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On existence of triangles, clustering, and
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Abstract—Random key graphs have been introduced
about a decade ago in the context of key predistribution
schemes for securing wireless sensor networks (WSNs).
They have received much attention recently with ap-
plications spanning the areas of recommender systems,
epidemics in social networks, cryptanalysis, and clus-
tering and classification analysis. This paper is devoted
to analyzing various properties of random key graphs
including containment and number of triangles, clustering
coefficient, and small-world behavior. In particular, we
establish a zero-one law for the existence of triangles
in random key graphs, and identify the corresponding
critical scaling. This zero-one law exhibits significant
differences with the corresponding result in Erdős-Rényi
(ER) graphs. We also compute the clustering coefficient
of random key graphs, and compare them with that of
ER graphs in the many node regime when the expected
average degrees are asymptotically equivalent. We show
that on the parameter range of practical relevance in both
wireless sensor network and social network applications,
random key graphs are much more clustered than the
corresponding ER graph. The suitability of random key
graphs as small worlds in the sense of Watts and Strogatz
is also demonstrated.

Keywords: Wireless sensor networks, Key predistribution,
Random graphs, Existence of triangles, Clustering coefficient.

I. INTRODUCTION

Random key graphs have been introduced about a decade
ago in the context of the Eschenauer-Gligor random key
predistribution scheme [8], which is a widely accepted solution
for securing wireless sensor network (WSN) communications.
Aside from the significant body of work [2], [6], [25], [29],
[33], [34], that studies random key graphs in this context, they
have recently received attention in application areas as diverse
as classification analysis [11], recommender systems using
collaborative filtering [18], trust networks [10], and epidemics
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in social networks [1]. Random key graphs belong to a larger
class of random graphs known as random intersection graphs
[27]; in fact, they are referred to as the uniform random
intersection graphs by some authors [2], [11], [12].

A random key graph, denoted K(n;K,P ), can be described
as follows: Let V = {1, . . . , n} denote the set of its and
assume available a pool of P keys. Each vertex i is assigned
K distinct keys that are selected uniformly at random from
this key pool. Two distinct vertices i and j are deemed
adjacent, i.e., have an undirected edge in between, as long
as they share at least one key in common; see Section II for
precise definitions. The terminology used here is borrowed
from the field of WSNs, where the term “key” refers to a
symmetric cryptographic key used for message encryption and
authentication among sensors. In that context, the applicability
of random key graph follows naturally as only those pairs of
sensor who have a common key will be able to communicate
securely. We remark that the terminology can be generalized to
replace keys by any object such as activities, books, hobbies,
movies, etc, making it possible to apply random key graphs
in a wide range of areas.

Much efforts have been devoted to studying connectivity
properties in random key graphs. A key motivation can be
found in the need to obtain conditions under which the scheme
of Eschenauer and Gligor guarantees secure connectivity with
high probability in large WSNs. An interesting feature of
this work lies in the following fact: Although random key
graphs are not stochastically equivalent to the classical Erdős-
Rényi (ER) graphs [7], it is possible to formally transfer well-
known zero-one laws for connectivity (and k-connectivity) in
ER graphs to random key graphs by asymptotically matching
their edge probabilities. This approach, which was initiated by
Eschenauer and Gligor in their original analysis [8], has now
been validated rigorously; see the papers [2], [6], [25], [33],
[34] for recent developments. Rybarczyk [25] has shown that
this transfer from ER graphs also works for a number of issues
related to the giant component and diameter.

In view of these developments, it is natural to wonder
whether this (formal) transfer technique applies to other graph
properties. In particular, in the literature on random graphs
there is long standing interest [3], [15], [16], [24], [27] in
the containment of certain (small) subgraphs, the simplest one
being the triangle. This last case is also closely related to
the clustering properties of a graph. Informally defined as the
propensity of a node’s neighbors to be neighbors as well, high
clustering (or transitivity) has been observed in many real-
world networks [26]. In addition, the clustering level is known
to affect the dynamics of various network processes signif-
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icantly; e.g., diffusion of information and epidemic diseases
[20], [22], [9], propagation of influence [13], and cascading
failures [14].

With these in mind, in the present paper we study the
existence and number of triangles, and clustering coefficient
in random key graphs. In particular, we establish a zero-one
law for the existence of triangles in random key graphs and
identify the corresponding threshold function. On the way to
this result, we show that in the many node regime, the expected
number of triangles in random key graphs is always at least as
large as the corresponding quantity in asymptotically matched
ER graphs. For the parameter range of practical relevance
in both WSNs and social networks, this expected number
of triangles is shown to be orders of magnitude larger in
random key graphs than in ER graphs. Thus, we conclude
that transferring results from ER graphs by matching their
edge probabilities is not a valid approach in general, and can
be quite misleading in the context of WSNs, reinforcing the
call for a direct investigation of random key graphs.

With regard to the clustering coefficient of random key
graphs, our main contributions are as follows. First, we
establish a strong consistency result that validates using a
simple definition of clustering based on the probability of a
triangle conditioned on a wedge, in lieu of the widely adopted
definition of global clustering coefficient [23]; see Section II-B
for precise definitions. To the best of our knowledge, this is
the first result in the literature that establishes the asymptotical
equivalence of the two aforementioned definitions of clustering
coefficient, in any random graph model. Next, we compare the
clustering coefficients of random key graphs with that of ER
graphs. We observe that the clustering coefficient of a random
key graph is never smaller than the clustering coefficient of
the corresponding ER graph with identical expected average
degree. For the parameter range that is practically relevant
for WSNs as well as social networks, we show that random
key graphs are in fact much more clustered than ER graphs
when expected average degrees are asymptotically equivalent.
Recalling the fact that random key graphs also have a small
diameter [25], we then conclude that random key graphs are
small-worlds in the sense introduced by Watts and Strogatz
[28]. This reinforces the possibility of using random key
graphs in a wide range of applications including modeling
social networks.

We believe that the results in this paper shed light on
various interesting properties of a random graph model that
is becoming increasingly popular across various disciplines.
As such, we believe this work will facilitate further studies
of random key graphs both in the existing application areas
as well as new ones suggested in this paper; e.g., small-world
networks.

We organize the rest of the paper as follows: In Section
II we formally introduce the class of random key graphs and
define its clustering coefficient. Section III is devoted to some
preliminary findings that will be useful in presenting the main
results of the paper. There we also provide definitions and
facts concerning Erdős-Rényi graphs. The main results of the
paper concerning the containment of triangles in random key
graphs and its clustering coefficient are presented in Section

IV. Section IV-C and Section IV-E are devoted to comparing
random key graphs and Erdős-Rényi graphs in terms of their
number of triangles and clustering coefficients, respectively.
The main results of the paper are proved in Section V.

A word on the notation and conventions in use: All limiting
statements, including asymptotic equivalences, are understood
with n going to infinity. The random variables (rvs) under
consideration are all defined on the same probability triple
(Ω,F ,P). Probabilistic statements are made with respect to
this probability measure P, and we denote the corresponding
expectation operator by E. The indicator function of an event
E is denoted by 1 [E]. For any discrete set S we write |S| for
its cardinality.

II. MODEL DEFINITIONS

Pick positive integers K and P such that K ≤ P , and fix
n = 3, 4, . . .. We shall group the integers P and K into the
ordered pair θ ≡ (K,P ) in order to lighten the notation.

