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Abstract

Multi-armed bandits is a sequential decision-making problem where an agent must choose between multiple

actions to maximize its cumulative reward over time, while facing uncertainty about the rewards associated with each

action. The challenge lies in balancing the exploration of potentially higher-rewarding actions with the exploitation of

known high-reward actions. We consider a multi-armed bandit problem with probes, where before pulling an arm, the

decision-maker is allowed to probe one of the K arms for a cost c ≥ 0 to observe its reward. We introduce a new

regret definition that is based on the expected reward of the optimal action. We develop UCBP, a novel algorithm

that utilizes this strategy to achieve a gap-independent regret upper bound that scales with the number of rounds T

as O(
√
KT log T ), and an order optimal gap-dependent upper bound of O(K log T ). As a baseline, we introduce

UCB-naive-probe, a naive UCB-based approach which has a gap-independent regret upper bound of O(
√
KT log T ),

and gap-dependent regret bound of O(K2 log T ); and TSP, the Thompson Sampling version of UCBP. In empirical

simulations, the UCBP algorithm outperforms the UCB-naive-probe algorithm, and performs similarly to TSP, verifying

the utility of UCBP and TSP algorithms in practical settings.

Index Terms

Multi-armed bandits; online learning; sequential decision-making; probing.

I. INTRODUCTION

Multi-armed bandits (MAB) is a widely studied framework for sequential decision-making under uncertainty. In the

standard MAB formulation, an agent chooses one of K actions (often referred to as arms) in each round and receives

a random reward that follows an unknown distribution associated with the selected action. The objective of the agent

is to maximize the mean reward received in total over T rounds. To this end, the agent must balance exploration

of the different actions to learn more about their rewards, and exploitation of the actions that have provided the

highest rewards so far. The seminal work of [1] showed that the regret, defined as the difference in expected total

rewards between a given policy and the optimal policy in hindsight, has to grow at least logarithmically in the

number of plays, and developed asymptotically optimal decision policies. Thereafter, many other asymptotically

efficient policies have been proposed, including [2], [3], and used in applications in many fields, such as online

advertising [4], [5], clinical trials [6], [7], and recommendation systems [8], [9].

Fueled by the explosion of data and the need for efficient and effective decision-making in various domains

in recent years, there has been a surge of interest in multi-armed bandits. This interest has led to many new
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developments and insights, spanning algorithmic design, theoretical analysis, and practical applications. One area

of recent development is bandits with side information, which allows the agent to receive side information before

making a decision [10]–[12]. The side information can be in the form of partial observations, expert advice, context

of the arms, or prior knowledge about the reward distributions. Recent work has shown that bandits with side

information can improve the learning rate and robustness of MAB algorithms, and can be useful in various practical

settings, such as clinical trials and online auctions.

The idea of probing to reduce uncertainty in a decision-making process has been studied in many areas of research,

such as wireless communication systems [13], stochastic probing [14], online learning [15], and multi-armed bandits

[16], [17]. In settings that utilize costly expert advice, where either humans or machine learning models are experts,

probing can be interpreted as getting a prediction of the reward of an arm from the expert without pulling the

arm. In this paper, we consider a specific variant of this problem, namely multi-armed bandits with probes. In this

problem, the decision-maker is allowed to probe one arm for a cost c ≥ 0 to observe its reward for that round.

Based on the information obtained from the probe, the decision-maker can then pull that arm, or any other arm.

The decision-maker can also pull an arm in a round without probing an arm. This variation of the MAB problem

introduces an additional level of complexity and challenge, as probing considerably expands the action space, and

the agent must balance exploration and exploitation while incorporating the decision about whether to probe an arm

in its decision-making process. The main goal of our work is to develop new algorithms for this framework that

achieve as much cumulative reward as possible. Towards this end, we propose the UCBP algorithm, and provide its

theoretical analysis. We also consider the extension of this setting to multiple probes under binary rewards, and

propose the UCBMP algorithm. Related work for these settings are provided in detail in §III.

A. Applications

The formulation considered here has numerous applications across different fields. A good example is online

learning with machine learning (ML) advice. In this setting, ML models are used to predict the outcomes of actions

before deciding on an action [18]–[20] to characterize improved performance bounds compared to the case without

predictions in settings such as when the predictions are perfect [21], when the predictions are adversarial [22],

or when there is an upper limit on the error of the predictions [23]. While in this work we assume that a probe

reveals the exact outcome of an arm, we associate a cost to probing that may be used to model the computational

complexity of using ML predictions. This work is also useful in the sense that it may serve as a reference point for

future work that relaxes this assumption to include the cases where probes are noisy reward predictions.

