the network
coupling, and their impacts on information diffusion.

6.1 Information Epidemics and Clique Structure

We first investigate how the clique structure could impact
information diffusion. Particularly, we compare four scenar-
ios in model I, each with different clique size distribution as
illustrated in Table 1.

For the sake of fair comparison, the total number of nodes
in the physical network is fixed at 12000 in each scenario.
From scenario 1 to scenario 4, we can see that the average
clique size increases from 1 to 2, indicating that individuals
are getting closer to each other. We assume that the type-1
link degree for each node in W follows a poisson distribu-
tion, i.e., pw

k = λ k

k! ·e
−λ , k = 0,1,2, ..., where λ is the average

type-1 link degree. Meanwhile, the type-2 link degree for
each online user in the social network follows a power-law
distribution with exponential cutoff, i.e., p f

0 = 0 and

p f
k =

1
C

k−γ e−
k
Γ , k = 1,2, . . . , (21)

with the normalization factor C =
∞
∑

k=1
k−γ e−

k
Γ .

We compare the sizes of information epidemic in terms
of the influenced nodes fraction in W. For each scenario,

Table 1 The clique size distribution in four scenarios

scenario size-1 size-2 size-3 average clique size
1 100% 0 0 1
2 66.7% 33.3% 0 1.333
3 33.3% 66.7% 0 1.666
4 33.3% 33.3% 33.3% 2
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Fig. 4 The influenced nodes fraction in NW versus Tf . The curves
stand for analytical results obtained by (7) and the marked points stand
for the simulation results. The analytical results are in good agreement
with the simulations. For comparison, we also plot the fractional size
of influenced cliques in scenario 1 where the each clique has only one
node.

we plot the fractional size of the nodes that will receive the
information versus Tf in Figure 4. The curves stand for ana-
lytical results obtained by (7), while the marked points stand
for the simulation results obtained by averaging 200 exper-
iments for each set of parameter. We set Tw = 0.3, λ = 2,
α = 0.3, γ = 3 and Γ = 10. It is easy to check that the analyt-
ical results are in good agreement with the simulations. Ob-
viously, the information is much easier to propagate when
larger size cliques exist. For instance, when Tf = 1, as the
average clique size increases from 1 (scenario 1) to 2 (sce-
nario 4), the fractional size of individuals that receive the
message grows sharply from 14% to 80%. The above results
agree with a natural conjecture that the messages are more
influential (i.e., more likely to reach a large portion of the
population) when people are close to each other.

6.2 Information Epidemics and Network Coupling

We next investigate how the coupling between the social and
physical networks could facilitate the information diffusion.
As illustrated in Fig. 1, we say the social and physical net-
works are coupled in the sense that a fraction of nodes are
in both networks. Generally speaking, the coupling strength
between two networks depends on the fractional size of the
overlapping part in Fig. 1 (determined by α and β ) and the
number of links therein [13]. Clearly, the strong network
coupling enables the information propagation in one net-
work more likely to trigger further propagation in the other
network and hence facilitates the diffusion process. To get
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a more concrete sense, we study the following two cases in
model II.

In the first case, we change the network coupling strength
by choosing different α , i.e., the fractional size of the nodes
in the physical network which are also online users, while
fixing the total number of individuals. Specifically, the size
of the physical network is fixed at N = 12000. We select the
clique size distribution in scenario 2 in Table 1 with λ = 2.
It is also assumed that the social network has a fixed power-
law degree distribution (21) with γ = 3 and Γ = 10. In Fig. 5,
we plot the influenced nodes fraction versus α . Meanwhile,
we let β = α

α+1 so that the number of online users outside
the physical network and the total number of individuals are
fixed at 12000 and 24000, respectively. The curves in Fig. 5
show that as the coupling strength between two networks
increases with the growing α , the influenced nodes fraction
could increase monotonically.

In the second case, we change both the network coupling
strength and the total number of individuals by increasing
the size of the social network while fixing its degree distri-
bution. Specifically, we fix the size of the physical network
at N = 12000 and let α = 0.2. It follows that the number of
online users who are also in the physical network is fixed
at |NF1 |= αN. We select the clique size distribution in sce-
nario 2 in Table 1 with λ = 2. It is also assumed that the so-
cial network has a fixed power-law degree distribution. We
increase the size of the social network, i.e., |NF | = αN

/
β

by decreasing β from 1 to 0. At the same time, the number
of online users outside the physical network and the total
number of individuals |NW ∪NF2 | would increase as well.
In what follows, we evaluate the size of the information epi-
demic in terms of the number of the influenced nodes in
NW ∪NF2 .