A. Random key graphs

The model is parametrized by the number n of nodes, the
size P of the key pool and the size K of each key ring.
For each node i = 1, . . . , n, let Ki(θ) denote the random
set of K distinct keys assigned to node i. Thus, under the
convention that the P keys are labelled 1, . . . , P , the random
set Ki(θ) is a subset of {1, . . . , P} with |Ki(θ)| = K. The rvs
K1(θ), . . . ,Kn(θ) are assumed to be i.i.d. rvs, each of which
is uniformly distributed with

P [Ki(θ) = S] =

(
P

K

)−1

, i = 1, . . . , n (1)

for any subset S of {1, . . . , P} with |S| = K. This corre-
sponds to selecting keys randomly and without replacement
from the key pool.

Distinct nodes i, j = 1, . . . , n are said to be adjacent if they
share at least one key in their key rings, namely

Ki(θ) ∩Kj(θ) 6= ∅, (2)

in which case an undirected link is assigned between nodes
i and j. We find it convenient to introduce the event Eij(θ)
where (2) takes place, i.e.,

Eij(θ) = [Ki(θ) ∩Kj(θ) 6= ∅] ,

with indicator function ξij(θ) = 1 [Eij(θ)] . The adjacency
constraints (2) define a random graph on the vertex set
{1, . . . , n}, hereafter denoted K(n; θ). We refer to it as the
random key graph.

It is easy to check that

P [Ki(θ) ∩Kj(θ) = ∅] = q(θ) (3)

with

q(θ) =

(
P−K
K

)(
P
K

) · 1 [2K ≤ P ] . (4)

The probability p(θ) of edge occurrence between any two
nodes is therefore given by

p(θ) = 1− q(θ). (5)
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If P < 2K there exists an edge between any pair of nodes,
and K(n; θ) coincides with the complete graph on the vertex
set {1, . . . , n}. While it is always the case that 0 ≤ q(θ) < 1,
it is plain from (4) that q(θ) > 0 if and only if 2K ≤ P .

The expression (4) is a consequence of the fact

P [S ∩Ki(θ) = ∅] =

(
P−|S|
K

)(
P
K

) , i = 1, . . . , n (6)

valid for every subset S of {1, . . . , P} with |S| ≤ P − K.
For each i = 1, . . . , n, it is a simple matter to check with
the help of (6) that the events {Eij(θ), j 6= i, j =
1, . . . , n} are mutually independent, or equivalently, that the
rvs {ξij(θ), j 6= i, j = 1, . . . , n} form a collection of i.i.d.
rvs.

B. Clustering coefficients

A formal definition of clustering in a network is given next.
Consider an undirected graph G with no self-loops on the
vertex set V . For each i in V , let Ti(G) denote the number
of distinct triangles in G that contain vertex i. The local
clustering coefficient of node i is given by

Ci(G) =


Ti(G)

1
2di(di−1)

if di ≥ 2

0 otherwise
(7)

where di is the degree of node i in G.
There are, however, several possible definitions for a graph-

wide notion of clustering [23]: Inspired by (7), it is natural
to consider the average of the local clustering coefficient
CAvg(G) over the graph G, i.e.,

CAvg(G) =
1

|V ′|
∑
i∈V ′

Ci(G) (8)

where V ′ = {i ∈ V : di ≥ 2}. This last definition, while a
natural one, is often replaced by the notion of global clustering
coefficient defined as the “fraction of transitive triples” over
the whole graph G. Namely,

C?(G) =

∑
i∈V Ti(G)

1
2

∑
i∈V di(di − 1)

(9)

provided
∑
i∈V di(di−1) > 0. It is convenient to set C?(G) =

0 otherwise.
Related (but simpler) definitions are possible in the context

of random graphs with exchangeable link assignments (as is
the case for the random graphs of interest here), e.g., [5].
In particular, a possible approach is to define the clustering
coefficient of the random key graph K(n; θ) by

CK(θ) = P [E12(θ) | E13(θ) ∩ E23(θ)] . (10)

Interest in this quantity stems from the fact that it is expected
to provide a good approximation to (9) when n is large.
One of our main contributions concerning the clustering in
random key graphs formalizes this phenomenon with a strong
consistency result in Theorem 4.4. This justifies using the
simpler definition (10) for clustering for the rest of this paper.

III. PRELIMINARIES

A. Counting triangles

Pick positive integers K and P such that K ≤ P , and fix
n = 3, 4, . . . For distinct i, j, k = 1, . . . , n, we define the
indicator function

χijk(θ) = 1 [Nodes i, j, k form a triangle in K(n; θ)] . (11)

The number of distinct triangles in K(n; θ) is then simply
given by

Tn(θ) =
∑n

1≤i<j<k≤n
χijk(θ). (12)

Of particular interest will be the event that there exists at least
one triangle in K(n; θ), namely [Tn(θ) > 0] = [Tn(θ) = 0]c.

Key to the analysis presented here is our ability to evaluate
the first two moments of the count variables (12). The first
moment, computed next, will be conveniently expressed with
the help of the quantity β(θ) given by

β(θ) = (1− q(θ))3 + q(θ)3 − q(θ)r(θ) (13)

with r(θ) defined by

r(θ) =

(
P−2K
K

)(
P
K

) · 1 [3K ≤ P ] . (14)

Note that r(θ) corresponds to the probability (6) when |S| =
2K. The next result is established in Section V-A.

Proposition 3.1: Fix n = 3, 4, . . .. For positive integers K
and P such that K ≤ P , we have

E [χ123(θ)] = β(θ) (15)

with β(θ) defined at (13), so that

E [Tn(θ)] =

(
n

3

)
β(θ). (16)

Thus, β(θ) is simply the probability that three distinct
vertices form a triangle in K(n; θ). For future reference, we
note

r(θ) ≤ q(θ)2 (17)

by direct inspection, whence

β(θ) ≥ (1− q(θ))3 > 0. (18)

B. Asymptotic equivalences

For simplicity of exposition we refer to any pair of functions
P,K : N0 → N0 as a scaling (for random key graphs)
provided the natural condition Kn ≤ Pn holds for all n =
2, 3, . . .. The two asymptotic equivalence results presented
next prove useful in a number of places. They provide easy
asymptotic expression for the probability of a link and for the
probability of a triangle, respectively in the random key graph.
The first one was already obtained in [33], and is given here
for easy reference.

Lemma 3.2: For any scaling P,K : N0 → N0, we have

lim
n→∞

q(θn) = 1 if and only if lim
n→∞

K2
n

Pn
= 0. (19)
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Under either condition at (19) we have the asymptotic equiva-
lence

1− q(θn) ∼ K2
n

Pn
. (20)

The second asymptotic equivalence, whose proof is given
in Appendix A, will be stated in terms of the quantity

τ(θ) =
K3

P 2
+

(
K2

P

)3

, K, P = 1, 2, . . . (21)

Proposition 3.3: For any scaling P,K : N0 → N0 satisfying
(19), we have the asymptotic equivalence

β(θn) ∼ τ(θn). (22)

C. Facts concerning Erdős-Rényi graphs

A little later in this paper, we shall compare random key
graphs to related Erdős-Rényi (ER) graphs [7], but first some
notation: For each n = 2, 3, . . . and each p in [0, 1], let
G(n; p) denote the ER graph on the vertex set {1, . . . , n} with
link assignment probability p. In analogy with earlier notation
let Eij(p) denote the event that there is an (undirected) link
between nodes i and j in G(n; p). Thus, the ER graph G(n; p)
is characterized by the events {Eij(p), 1 ≤ i < j ≤ n} that
are mutually independent, each of probability p. We refer to
any mapping p : N0 → [0, 1] as a scaling for ER graphs.