In hyperparameter optimization for machine learning models, one approach is to have human experts routinely

inspect the learning curves to quickly terminate runs with poor hyperparameter settings [24]. Our work can be

incorporated into this setting by defining pulling an arm as running the hyperparameter setting without human expert

supervision, and probing an arm as running it with supervision. Since poor runs will be quickly terminated, regret

will not be incurred from probes, and only probing cost which reflects the cost of having a human expert will be

incurred. In fraud detection, probing can represent running a particular check on a given transaction to estimate the

likelihood of fraudulent activity, while pulling can represent blocking or confirming a transaction.



3

Another possible application of our work is in wireless communications. Probes in wireless communications

mainly involve sending small data packets to observe some channel properties at that time. Prior work generally

assume knowing the distributions of the rewards of channels [25]. Our work can be especially useful when these

distributions are unknown. One other application is the cold-start problem in recommender systems [26], where,

when a new item, or arm is added to the system, it is needed to learn its reward without suffering too much regret.

The general approach is to generate reward predictions for this new arm from rewards of similar arms [27]. The

probes in our work can be used to model predictions from such systems and the cost of probe can model the cost

of making predictions. Also, our work can be used to model some test, or incentivized users that reveal or predict

the reward of the arm without suffering the regret. Then, the cost of probe can reflect the cost of incentivizing such

users. We also believe our work can be useful in other areas where bandits are used such as drug trials and ad

recommendations.

B. Contributions

1) Formulation: To our knowledge, this work is the first to consider a multi-armed bandit setting with bounded

reward distributions where before pulling an arm, the agent is allowed to probe one arm to observe its reward

for a cost c ≥ 0.1 This is an intricate problem different from most previous bandit formulations as the action set

is larger, and the decision to pull an arm after probing depends on the probe outcome, which makes the analysis

harder.

2) UCBP Algorithm: We identify the optimal strategy to whether to pull or probe an arm, and if we probe an arm,

we also identify which arm to probe, and which arm to pull after the probe by evaluating the expected reward of

each action. We provide an order-optimal algorithm based on UCB that evaluates the value of each action and

uses upper confidence bounds to explore and choose the optimal action.

3) Regret Upper Bound for UCBP: We provide upper bounds on the expected cumulative regret of UCBP through

a novel decomposition of regret for this problem setting. We establish that the gap-independent regret upper

bound scales with O(
√
KT log T ), and that when the reward distribution is discrete, the gap-dependent regret

upper bound scales with O(K log T ). We also show that the gap-dependent regret upper bound is order-optimal

by showing that the regret lower bound also scales with Ω(K log T ).

4) Simulations: To demonstrate the empirical performance of UCBP, we provide two baseline algorithms for

comparison. We provide UCB-naive-probe, a naive UCB-based algorithm that does not employ the optimal

strategy of the UCBP algorithm; and TSP, a Thompson sampling version of UCBP. We perform simulations of

UCBP, TSP, and UCB-naive-probe on the MOVIELENS and the Open Bandit datasets.

5) Extension to Multiple Probes: To demonstrate how our problem setting can be extended to multiple probes, we

provide UCBMP, the multiple probe version of our algorithm under Bernoulli arm rewards.

1Note that this work can easily be extended to the setting where cost of probing arm i is ci ≥ 0.



4

TABLE I

NOTATIONS

K Number of arms

[K] Set of base arms

A Action set

Ap Set of probe actions

As Set of direct pull actions

Ap,i Set of actions that involve arm i

c Cost of probing an arm

D Discrete support of arm rewards

ri(t) Reward of arm i at time t

a = (i, j)
Action with i as the probe

and j as the backup arm

a = (i, ∅) Action of pulling arm i

a(t) The action taken at round t

a∗ Optimal action

ν∗ Mean reward of optimal action

µi Mean reward of arm i

νa Mean reward of action a

p∗ Maximum expected reward of probing actions

∆a Gap of action a

∆min,i ∆min,i = mina∈Ap\{a∗} s.t. i∈a (∆a)