Note that in a single social network, the influenced nodes
fraction depends on the degree distribution [7,8]. Therefore
the number of the influenced nodes would increase mono-
tonically with the growing network size while fixing its de-
gree distribution. On the contrary, it is more intricate in a
coupled social-physical network. One key observation is that
the growing size of the social network with the fixed degree
distribution could yield two opposite effects on information
diffusion. Clearly, the information could spread to more re-
cipients as the network size grows. On the other hand, since
the degree distribution is fixed and online users randomly
connect to each other [8], there would be fewer links in
the overlapping part in Fig. 1 (online users who are also in
the physical network) as the non-overlapping fraction in the
social network increases (online users outside the physical
network). This essentially amounts to reducing the coupling
strength between the two networks. Simply put, the grow-
ing size of the social network increases the number of to-
tal individuals on one hand, but on the other hand reduces
the network coupling strength which makes the information
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Fig. 5 The influenced nodes fraction in NW ∪ NF2 versus α . The
curves stand for analytical results obtained by (20).
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Fig. 6 The number of the influenced nodes in NW ∪NF2 versus the
size of social network |NF | with Tw = 0.1, γ = 2.6 and Γ = 10. The size
of social network increases from 2.4×103 to 2.4×104 as β decreases
from 1 to 0.1.

more difficult to propagate between two networks. Clearly,
the size of information epidemic may either increase or de-
crease depending on which effect (increase in total number
of individuals or reduction in the network coupling strength)
is dominant. In what follows, we study the overall impact of
these two conflicting effects on a case-by-case basis.

As illustrated in Figs. 6-8, as the size of the social net-
work grows, the number of influenced nodes exhibits dif-
ferent behaviors under different values of transmissibility
Tw, i.e., the probability the message can successfully pass
through a type-1 (face-to-face) link. For the case with low
and high Tw (Tw = 0.1 and Tw = 0.8), the number of the in-
fluenced nodes increases with the growing size of the social
network. In contrast, for the case with median Tw = 0.3, the
number of the influenced nodes decreases as the social net-
work size grows.

We believe that such diverse behaviors can be attributed
to the following reasons. For low transmissibility (Tw = 0.1
in Fig. 6), the information is difficult to spread through type-
1 link, indicating that the propagation in the social network
is less likely to trigger further propagation in the physical
network. While for high transmissibility (Tw = 0.8 in Fig. 8),
most of the nodes in the physical network could already re-
ceive the information through type-1 link and hence the on-
line contacts are not necessary. Therefore, in both cases, the
network coupling does not contribute much in facilitating
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Fig. 7 The number of the influenced nodes in NW ∪NF2 versus the
size of social network |NF | with Tw = 0.3, γ = 3 and Γ = 10. The size
of social network increases from 2.4×103 to 2.4×104 as β decreases
from 1 to 0.1.
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Fig. 8 The number of the influenced nodes in NW ∪NF2 versus the
size of social network |NF | with Tw = 0.8, γ = 3 and Γ = 10. The size
of social network increases from 2.4×103 to 2.4×104 as β decreases
from 1 to 0.1.

the information diffusion. In other words, the impact of re-
ducing the coupling strength would be trivial. As the size of
the social network grows, the increase in the total number of
individuals becomes the dominant impact which makes the
total number of the influenced nodes keep growing up. On
the contrary, for the median transmissibility Tw = 0.3, only a
limited fraction of nodes can receive the information purely
through type-1 link (in contrast to the case with Tw = 0.8),
indicating that in this case the network coupling would have
a great potential to enhance the information diffusion by
triggering the propagation between two networks. In other
words, the reduction in the coupling strength could result in
a substantial negative impact on information diffusion and
makes the total number of the influenced nodes decrease as
illustrated in Fig. 7.

7 Conclusion

In this study, we explored the diffusion of real-time informa-
tion in a coupled social-physical networks. We developed a
model that consists of an online social network and a physi-
cal information network with clique structure. One interest-
ing finding is that a larger size online social network, with
the same degree distribution, may not necessarily yield a

larger size of information epidemic. In fact, under certain
conditions, the size of information epidemic could even de-
crease with the growing size of the online social network.
This is in stark contrast to that in a single network. We be-
lieve that our studies will offer initial steps towards under-
standing the diffusion behaviors of real-time information.

8 Appendix

8.1 Proofs of Lemma 4.1 and Lemma 4.2

In [11,12] Söderberg studied the phase transition behaviors
of inhomogeneous random graphs where nodes are connected
by different types of links. Such graphs are also called “col-
ored degree-driven random graphs” in the sense that differ-
ent types of links correspond to different colors. In a graph
with r-types of links, the link degree of an arbitrary node
can be represented by a r-dimension vector d = [d1 · · · dr],
where d j stands for the number of type- j links incident on
that node. In our study, the abstract mapping graph E has
two types of links and the degree distribution of an arbi-
trary node is denoted by p(i, j) = P[dw = i,d f = j]. Also,
the generating function of degree distribution can be defined
by H(x1,x2) = ∑i ∑ j p(i, j)xi

1x j
2. Clearly, the multivariable

combinatorial moments can be achieved by partial differen-
tiation at x1 = 1 and x2 = 1, i.e.,