In analogy with (12) let Tn(p) denote the number of distinct
triangles in G(n; p). Under the enforced independence, we
note that

E [Tn(p)] =

(
n

3

)
τ?(p), n = 3, 4, . . . (23)

with
τ?(p) = p3, 0 ≤ p ≤ 1.

Link assignments being exchangeable in ER graphs, we
again define the clustering coefficient in G(n; p) by

CER(p) = P [E12(p) | E13(p) ∩ E23(p)] (24)

so that

CER(p) =
P [E12(p) ∩ E13(p) ∩ E23(p)]

P [E13(p) ∩ E23(p)]
= p (25)

by mutual independence. Here as well, we expect

lim
n→∞

C?(G(n; p)) = CER(p) a.s. (26)

This can be established by the same arguments as the ones
provided in the proof of Proposition 4.4.

Random key graphs are not equivalent to ER graphs even
when their edge probabilities are matched exactly: As graph-
valued rvs, the random graphs G(n; p) and K(n; θ) have
different distributions under the exact matching condition

p = 1− q(θ) = p(θ). (27)

See [30] for a discussion of (dis)similarities. However, in order
to meaningfully compare the asymptotic regime of random key
graphs with that of ER graphs, we shall say that the scaling

p : N0 → [0, 1] (for ER graphs) is asymptotically matched to
the scaling P,K : N0 → N0 (for random key graphs) if

pn ∼ p(θn) = 1− q(θn). (28)

Under the condition (19), the asymptotic matching condition
(28) amounts to (see Lemma 3.2)

pn ∼
K2
n

Pn
. (29)

Condition (27) (resp. (28)) is equivalent to requiring that the
expected degrees in K(n; θn) and G(n; pn) coincide (resp. be
asymptotically equivalent).

IV. MAIN RESULTS AND DISCUSSION

A. Zero-one laws for the existence of triangles

A main result of the paper is a zero-one law for the existence
of triangles in random key graphs. The zero-law is given first.

Theorem 4.1: For any scaling P,K : N0 → N0, the zero-
law

lim
n→∞

P [Tn(θn) > 0] = 0

holds under the condition

lim
n→∞

n3τ(θn) = 0. (30)

The one-law given next assumes a more involved form; its
proof is given in Section V-D.

Theorem 4.2: For any scaling P,K : N0 → N0 for which
the limit limn→∞ q(θn) = q? exists, the one-law

lim
n→∞

P [Tn(θn) > 0] = 1

holds if either 0 ≤ q? < 1 or q? = 1 with the additional
condition

lim
n→∞

n3τ(θn) =∞. (31)

To facilitate an upcoming comparison with analogous results
in ER graphs, we combine Theorem 4.1 and Theorem 4.2 into
the symmetric statement.

Theorem 4.3: For any scaling P,K : N0 → N0 for which
limn→∞ q(θn) exists, we have

lim
n→∞

P [Tn(θn) > 0] =

 0 if limn→∞ n3τ(θn) = 0

1 if limn→∞ n3τ(θn) =∞.

By Lemma 3.2 we note that the condition
limn→∞ n3τ(θn) = 0 implies limn→∞ q(θn) = 1 (hence
q? = 1).
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B. Clustering in Random Key Graphs

Our first result concerning the clustering coefficient of
random key graphs establishes a strong consistency between
two aforementioned definitions of graph clustering; its proof
is given in Appendix V-E.

Theorem 4.4: For positive integers K,P such that K ≤ P ,
we have

lim
n→∞

C?(K(n; θ)) = CK(θ) a.s. (32)

Simulation results given in Table I of Section IV-B illustrate
the convergence (32) (and an analog one for ER graphs). The
next result computes CK(θ). Its proof is given in Section V-B.

Proposition 4.5: For positive integers K,P such that K ≤
P , we have

CK(θ) =
β(θ)

(1− q(θ))2
(33)

with β(θ) given by (13).

C. Comparing the number of triangles in random key graphs
and ER graphs

Fix p in (0, 1], and positive integers K and P such that
K ≤ P . From (16) and (23) it is plain that

E [Tn(θ)]

E [Tn(p)]
=

β(θ)

τ?(p)
, n = 3, 4, . . . (34)

Under the exact matching condition (27), this last expression
becomes

E [Tn(θ)]

E [Tn(p(θ))]
=

β(θ)

τ?(p(θ))
= 1 +

q(θ)2 − r(θ)
(1− q(θ))3

· q(θ) (35)

for each n = 3, 4, . . ., whence E [Tn(p(θ))] ≤ E [Tn(θ)] by
virtue of (17). Consequently, the expected number of triangles
in a random key graph is always at least as large as the
corresponding quantity in an ER graph matched to it. This
was already suggested by Di Pietro et al. [6] with the help of
limited simulations.

A similar result is available when the scalings are only
asymptoticlly matched.

Corollary 4.6: Consider a scaling K,P : N0 → N0 satisfy-
ing (19), and a scaling p : N0 → [0, 1]. Under the asymptotic
matching condition (28), we have the equivalence

E [Tn(θn)]

E [Tn(pn)]
∼ 1 +

Pn
K3
n

. (36)

In other words, for large n the expected number of triangles
in random key graphs is always at least as large as the
corresponding quantity in asymptotically matched ER graphs.
In fact, the number of triangles in random key graphs can be
several orders of magnitude larger than that of ER graphs, if
limn→∞ Pn/K

3
n = ∞. We argue in Section IV-D that this

condition is likely to hold in many envisioned applications
of random key graphs, particularly in the context of wireless
sensor networks.

Proof. Replacing θ by θn and p by pn according to the given
scalings in the expression (34), we get

E [Tn(θn)]

E [Tn(pn)]
=

β(θn)

τ?(pn)
, n = 3, 4, . . .

Under (19), Proposition 3.3 yields

E [Tn(θn)]

E [Tn(pn)]
∼ τ(θn)

τ?(pn)
(37)

with

τ(θn)

τ?(pn)
=

1

p3
n

·
(
K3
n

P 2
n

)
+

1

p3
n

·
(
K2
n

Pn

)3

, n = 2, 3, . . .

With the help of (29), we now conclude

τ(θn)

τ?(pn)
∼ 1 +

Pn
K3
n

(38)

and the equivalence (36) follows from (37).

We conclude this section by comparing Theorem 4.3 with
its analog for ER graphs. Fix n = 2, 3, . . . and p in [0, 1].
Consider the event that there exists at least one triangle in
G(n; p), i.e., [Tn(p) > 0]. The following zero-one law for
triangle containment in ER graphs is well known [3, Chp. 4],
[15, Thm. 3.4, p. 56].

Theorem 4.7: For any scaling p : N0 → [0, 1], we have

lim
n→∞

P [Tn(pn) > 0] =

 0 if limn→∞ n3τ?(pn) = 0

1 if limn→∞ n3τ?(pn) =∞

This result was also established by the method of first and
second moments, and its form is easily understood once we
recall (23).