ρi ρi = mina∈Ap,i\{a∗}

(
ϵ∆a
4

)
Ca(t) The confidence interval of action a at round t

ϵ The minimum probability of pulling backup arm

γi γi := minj |dj − µi|
S(t) Set of arms whose reward is observed in round t

Ui(t) Upper confidence index of arm i in round t

Ua(t) Upper confidence index of action a t

Pi,j(t) Probing upper confidence index a = (i, j)

Ni(t) Number of times arm i is sampled (pull or probe)

Na(t) Number of times action a is taken

II. PROBLEM STATEMENT

In this section we define our problem setting of the multi-armed bandit model with probes and derive the optimal

action for this setting. The notations of some of the terms used throughout the paper are given in Table I.

A. Multi-Armed Bandit Model with Probes

We consider a K-armed stochastic bandit problem with the set of base arms [K]. When pulled, arm i ∈ [K]

generates a random reward from a distribution Γi with mean µi. Arm rewards are independent of each other and

across time. At each round, the agent first selects one of the following two types of actions. The first type of action,

called pull, is where the agent pulls a particular arm i ∈ [K] to receive its reward r(t) = ri(t). In the second type

of action, called probe, the agent selects a probe arm i and a backup arm j ̸= i. First, the probe arm is probed,

and its reward ri(t) is observed. Based on this, the agent can choose to pull the probe arm to receive reward

r(t) = ri(t)− c or the backup arm to receive reward r(t) = rj(t)− c. Here, c ≥ 0 represents the known cost of

probing.

We define A = As ∪ Ap as the action set where elements of A are tuples. Ap is the set of actions that involve

probing, and As is the set of actions that do not involve probing. The ordered tuple (i, j) ∈ Ap for i, j ∈ [K], i ̸= j

indicates arm i is the probe arm and arm j the backup arm, while (i, ∅) ∈ As for i ∈ [K] indicates pulling arm i. It

can be seen that |A| = K2. Further, the set of actions that include base arm (either as probe or backup arm) i are

denoted as Ap,i := {a ∈ Ap : i ∈ a}. We also denote the action taken in round t by a(t) ∈ A. When a(t) = (i, j)

in round t, after observing reward ri(t), the agent needs to decide whether to pull arm i or j. Since the reward of
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TABLE II

EXAMPLE OF EXPECTED ACTION REWARDS UNDER DIFFERENT ARM DISTIBUTIONS. (LEFT) DISTRIBUTIONS OF ARM REWARDS IN A SETTING

WITH 3 DIFFERENT ARMS. THE 1/5 FRACTION IN FRONT OF THE BINOMIAL DISTRIBUTION IS USED TO SCALE THE REWARDS INTO RANGE

[0,1]. (RIGHT) EXPECTED REWARD v(i,j) VALUES FOR SEVERAL DIFFERENT ACTIONS

Arm Distribution

1 1
5
· Binomial(n = 5, p = 0.4)

2 Bernoulli(p = 0.5)

3 Beta(α = 3, β = 2)

Action Expected reward

(1, 2) 0.551

(1, 3) 0.619

(3, 1) 0.639

(2, 3) 0.8

arm j is unobserved, only its expectation µj can be used. Hence, optimal decision is pulling arm i if ri(t) > µj ,

and arm j otherwise. We call this the optimal reference point decision. Using this reference point strategy, it can be

seen that the expected reward of playing action (i, j) is:

v(i,j) = E[max(ri, µj)]− c

The calculated v(i,j) values for some example arm distributions and action choices are given in Table II.

Without loss of generality, we assume that the mean rewards of the arms are ordered such that µ1 > µ2 ≥ · · · ≥ µK .

For simplicity, we assume there is a unique arm with the highest mean, which we refer to as the best arm. In

standard K-armed stochastic bandit, the only option available to the learner is the pull option. Hence, the optimal

action is to choose the best arm in all rounds, leading to the standard definition of expected regret given as

Rstd
T = T · µ1 − E

[
T∑

t=1

r(t)

]
.