E[dw] = ∂1H(x1,x2)|x1=x2=1,

E[d f ] = ∂2H(x1,x2)|x1=x2=1,

E[dwd f ] = ∂1∂2H(x1,x2)|x1=x2=1,

E[(dw)
2] = ∂ 2

1 H(x1,x2)|x1=x2=1,

E[(d f )
2] = ∂ 2

2 H(x1,x2)|x1=x2=1.

Let {ak} denote the size distribution of the largest connected
component that can be reached from an arbitrary node in E,
whose generating function is defined by g(z) = ∑k akzk. Fur-
thermore, we define a two-dimension vector h(z)= [h1(z),h2(z)],
where hi(z) stands for the generating function of the size
distribution of the component connected by type-i links. Ac-
cording to the existing results in [3,11,12], we have that

g(z) = z
∞

∑
i=0

∞

∑
j=0

p(i, j)h1(z)
ih2(z)

j = zH(h(z)), (22)

where h(z) satisfies the following recursive equations:

h1(z) =
z

E[dw]
∂1H(h(z)), (23)

h2(z) =
z

E[d f ]
∂2H(h(z)). (24)

The emergence of the giant component in E can be checked
by examining the stability of the recursive equations (23)-
(24) at the point h1 = h1(1) = 1 and h2 = h2(1) = 1. Along
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the same line as in [11,12], we define a 2×2 Jacobian matrix
J, i.e.,

J =

[
a11 a12
a21 a22

]
,

where

a11 =
1

E[dw]
∂ 2

1 H(h(z))|h1=h2=1 = E[(dw)
2−dw]

/
E[dw],

a12 =
1

E[dw]
∂1∂2H(h(z))|h1=h2=1 = E[dwd f ]

/
E[dw],

a21 =
1

E[d f ]
∂1∂2H(h(z))|h1=h2=1 = E[dwd f ]

/
E[d f ],

a22 =
1

E[d f ]
∂ 2

2 H(h(z))|h1=h2=1 = E[(d f )
2−d f ]

/
E[d f ].

The spectral radius of J is given by

σ =
1
2

(
a11 +a22 +

√
(a11 −a22)

2 +4a12a21

)
.

By [3,10,12], if σ > 1, with high probability there exist a gi-
ant component in the graph E; otherwise, a giant component
is very less likely to exist in E. Therefore, the condition (3)
in Lemma 4.1 is achieved. Furthermore, the fractional size
Sc equals 1−g(1) [3]. By (22), we have that

Sc = 1−g(1) =
∞

∑
i=0

∞

∑
j=0

p(i, j)
(

1−hi
1h j

2

)
=

D

∑
n=1

n

∑
m=0

µnm

(
1−E[hKw

n
1 ]E[hK f

m
2 ]

)
. (25)

In view of (23) and (24), we have that

h1 =
1

E[dw]

∞

∑
i=0

∞

∑
j=0

p(i, j)ihi−1
1 h j

2

=
1

E[dw]

D

∑
n=1

n

∑
m=0

µnmE[Kw
n hKw

n −1
1 ]E[hK f

m
2 ],

h2 =
1

E[d f ]

∞

∑
i=0

∞

∑
j=0

p(i, j) jhi
1h j−1

2

=
1

E[d f ]

D

∑
n=1

n

∑
m=0

µnmE[hKw
n

1 ]E[K f
mhK f

m−1
2 ].

Furthermore, (25) can be rewritten in the following form:

Sc =
∞

∑
i=0

∞

∑
j=0

D

∑
n=1

n

∑
m=0

µnmPw
niP

f
m j(1−hi

1h j
2).

Clearly, the term in parentheses gives the probability that
a node with colored degree [dw = i,d f = j] belongs to the
giant component. In other words, the term in parentheses is
the expected number of cliques added to the giant cluster by
a degree [dw = i,d f = j] clique. Hence, summing over all
such i, j’s we get an expression for the expected size of the
giant component (in terms of the number of cliques).

In order to compute Sn, we can modify the above ex-
pression such that the term n(1− hi

1h j
2) gives the expected

number of nodes to be included in the giant component by a
degree [dw = i,d f = j] clique. In other words, with probabil-
ity (1− hi

1h j
2) the clique under consideration will belong to

the giant component GH and will bring n nodes to the actual
size Sn. This yields

S̄n =
∞

∑
i=0

∞

∑
j=0

D

∑
n=1

n

∑
m=0

µnmPw
niP

f
m jn

(
1−hi

1h j
2

)
=

D

∑
n=1

n

∑
m=0

nµnm

(
1−E[hKw

n
1 ]E[hK f

m
2 ]

)
.

We next have

Sn =
1
C

S̄n, C =
D

∑
n=1

nµn,

where the normalized term C makes Sn = 1 at h1 = h2 = 0.
Therefore, the conclusions (6) and (7) in Lemma 4.2 have
been obtained.
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12. B. Söderberg. Random graph models with hidden color. Acta
Phys. Pol. B, 34:5085–5102, 2003.

13. R. Parshani, S.V. Buldyrev, and S. Havlin. Interdependent net-
works: Reducing the coupling strength leads to a change from a
first to second order percolation transition. Physical review let-
ters, 105(48701), 2010.