As we compare Theorem 4.3 and Theorem 4.7, we see a di-
rect analogy since the terms τ(θn) and τ?(pn) both correspond
to (asymptotic) probability that three arbitrary nodes form a
triangle, in random key graphs and ER graphs, respectively.
More interestingly, we see that under the asymptotic matching
condition (28) (and (19)), triangles will start appearing earlier
in the evolution of a random key graph as compared to an
ER graph matched to it; this fact is evident from (38). Put
differently, we can see triangles in a random key graph with
smaller asymptotic edge probability (which corresponds to a
smaller mean node degree) than in ER graph. As shall be
clear from the previous discussions and (38), the larger is the
quantity Pn/K3

n, the more emphasized these differences will
be.

We next discuss the behavior of Pn/K3
n that is likely to be

observed in two popular applications of random key graphs.

D. Implications on random key graph applications: WSNs and
Social Networks

In the context of a WSN with n nodes, it is natural to
select the parameters Kn and Pn such that the induced random
key graph is connected. However, there is a tradeoff between
connectivity and security [6], requiring K2

n

Pn
to be kept as close
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as possible to the critical scaling logn
n for connectivity; see the

papers [2], [6], [25], [29], [33]. The desired regime near the
boundary can be achieved by taking

K2
n

Pn
∼ c · log n

n
(39)

with c > 1 but close to one. On the other hand, it follows
from (36) that

E [Tn(θn)]

E [Tn(pn)]
∼ 1 if and only if

Pn
K3
n

= o(1) (40)

provided condition (19) holds. This obviously occurs when
(39) holds, in which case the condition at (40) amounts to
taking

1

Kn
∼ o(1)

(
c · log n

n

)−1

.

Thus, combining we see that under (39) it holds that

E [Tn(θn)]

E [Tn(pn)]
∼ 1 if and only if Kn �

n

log n
. (41)

In that case the expected number of triangles in random key
graphs is of the same order as the corresponding quantity
in asymptotically matched ER graphs with E [Tn(θn)] ∼
E [Tn(pn)] ∼ c3

6 (log n)
3 – This is a direct consequence of

(23), (29) and (39). This conclusion holds regardless of the
value of c in (39).

However, given the limited memory and computational
power of the sensor nodes, the key ring sizes at (41) are
not practical. In addition, they will lead to high node degrees
and this in turn will decrease network resiliency against node
capture attacks. Indeed, it was proposed by Di Pietro et al.
[6, Thm. 5.3] that resiliency in WSNs against node capture
attacks can be ensured by selecting Kn and Pn such that
Kn

Pn
∼ 1

n . Under (39) this additional requirement then leads
to Kn ∼ c · log n so that Pn ∼ c · n log n, and (36) now
implies

lim
n→∞

E [Tn(θn)]

E [Tn(pn)]
= lim
n→∞

(
1 +

n

(c · log n)2

)
=∞. (42)

This means that, for realistic WSN implementations the ex-
pected number of triangles in the induced random key graphs
will be orders of magnitude larger than in ER graphs.

As mentioned earlier, random key graphs have been con-
sidered in various application areas including social network
modeling; e.g., see [1] and our discussion in Section IV-F.
To that end, we now discuss the parameter ranges for the
random key graph that are likely to be observed in applications
related to social networks. We will do so with an eye towards
understanding the behavior of the expression appearing at (36).

To begin with, most real-world social networks are known
[21] to be sparse in the sense that the mean number of edges
per node is equal to a constant c > 0. In the case of random
key graphs, the mean degree of a node is given by (n−1)(1−
q(θn)) so that sparsity implies 1− q(θn) ∼ c

n , or equivalently
that

K2
n

Pn
∼ c

n
(43)

by virtue of Lemma 3.2. In view of Corollary 4.6 and Corollary
4.8, we then see that in the sparse regime random key
graphs will have many more triangles and will be much more
clustered than the asymptotically matched ER graphs unless
we have

Kn = Ω(n). (44)

We remark that this condition is even more stringent than
(41) that is derived for WSN applications. More importantly,
under (43) and (44) generating the random key graph will
require each of the n nodes selecting Ω(n) keys/objects from
a pool with size Ω(n3). The computational complexity of
this will quickly become prohibitively high as the number
of individuals in the social network gets large. Moreover, a
natural interpretation of the random key graph as a social
network model consists of assigning Kn hobbies/interests to
each individual and assuming that two of them are friends
if they have a common hobby or interest. Hence, we would
expect the realistic values for one’s number of interests Kn to
be much smaller than the network size n, in contrast to (44).

Collecting, we see that (44) is naturally eliminated in
realistic and feasible applications of random key graphs as
social network models. Put differently, random key graphs
will naturally have very high clustering and contain very large
number of triangles when utilized in social network modeling.

E. Comparing the clustering coefficients of random key graphs
and ER graphs

Fix p in (0, 1], and positive integers K and P such that
K ≤ P . Combining (33) and (25) we get

CK(θ)

CER(p)
=

β(θ)

p(1− q(θ))2
. (45)

Under the exact matching condition (27) we find

CK(θ)

CER(p(θ))
= 1 +

q(θ)2 − r(θ)
(1− q(θ))3

· q(θ) (46)

as we recall (5). Thus, CK(θ) ≥ CER(p(θ)) by virtue of (17)
– The clustering coefficient of a random key graph is at least
as large as that of the ER graph exactly matched to it.

In fact, the lower bound mentioned above is achieved only
when P < 2K, i.e., from (4) we get

CK(θ)

CER(p(θ))
= 1 whenever P < 2K.

It is a simple matter to check that for K = 1, (48) yields

CK(1, P )

CER(p(θ))
= P

for each P = 1, 2, . . ., while for K = 2 we have

CK(2, P )

CER(p(θ))
=
P

2
· 2P 3 − 4P 2 − P + 3

(2P − 3)3
≥ P

8
.

It is also straightforward to show that

1 ≤ CK(θ)

CER(p(θ))
≤ P.
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K P CK(θ) Ĉ?
n(θ) CER(p) Ĉ?

n(p)

4 103 0.2590 0.2587 0.0160 0.0159
8 5× 103 0.1348 0.1349 0.0127 0.0128
16 2× 104 0.0737 0.0736 0.0127 0.0128
20 4× 104 0.0590 0.0590 0.0100 0.0100
24 105 0.0469 0.0468 0.0057 0.0057
32 105 0.0408 0.0408 0.0102 0.0102
40 5× 105 0.0280 0.0280 0.0032 0.0031
64 106 0.0196 0.0196 0.0041 0.0041

TABLE I
CLUSTERING COEFFICIENTS WITH FIXED θ AND p = 1− q(θ)

Since P can be made very large, we understand that the
parameters of the random key graph can be selected so that
it has a much larger clustering coefficient than the ER graph
matched to it. This will especially be so for WSNs where the
size of the key pool P is expected to be in the range 217−220

[8].
In Table I we compare the clustering coefficients of random

key graphs and ER graphs for several realistic parameter val-
ues. The numerical values of CK(θ) and CER(p) are obtained
directly from the expressions (10) and (24), respectively. On
the other hand, Ĉ?n(θ) and Ĉ?n(p) stand for the clustering
coefficient of K(n; θ) and G(n; p), respectively, calculated
through (9) and averaged over 1000 realizations; the number
of nodes is set to n = 1000 in all simulations. The data support
the claim that the definition (9) captures essentially the same
feature as the quantities (10) and (24), i.e., the results given
in Table I can be taken as an indication of the validity of (32)
and (26).