Unlike standard K-armed bandit, in our setup, the probe option makes the optimal action non-trivial. Since

achieving even negative regret is straightforward under probe option if ∃(i, j) s.t. E[max(ri, µj)]− c > µ1, it can

be seen that T · µ1 is a very weak benchmark. When Γi, ∀i ∈ [K] are known a priori, the maximum expected

reward that can be achieved in a round (the optimal reward) is

ν∗ = max(µ1, max
i∈[K]\{1}

{−c+ E[max(ri, µ1)]} − c+ E[max(r1, µ2)]). (1)

This leads to the optimal action, which for simplicity we assume to be unique, being expressed as

a∗ =


(1, ∅) if ν∗ = µ1

(i, 1) if ν∗ = −c+ E[max(ri, µ1)]

(1, 2) if ν∗ = −c+ E[max(r1, µ2)]

Note that while it is not explicitly written, all probe actions above in this paper employ the optimal reference point

decision described above. We focus on achieving non-trivial sublinear regret bounds with respect to the optimal

benchmark Tν∗. Hence, we define the empirical cumulative regret with respect to the optimal reward as

R̂T = Tν∗ −
T∑

t=1

r(t) ,



6

Fig. 1. Illustration of the decision rule for action (i, j) if µ̂j is used as the reference point.

and the expected cumulative regret as

RT = E[R̂T ].

To define the gaps of actions a ∈ A, we let νa represent the expected reward of action a. For a = (i, ∅) such that

i ∈ [K], we have νa = µi. For a = (i, j) such that i, j ∈ [K] and i ̸= j, we have ν(i,j) = E[max(ri, µj)] − c.

The gaps of actions without probing are defined as ∆(i,∅) := ν∗ − ν(i,∅). Gaps of actions with probing are defined

as ∆(i,j) := ν∗ − ν(i,j), and the gaps of base arms are defined as ∆i := µ1 − µi. An important remark is

that with this regret definition, and in view of (1), identifying the probe arm and the backup arm correctly may

not be sufficient to receive the optimal reward ν∗. To illustrate this, assume that a∗ = (i, 1) for some i ̸= 1.

To receive ν∗ = −c + E[max(ri, µ1)], after probing arm i and observing ri, the agent needs to pull arm i if

ri > µ1 or pull arm 1 if ri ≤ µ1. This optimal action can only be taken with the exact knowledge of the

mean reward of arm µ1, which the agent does not have. We instead use an estimate of µ1, e.g., the current

empirical average µ̂1(t), as a reference value to compare against ri, which will lead to incurring a regret of up to

|µ̂1(t)− µ1|P(ri ∈ [min(µ1, µ̂1(t)),max(µ1, µ̂1(t))]). This decision of choosing which arm to pull in action (i, j)

when empirical estimate of arm j is used as the reference point is illustrated in Fig. 1.

We call the decision to pull arm i or j using µ̂j(t) as a reference point is called the reference point decision, and

the regret it introduces as reference point regret. We denote the cumulative regret incurred until round T due to the

reference point error as Rref(T ).

UCB-naive-probe algorithm: Before presenting the UCBP Algorithm, we present a naive UCB-based algorithm

that will serve as baseline. In this algorithm, as will be seen, the reference point is also a part of the decision

process, so we define actions different than the UCBP algorithm and treat each action triple as a super arm where

actions of the form a = (i, j, dl) ∈ AN , i ∈ [K], j ∈ [K] \ {i} denote that the probe arm is arm i, the backup arm

is arm j, and the reference point is dl. AN denotes the action set for this algorithm. Clearly, for the set of super

arms to be countable, we need to have countably many reference point values; i.e., the UCB-naive-probe algorithm

can only be used when the reward distributions of the arms are discrete. To this end, we assume that the rewards

of the arms are distributed over a discrete support D in [0, 1], and assume that dl ∈ D, are the elements of this

discrete support (excluding the smallest one) where 2 ≤ l ≤ |D|. The actions a = (i, ∅, ∅), i ∈ [K] denote pulling

arm i. We use regular UCB indices for all super arms, and the arm with the highest UCB index is pulled each

round. When a super arm (i, j, dl) is selected for probing, and ri(t) is observed through probe, arm i is pulled if
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TABLE III

COMPARISON OF OUR WORK WITH PRIOR WORK ON BANDITS WITH PROBES

Work Probe Model Reward Distr. Regret Defn.