Next we compare the clustering coefficients of random key
graphs and ER graphs when the parameters θ and p are scaled
with n.

Corollary 4.8: Consider a scaling K,P : N0 → N0 satisfy-
ing (19) and a scaling p : N0 → [0, 1]. Under the asymptotic
matching condition (28), we have the equivalence

CK(θn)

CER(pn)
∼ 1 +

Pn
K3
n

. (47)

Proof. As we replace θ by θn and p by pn according to these
scalings in the expression (45), we get

CK(θn)

CER(pn)
=

β(θn)

pn(1− q(θn))2
, n = 1, 2, . . . (48)

Note that
CK(θn)

CER(pn)
∼ β(θn)

(1− q(θn))3
∼ τ(θn)

(1− q(θn))3
. (49)

The first equivalence is a consequence of (28) and the second
one is validated by Proposition 3.3 under (19). With (29)
being still valid here, we easily conclude (47) by the same
arguments as the ones used to obtain (36).

Thus, under (19) and (28), we conclude that

lim
n→∞

CK(θn)

CER(pn)
= 1 if lim

n→∞

K3
n

Pn
=∞, (50)

and

lim
n→∞

CK(θn)

CER(pn)
=∞ if lim

n→∞

K3
n

Pn
= 0. (51)

It is now easy to see that asymptotically matched random
key graphs and ER graphs can have vastly different clustering
coefficients: Under the condition (39), (50) can hold only if
the key ring size K is much larger than n/ log n. As already
discussed, this condition can not be satisfied in a practical
WSN scenario due to limitations on the sensor nodes and
security constraints. In fact, we see from (36) and (42) that, in
a realistic WSN scenario, the condition (51) is always in effect
and the clustering coefficient of the random key graph is much
larger than that of the asymptotically matched ER graph. This
provides yet another property of the random key graphs that
ER graph models can not adequately capture, further indicating
the non-equivalence of the two models for practical WSN
implementations.

F. Random Key Graphs as Small Worlds?

Since random key graphs can be highly clustered, a natural
question arises as to their suitability to model the small
world effect. This notion is linked to a well-known series of
experiments conducted by Milgram [19] in the late sixties. The
results, commonly known as six degrees of separation, suggest
that the social network of people in the United States is small
in the sense that the path lengths between pairs of individuals
are short. As a way to capture Milgram’s experiments, Watts
and Strogatz [28] defined small worlds as network models that
are highly clustered and yet have a small average path length.
More precisely, a random graph is considered to be a small
world if its average path length is of the same order as that of
an ER graph with the same expected average degree, but with
a much larger clustering coefficient.

The results of this paper already show that random key
graphs can satisfy the high clustering coefficient requirement
of a small world. Recently Rybarczyk [25] has shown under
(39) that

diam[K(n; θn)] ∼ log n

log log n

with high probability where K(n; θn) is the largest connected
component of K(n; θn). This suggests that the diameter, hence
the average path length, in random key graphs is small as was
the case with ER graphs [4]. We also note [32, Corollary 5.2]
that random key graphs have very small (e.g., ≤ 2) diameter
under certain parameter ranges (e.g., with Pn = n1/2−δ for
any δ > 0). Therefore, random key graphs may indeed be
considered as good candidate models for small worlds!

The fact that random key graphs can exhibit small world
properties can be taken as a further motivation to pursue other
application areas for them, particularly in the field of social
networks. We provide one concrete possibility below, where
random key graphs appear naturally in modeling common-
interest relationships in a population: Suppose that there exists
an object pool consisting of P objects and that each of the n
users picks K distinct objects uniformly at random from this
object pool; objects may represent hobbies, books, movies,
etc. Two friends are said to have a common-interest relation if
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they have at least one common object in their object rings. This
naturally suggests modeling the common interest relationship
by a random key graph K(n;K,P ). Various properties of
random key graphs would then be of interest in applications
such as implementation of large-scale, distributed publish-
subscribe services [34].

V. PROOFS OF MAIN RESULTS

A. A proof of Proposition 3.1

Fix positive integers K and P such that K ≤ P . As
exchangeability yields (16), we need only show the validity
of (15). In the discussion that follows we omit the explicit
dependence on θ when no confusion arises from doing so.
Also, we make repeated use of the fact that for any pair of
events E and F in F , we have

P [E ∩ F ] = P [E]− P [E ∩ F c] . (52)

Thus, by repeated application of (52) we find

E [χ123(θ)]

= P [K1 ∩K2 6= ∅,K1 ∩K3 6= ∅,K2 ∩K3 6= ∅]
= P [K1 ∩K2 6= ∅,K1 ∩K3 6= ∅]

− P [K1 ∩K2 6= ∅,K1 ∩K3 6= ∅,K2 ∩K3 = ∅]
= P [K1 ∩K2 6= ∅,K1 ∩K3 6= ∅]

− P [K1 ∩K2 6= ∅,K2 ∩K3 = ∅]
+ P [K1 ∩K2 6= ∅,K1 ∩K3 = ∅,K2 ∩K3 = ∅] .

By independence, with the help of (6), we readily obtain the
expressions

P [K1 ∩K2 6= ∅,K1 ∩K3 6= ∅] = (1− q(θ))2 (53)

and

P [K1 ∩K2 6= ∅,K2 ∩K3 = ∅] = (1− q(θ)) q(θ).

Next, as we use (52) one more time, we get

P [K1 ∩K2 6= ∅,K1 ∩K3 = ∅,K2 ∩K3 = ∅]
= P [K1 ∩K3 = ∅,K2 ∩K3 = ∅]

− P [K1 ∩K2 = ∅,K1 ∩K3 = ∅,K2 ∩K3 = ∅] .

Again, by independence, with the help of (6) we conclude that

P [K1 ∩K3 = ∅,K2 ∩K3 = ∅] = q(θ)2 (54)

and

P [K1 ∩K2 = ∅,K1 ∩K3 = ∅,K2 ∩K3 = ∅]
= P [K1 ∩K2 = ∅,K3 ∩ (K1 ∪K2) = ∅]
= q(θ)r(θ) (55)

since |K1 ∪K2| = 2K when K1 ∩K2 = ∅. Collecting these
facts we find

E [χ123(θ)]

= (1− q(θ))2 − (1− q(θ)) q(θ) + q(θ)2 − q(θ)r(θ)

and the conclusion (15) follows by elementary algebra.

B. A proof of Proposition 4.5

The definitions of CK(θ) and χ123(θ) yield

CK(θ) =
P [E12(θ) ∩ E13(θ) ∩ E23(θ)]

P [E13(θ) ∩ E23(θ)]

=
E [χ123(θ)]

(1− q(θ))2
(56)

since the events E13(θ) and E23(θ) are independent, with

P [E13(θ) ∩ E23(θ)]

= P [K1(θ) ∩K3(θ) 6= ∅,K2(θ) ∩K3(θ) 6= ∅]
= (1− q(θ))2 (57)

by virtue of (6) (and comments following it). The conclusion
(33) is immediate upon substituting (15) into (56).