[28]
Can probe multiple arms, can pull any

arm, c ≥ 0
Bernoulli Opt. policy

[29]
Probe 2 arms, pull the one with highest

reward, c = 0
Bounded Best arm

[29]
Probe 3 arms, pull the one with highest

reward, c = 0
Bounded Best arm

Our work Can probe one arm, can pull any arm, c ≥ 0 Bounded Opt. action

ri(t) ≥ dl, and j is pulled otherwise. The pseudo-code is provided in Algorithm 1. It can be seen that there are

K arms for pull action, and |D| · (K2 −K) arms for probe action, hence the gap-independent and gap-dependent

regret of this algorithm will scale with K and |D| as O(
√
|D|K2T log T ), and O(|D|K2 log T ), respectively. This

demonstrates the complexity of the problem as the action space scales with Õ(|D|K2).

Algorithm 1 UCB-naive-probe

1: Initialize: Na = 0, a ∈ A

2: Sample each super arm once

3: for each round t do

4: at = (it, jt, d(t)) = argmaxa∈A Ua(t)

5: if jt = ∅ then

6: Pull arm it, get r(t) = rt(it)

7: else

8: Probe arm it, observe reward rt(it)

9: if rt(it) ≥ d(t) then

10: Pull arm it, get r(t) = rt(it)− c

11: else

12: Pull arm jt, get r(t) = rt(jt)− c

13: end if

14: end if

15: Update UCB indices and mean estimates

16: end for

The main goal of our paper is to decrease this dependency of regret on K and |D| from Õ(|D|K2) to Õ(K) by

utilizing the probe and backup arm selection of the optimal strategy during probing. Our algorithm that achieves

this reduction in regret is presented in §IV.

III. RELATED WORKS

Bandits with Probes: To highlight the novelty in our work, we present prior work on bandits with probes that

are similar to our problem setting. To our knowledge, probes were first studied in the setting of bandits with expert

advice in [17], where there are multiple experts and after pulling an arm, the agent can observe the reward of any

subset of arms by paying cost c for each observed arm. In [16], there is a limit on the number of queries allowed.

In [30], advice-efficient multiarmed bandits with experts are studied where only a limited number of experts can be

used at each round. Recently, the bandit with probes problem for Bernoulli reward distribution is considered in [28],
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where an unlimited number of probes are allowed per round, but each probe has a cost. They propose an algorithm

that achieves O(K2 log T ) gap-dependent regret by utilizing a strategy that orders arms from highest UCB value to

lowest, and probes arms in this order until observing an arm with a reward of ′1′. In our work, while we allow only

one probe, we consider a more general bounded reward distribution which requires a more intricate strategy, and we

achieve O(K log T ) regret instead of O(K2 log T ). In [29], two different probing models are studied for probes

without cost. In the first model, two arms are probed at each round, the probe reveals the arm with the higher

reward, and that arm must be pulled. A UCB-based algorithm is proposed that treats the selection of two arms as a

super arm. The regret is defined as RT = T · µ∗ − E[
∑T

t=1 r(t)] where µ∗ is the mean reward of the base arm

with the highest mean reward and r(t) is the reward obtained by the algorithm at round t. Note that this reward is

not defined based on the reward of the optimal super arm. O(K2 log T ) gap-independent regret is achieved under

this definition, compared to the O(
√
KT ) for the standard UCB algorithm. However, this result follows mainly

due to the regret definition, since it is even possible to achieve negative regret with this definition as max(ri, rj),

the reward of super arm (i, j), can be larger than µ∗. In the second model, three arms are probed each round to

observe their rewards, and one of the probed arms is pulled. The provided algorithm achieves O(K2) regret with

same regret definition. In this paper, we consider a similar scenario where it is allowed to probe at most one arm,

but we allow any arm to be pulled after probing. We also define our regret based on the optimal action. Comparison

of our work with prior work is summarized in Table III.

Probes in Wireless Communications: While there are numerous prior work on probing in wireless communication

systems [13], [31]–[33], one notable study related to our work is [25]. In this work, a wireless system is considered

where each channel j is associated with a reward of transmission, Xj , whose distribution is known a priori. It

is allowed to probe multiple channels to reveal its reward before selecting a channel, but there is a cost for each

probe. Since the subsequent probing decisions depend on the outcome of probes, computing the optimal decision is

nontrivial, and two different algorithms are proposed. The main difference of [25] from our work is that the reward

distributions of the arms are unknown in our setting.