C. A proof of Theorem 4.1

Consider a scaling P,K : N0 → N0. For each n = 3, 4, . . .,
the elementary bound P [Tn(θn) > 0] ≤ E [Tn(θn)] implies

P [Tn(θn) > 0] ≤
(
n

3

)
β(θn)

by virtue of Proposition 3.1. Theorem 4.1 thus follows
if under (30) we show that limn→∞

(
n
3

)
β(θn) = 0. By

Proposition 3.3 this convergence is equivalent to the assumed
condition limn→∞ n3τ(θn) = 0, and the proof of Theorem
4.1 is now complete.

D. A proof of Theorem 4.2

The second moment of the count variables (12) is computed
next and will play a crucial role in the proof of Theorem 4.2.

Proposition 5.1: For positive integers K and P such that
K ≤ P , we have for all n = 3, 4, . . .

E
[
Tn(θ)2

]
= E [Tn(θ)] +

((
n−3

3

)(
n
3

) + 3

(
n−3

2

)(
n
3

) ) (E [Tn(θ)])
2

+ 3(n− 3)

(
n

3

)
· E [χ123(θ)χ124(θ)] . (58)

We defer the proof of Proposition 5.1 to the end of this section.
We now turn to proving Theorem 4.2. Assume first that

q? satisfies 0 ≤ q? < 1. Fix n = 3, 4, . . . and partition the n
nodes into the kn+1 non-overlapping groups (1, 2, 3), (4, 5, 6),
. . ., (3kn+1, 3kn+2, 3kn+3) with kn = bn−3

3 c. If K(n; θn)
contains no triangle, then none of these kn+1 groups of nodes
forms a triangle. With this in mind we get

P [Tn(θn) = 0]

≤ P

[
kn⋂
`=0

[
Nodes 3`+ 1, 3`+ 2, 3`+ 3 do not

form a triangle in K(n; θn)

]]

=

kn∏
`=0

P
[

Nodes 3`+ 1, 3`+ 2, 3`+ 3 do not
form a triangle in K(n; θn)

]
(59)
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= (1− β(θn))
kn+1

≤
(
1− (1− q(θn))3

)kn+1
(60)

≤ e−(kn+1)(1−q(θn))3 . (61)

Note that (59) follows from the fact that the events[
Nodes 3`+ 1, 3`+ 2, 3`+ 3 do not

form a triangle in K(n; θn)

]
, ` = 0, . . . , kn

are mutually independent due to the non-overlap condition,
while the inequality (60) is justified with the help of (18). Let
n go to infinity in the inequality (61). From the constraint
q? < 1 we conclude that limn→∞ P [Tn(θn) = 0] = 0 since
kn ∼ n

3 so that limn→∞(kn + 1)(1 − q(θn))3 = ∞. This
establishes the one law in the case q? < 1.

To handle the case q? = 1, we use a standard bound which
forms the basis of the method of second moment [15, Remark
3.1, p. 55]. Here this bound takes the form

(E [Tn(θn)])
2

E [Tn(θn)2]
≤ P [Tn(θn) > 0] , n = 3, 4, . . . (62)

Theorem 4.2 then will be established in the case q? = 1 if we
show under (19) that the condition (31) implies

lim
n→∞

E
[
Tn(θn)2

]
(E [Tn(θn)])

2 = 1. (63)

As pointed earlier, the conditions (19) imply 3Kn < Pn for
all n sufficiently large in N0. On that range, with θ replaced
by θn, Proposition 5.1 yields

E
[
Tn(θn)2

]
(E [Tn(θn)])

2 =
1

E [Tn(θn)]
+

((
n−3

3

)(
n
3

) + 3

(
n−3

2

)(
n
3

) )

+
3(n− 3)(

n
3

) · E [χ123(θn)χ124(θn)]

(E [χ123(θn)])
2

as we make use of (16) in the last term.
Let n go to infinity in the resulting expression: Under

condition (31), we have limn→∞ n3β(θn) =∞ by Proposition
3.3, whence limn→∞ E [Tn(θn)] =∞ by virtue of (16). Since

lim
n→∞

((
n−3

3

)(
n
3

) + 3

(
n−3

2

)(
n
3

) ) = 1 (64)

and (
n
3

)
3(n− 3)

∼ n2

18
, (65)

the convergence (63) will hold if we show that

lim
n→∞

1

n2

E [χ123(θn)χ124(θn)]

(E [χ123(θn)])
2 = 0 (66)

under the foregoing conditions on the scaling.
This is shown as follows: Given positive integers K and P

such that K ≤ P , fix n = 3, 4, . . .. It is immediate that

E [χ123(θ)χ124(θ)]

≤ E [χ123(θ)1 [K1(θ) ∩K4(θ) 6= ∅]] . (67)

From (6) it follows that the rvs χ123(θ) and
1 [K1(θ) ∩K4(θ) 6= ∅] are independent conditionally on
K1(θ), and an easy conditioning argument yields

E [χ123(θ)1 [K1(θ) ∩K4(θ) 6= ∅]] = β(θ)(1− q(θ)) (68)

as we recall (4) and (73). Using (67) together with (15) and
(68) we readily obtain the inequalities

E [χ123(θ)χ124(θ)]

(E [χ123(θ)])
2 ≤ β(θ)(1− q(θ))

β(θ)2
≤ β(θ)−2/3 (69)

where in the last step we noted that 1 − q(θ) ≤ β(θ)1/3 by
appealing to (18).

Returning to the convergence (66) we see from (69) that we
need only show

lim
n→∞

n2β(θn)2/3 =∞. (70)

As Proposition 3.3 yields n2β(θn)2/3 ∼ n2τ(θn)2/3 =(
n3τ(θn)

)2/3
, the desired conclusion (70) follows under the

condition (31).

Proof of Proposition 5.1. Fix positive integers K and P such
that K ≤ P , and n = 3, 4, . . .. By exchangeability and the
binary nature of the rvs involved we readily obtain

E
[
Tn(θ)2

]
= E [Tn(θ)] +

(
n

3

)(
3

2

)(
n− 3

1

)
E [χ123(θ)χ124(θ)]

+

(
n

3

)(
3

1

)(
n− 3

2

)
E [χ123(θ)χ145(θ)]

+

(
n

3

)(
n− 3

3

)
E [χ123(θ)χ456(θ)] . (71)

Under the enforced independence assumptions the rvs
χ123(θ) and χ456(θ) are independent and identically dis-
tributed. As a result,

E [χ123(θ)χ456(θ)] = E [χ123(θ)]E [χ456(θ)] = β(θ)2

so that using the relation (16) we obtain(
n

3

)(
n− 3

3

)
E [χ123(θ)χ456(θ)] =

(
n−3

3

)(
n
3

) (E [Tn(θ)])
2
.

(72)

On the other hand, with the help of (6) we readily check
that the indicator rvs χ123(θ) and χ145(θ) are independent and
identically distributed conditionally on K1(θ) with

P [χ123(θ) = 1|K1(θ)] = P [χ123(θ) = 1] = β(θ). (73)

As a similar statement applies to χ145(θ), we conclude that
the rvs χ123(θ) and χ145(θ) are (unconditionally) independent
and identically distributed with

E [χ123(θ)χ145(θ)] = E [χ123(θ)]E [χ145(θ)] = β(θ)2.

Again by virtue of (16), this last observation yields(
n

3

)(
3

1

)(
n− 3

2

)
E [χ123(θ)χ145(θ)]

= 3

(
n−3

2

)(
n
3

) · (E [Tn(θ)])
2
. (74)

Substituting (72) and (74) into (71) establishes Proposition
5.1.
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E. A proof of Theorem 4.4

Throughout P and K are positive integers such that K ≤ P ,
and fix n = 3, 4, . . .. For each i = 1, . . . , n, we introduce the
index set

Pn,i = {(j, k) : 1 ≤ j < k ≤ n, j 6= i, k 6= i} .

Next, define the count rvs Tn,i(θ) and T ?n,i(θ) by

Tn,i(θ) =
∑

(j,k)∈Pn,i

ξij(θ)ξik(θ)ξjk(θ)

and
T ?n,i(θ) =

∑
(j,k)∈Pn,i

ξij(θ)ξik(θ).

The rv Tn,i(θ) counts the number of distinct triangles in
K(n; θ) which have node i as a vertex, while T ?n,i(θ) counts
the number of distinct pairs of nodes which are both connected
to node i in K(n; θ). We also introduce the rv Di(θ) as the
degree of node i in K(n; θ) given by

Dn,i(θ) =

n∑
k=1, k 6=i

ξik(θ).

Observe that we have
n∑
i=1

Tn,i(θ) = 3Tn(θ)

while

Dn,i(θ) (Dn,i(θ)− 1) = 2T ?n,i(θ).

Under the condition
n∑
i=1

Dn,i(θ) (Dn,i(θ)− 1) > 0,

the definition of C?(K(n; θ)) yields

C?(K(n; θ)) =

∑n
i=1 Tn,i(θ)

1
2

∑n
i=1Dn,i(θ) (Dn,i(θ)− 1)

=

∑n
i=1 Tn,i(θ)∑n
i=1 T

?
n,i(θ)

so that

C?(K(n; θ)) =
3Tn(θ)∑n
i=1 T

?
n,i(θ)

1

[
n∑
i=1

T ?n,i(θ) > 0

]
. (75)

The desired conclusion (32) is now immediate from Lemma
5.2 and Lemma 5.3 established below. They deal with the
a.s. convergence of the numerator and denominator (properly
normalized) appearing in the ratio (75), respectively.

Lemma 5.2: For positive integers P and K such that K ≤
P , we have

lim
n→∞

Tn(θ)(
n
3

) = β(θ) a.s. (76)

Proof. Fix n = 3, 4, . . . and ε > 0. Markov’s inequality
already gives

P

[∣∣∣∣∣Tn(θ)(
n
3

) − β(θ)

∣∣∣∣∣ > ε

]
≤ ε−2Var

[
Tn(θ)(
n
3

) ]

as we recall (16). It is now plain from (58) that

Var

[
Tn(θ)(
n
3

) ]

= E

(Tn(θ)(
n
3

) )2
−(E [Tn(θ)](

n
3

) )2

=
E [Tn(θ)](

n
3

)2 +

((
n−3

3

)(
n
3

) + 3

(
n−3

2

)(
n
3

) − 1

)
·

(
E [Tn(θ)](

n
3

) )2

+ 3(n− 3)

(
n

3

)
· E [χ123(θ)χ124(θ)](

n
3

)2
=
β(θ)(
n
3

) +

((
n−3

3

)(
n
3

) + 3

(
n−3

2

)(
n
3

) − 1

)
· β(θ)2

+
3(n− 3)(

n
3

) · E [χ123(θ)χ124(θ)] (77)

as we again make use of the expression (16).
With the help of (64) and (65), it is easy to see that

lim
n→∞

Var

[
Tn(θ)(
n
3

) ] = 0, (78)

a fact which would readily imply a weaker form of (76)
with a.s. convergence replaced by convergence in probability.
However, elementary algebra on (77) shows that (78) takes
place according to

lim
n→∞

n2Var

[
Tn(θ)(
n
3

) ] = C

with
C = 18

(
E [χ123(θ)χ124(θ)]− β(θ)2

)
> 0.

As a result, for every ε > 0, we have
∞∑
n=3

P

[∣∣∣∣∣Tn(θ)(
n
3

) − β(θ)

∣∣∣∣∣ > ε

]
≤ C ′

ε2

∞∑
n=3

n−2 <∞

for some C ′ > C, and the conclusion (76) follows by the
Borel-Cantelli Lemma.

Lemma 5.3: For positive integers P and K such that K ≤
P , we have

lim
n→∞

∑n
i=1 T

?
n,i(θ)(

n
3

) = 3p(θ)2 a.s. (79)

Proof. Fix n = 3, 4, . . .. Note that

T ?n,1(θ) =

n−1∑
j=2

n∑
k=j+1

ξ1j(θ)ξ1k(θ)

= Φn(ξ12(θ), . . . , ξ1n(θ)) (80)

where the mapping Φn : [0, 1]n−1 → R+ is given by

Φn(x2, . . . , xn) =

n−1∑
`=2

n∑
k=`+1

x`xk
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=

n−1∑
`=2

x`

(
n∑

k=`+1

xk

)
(81)

with (x2, . . . , xn) arbitrary in [0, 1]n−1. For each j = 2, . . . , n,
consider pairs of elements (x2, . . . , xn) and (y2, . . . , yn) in
[0, 1]n−1 which differ only in the jth component, i.e.,

x` = y`, ` 6= j, ` = 2, . . . , n.

Under such conditions, it is easy to check that

|Φn(x2, . . . , xn)− Φn(y2, . . . , yn)|

≤ |xj − yj | ·
n−1∑

`=2, 6̀=j

x`

≤ n− 1. (82)

Recall that the (n− 1) rvs {ξ1j(θ), j = 2, . . . , n} are i.i.d.
Bernoulli rvs. In view of the constraints (82) we can now
apply McDiarmid’s inequality [17] (with cj = (n− 1) for all
j = 2, . . . , n − 1); see also Corollary 2.17 and Remark 2.28
in the monograph [15, p. 38]. Thus, for every t > 0 we find

P
[∣∣T ?n,1(θ)− E

[
T ?n,1(θ)

]∣∣ > t
]
≤ 2e

− 2t2

(n−1)3 (83)

with

E
[
T ?n,1(θ)

]
=

n−1∑
j=2

n∑
k=j+1

E [ξ1j(θ)ξ1k(θ)]

=

n−1∑
j=2

(n− j)p(θ)2

=
(n− 1)(n− 2)

2
· p(θ)2 (84)

under the independence noted earlier.
With ε > 0 we now substitute

t =
(n− 1)(n− 2)

2
ε

into (83). Since

2t2

(n− 1)3
=

(n− 2)2

2(n− 1)
· ε2 ∼ n

2
· ε2,

we obtain from (83) and (84) that

P

[∣∣∣∣∣ T ?n,1(θ)
(n−1)(n−2)

2

− p(θ)2

∣∣∣∣∣ > ε

]
≤ 2e−

n
2 (1+o(1))ε2 . (85)

Since∣∣∣∣∣
∑n
i=1 T

?
n,i

n(n−1)(n−2)
2

− p(θ)2

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

(
T ?n,i

(n−1)(n−2)
2

− p(θ)2

)∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣∣∣ T ?n,i
(n−1)(n−2)

2

− p(θ)2

∣∣∣∣∣ ,
it is plain that

P

[∣∣∣∣∣
∑n
i=1 T

?
n,i

n(n−1)(n−2)
2

− p(θ)2

∣∣∣∣∣ > ε

]

≤ P

[
1

n

n∑
i=1

∣∣∣∣∣ T ?n,i
(n−1)(n−2)

2

− p(θ)2

∣∣∣∣∣ > ε

]

≤ P

[
n⋃
i=1

[∣∣∣∣∣ T ?n,i
(n−1)(n−2)

2

− p(θ)2

∣∣∣∣∣ > ε

]]

=

n∑
i=1

P

[∣∣∣∣∣ T ?n,i
(n−1)(n−2)

2

− p(θ)2

∣∣∣∣∣ > ε

]

= nP

[∣∣∣∣∣ T ?n,1
(n−1)(n−2)

2

− p(θ)2

∣∣∣∣∣ > ε

]
where the equality before last follows by a union bound argu-
ment and the last equality is a consequence of exchangeability.

Invoking (85) (with ε
3 instead of ε) we get

P

[∣∣∣∣∣
∑n
i=1 T

?
n,i(

n
3

) − 3p(θ)2

∣∣∣∣∣ > ε

]
≤ 2ne−

n
18 (1+o(1))ε2

with
∞∑
n=3

ne−
n
18 (1+o(1))ε2 <∞

for every ε > 0. The a.s. convergence (79) now follows by
the Borel-Cantelli Lemma.

ACKNOWLEDGEMENT

This work was supported in part by NSF Grant CCF-
0729093 and in part by the Department of Electrical and
Computer Engineering at Carnegie Mellon University. The
paper was completed during Fall 2014 while A.M. Makowski
was a Visiting Professor with the Department of Statistics of
the Hebrew University of Jerusalem with the support of a
fellowship from the Lady Davis Trust. The authors also thank a
colleague (who wishes to remain anonymous) for suggestions
that lead to a shorter proof of the one law in Theorem 4.2.

REFERENCES

[1] F. G. Ball, D. J. Sirl, and P. Trapman, “Epidemics on random intersection
graphs,” The Annals of Applied Probability 24:3, pp. 1081-1128, 2014.

[2] S.R. Blackburn and S. Gerke, “Connectivity of the uniform random
intersection graph,” Discrete Mathematics 309 (2009), pp. 5130-5140.

[3] B. Bollobás, Random Graphs, Second Edition, Cambridge Studies in
Advanced Mathematics, Cambridge University Press, Cambridge (UK),
2001.

[4] F. Chung and L. Lu, “The diameter of sparse random graphs,” Advances
in Applied Mathematics 26 (2001), pp. 257-279.

[5] M. Deijfen and W. Kets, “Random intersection graphs with tunable
degree distribution and clustering,” Probability in the Engineering and
Informational Sciences 23 (2009), pp. 661-674.

[6] R. Di Pietro, L.V. Mancini, A. Mei, A. Panconesi and J. Radhakrishna,
“Redoubtable sensor networks,” ACM Transactions on Information Sys-
tems Security TISSEC 11 (2008), pp. 1-22.
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[33] O. Yağan and A.M. Makowski, “Zero-one laws for connectivity in
random key graphs,” IEEE Transactions on Information Theory IT-58
(2012), pp. 2983-2999.
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APPENDIX
A PROOF OF PROPOSITION 3.3

Because 1 ≤ Kn ≤ Kn
2 for all n = 1, 2, . . ., the condition

(19) implies both

lim
n→∞

1

Pn
= 0 and lim

n→∞

Kn

Pn
= 0. (A.1)

Therefore, limn→∞ Pn = ∞, and for any c > 0, we have
cKn < Pn for all n sufficiently large in N0 (dependent on c).
Thus, we have 3Kn < Pn for all n sufficiently large in N0.
On that range we can use the expression (13) to write

β(θn) = (1− q(θn))
3

+ q(θn)3

(
1− r(θn)

q(θn)2

)
.

As Lemma 3.2 already implies q(θn)3 ∼ 1 and (1− q(θn))
3 ∼(

K2
n

Pn

)3

, the asymptotic equivalence β(θn) ∼ τ(θn) will be
established if we show that

1− r(θn)

q(θn)2
∼ K3

n

P 2
n

. (A.2)

We proceed as follows: With positive integers K,P such
that 3K ≤ P , we note that

r(θ)

q(θ)2
=

(
(P − 2K)!

(P −K)!

)2

· (P − 2K)!

(P − 3K)!
· P !

(P −K)!

=

K−1∏
`=0

(
P − 2K − `
P −K − `

)
·
K−1∏
`=0

(
P − `

P −K − `

)

=

K−1∏
`=0

(
1−

(
K

P −K − `

)2
)
,

and elementary bounding arguments yield

1−

(
1−

(
K

P −K

)2
)K

≤ 1− r(θ)

q(θ)2

≤ 1−

(
1−

(
K

P − 2K

)2
)K

.

Pick a scaling P,K : N0 → N0 satisfying the equivalent
conditions (19) and consider n sufficiently large in N0 so that
3Kn < Pn. On that range, we replace θ by θn in the last chain
of inequalities according to this scaling. A standard sandwich
argument will yield the desired equivalence (A.2) if we show
that

1−

(
1−

(
Kn

Pn − cKn

)2
)Kn

∼ K3
n

P 2
n

, c = 1, 2. (A.3)

To do so we proceed as follows: Fix c = 1, 2. With

An(c) =

(
Kn

Pn − cKn

)
, n = 1, 2, . . .

standard calculus yields

1−

(
1−

(
Kn

Pn − cKn

)2
)Kn

= KnAn(c)2

∫ 1

0

(
1−An(c)2t

)Kn−1
dt
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on the appropriate range. The asymptotics

An(c)2 =

(
Kn

Pn − cKn

)2

∼
(
Kn

Pn

)2

(A.4)

and
KnAn(c)2 ∼ K3

n

P 2
n

(A.5)

follow from (A.1), so that (A.3) will hold if we show that

lim
n→∞

∫ 1

0

(
1−An(c)2t

)Kn−1
dt = 1. (A.6)

In view of (A.4) we conclude from (A.1) that for all n
sufficiently large in N0 we have sup0≤t≤1

∣∣1−An(c)2t
∣∣ ≤ 1.

Therefore, the Bounded Convergence Theorem will yield (A.6)
as soon as we establish

lim
n→∞

(
1−An(c)2t

)Kn−1
= 1, 0 ≤ t ≤ 1. (A.7)

To that end, recall the decomposition

log(1− x) = −
∫ x

0

1

1− t
dt = −x−Ψ(x) (A.8)

where
Ψ(x) =

∫ x

0

t

1− t
dt, 0 ≤ x < 1.

It is easy to check that

lim
x↓0

Ψ(x)

x
= 0. (A.9)

Fix n sufficiently large in N0 as required above. For each t
in the interval (0, 1], with the help of (A.8) we can write(

1−An(c)2t
)Kn−1

= e(Kn−1) log(1−An(c)2t)

= e−(Kn−1)An(c)2t−(Kn−1)Ψ(An(c)2t). (A.10)

Returning to (A.5), we use (19) and (A.1) to find

lim
n→∞

KnAn(c)2 = lim
n→∞

(
K2
n

Pn
· Kn

Pn

)
= 0.

It is then plain that limn→∞(Kn − 1)An(c)2 = 0, whence

lim
n→∞

(Kn − 1)Ψ(An(c)2t)

= lim
n→∞

(Kn − 1)An(c)2t · Ψ(An(c)2t)

An(c)2t
= 0

with the help of (A.9) in the last step. Finally, letting n go to
infinity in (A.10), we readily get (A.7) as desired.