Combinatorial Bandits: Combinatorial bandits is an extension of the standard bandit framework where the action

that can be taken in each round is composed of a combination of different base arms satisfying certain constraints,

generally referred to as a super arm [34], [35]. Since the number of possible actions can be as high as the number of

subsets of the arm set, estimating the optimal action in each round can be computationally challenging. To overcome

this, assumptions like the existence of an oracle that can efficiently approximate the optimal action [36], the linearity

of the rewards of super arms over the set of arms [37], or additional constraints that can reduce the size of the

action set are commonly used [38]. Once the agent takes an action, a reward is received which is a function of the

rewards of the base arms that compose the chosen super arm. There are two distinct categories of combinatorial

bandits based on the feedback received. In semi-bandit feedback, both the received reward, and the rewards of the

individual base arms that comprise the super arm are observed. In bandit feedback, only the received reward is

observed. Our work can be considered a special form of combinatorial semi-bandits based on our reward function

and feedback model. In the semi-bandit literature, many different reward functions are studied, including linear [39],

nonlinear [34], and some more distinct reward functions such as receiving the maximum reward of the selected
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arms and also observing which arm produces this max reward [40]. Our setting is also similar to this maximum

reward feedback. In our setting, we can choose an action that consists of one arm as in (i, ∅) or two arms as in

(i, j). If a probing action (i, j) is selected, we first observe the reward of arm i, then pull arm i if ri(t) > µ̂j(t),

and pull the backup arm j otherwise. Since we choose which arm to pull after the intermediate observation (after

only observing arm i and not arm j), this introduces uncertainty in our setting as we might not be able to pull the

arm with the highest reward in a round. Hence, our reward model can be considered a special case of the max

reward function that includes this uncertainty.

Combinatorial Bandits and Probabilistic Triggering: Probabilistic triggering of arms is a special feedback

model where when an action is played, a random subset of arms is triggered according to a triggering probability

distribution [41]. The observed reward depends both on the set of arms in the chosen action, and the set of arms that

are triggered. To aid in theoretical analysis, p∗ is defined as the minimum positive probability that an arm is triggered

by any action. It is shown in [41, Theorem 3] that the regret lower bound scales with the factor 1
p∗ for the general

combinatorial bandits with probabilistically triggered arms, which shows that the regret bounds scale with the factor
1
p∗ when rewards of some arms in the chosen action are partially observed (observed only when that arm is triggered).

Another variable used to analyze probabilistic triggering is pi, which is the triggering probability of arm i. In [42],

a gap-dependent regret upper bound of O(
∑

i log T/(pi∆i)) is derived for a combinatorial Thompson sampling

based algorithm. To remove the dependency of regret on such factors, the triggering probability modulated bounded

smoothness assumption is used in [41]. The main idea behind this assumption is that when an arm is unlikely to be

triggered by an action, the importance of that arm also diminishes, and changing that arm’s expected mean can only

cause a small change in the expected reward of an action. Using this assumption, they prove regret bounds that

do not depend on p∗; but do depend on B, the bounded smoothness constant, for combinatorial bandit problems

that satisfy this assumption. This assumption is used in many other work, such as in [43] where a combinatorial

Thompson sampling algorithm with regret bounds that do not depend on triggering probabilities is provided. Our

work is similar to this setting as we also have partial observability, or probabilistic triggering of the rewards due

to the possibility of having a low probability of observing the reward of the backup arm, which is described in

more detail in Assumption 1. Different from this work, we cannot use the triggering probability modulated bounded

smoothness assumption in our work, as observing an arm depends on the choice of the algorithm in our setting,

and hence triggering probabilities of arms cannot be expressed as constant values. As a result of this, as will be

described in more detail in §IV, we assume that the probability of observing the backup arm is at least ϵ, and our

regret upper bounds scale with the 1/ϵ factor.

Cascading Bandits and Probabilistic Triggering: It is an extension of the combinatorial bandit framework

where a list of items from an item pool is recommended to a user. The user observes the items in the order of

the list and picks the first attractive item. This model presents additional challenges on analysis as the feedback is

received only for the first attractive item and the items before it in the list which is referred to as the probabilistic

triggering or the partial observability of the rewards. In [44], the amount of available feedback at each step is

probabilistically estimated to overcome this challenge. In [45], a minimum probability of observing the rewards of

all the items in the list, p∗, is assumed to help with the theoretical analysis. The given regret bounds scale with
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1
f∗ , where f∗ is a function that depends on p∗. However, it was shown later in [41, Lemma 1] that this cascading

bandit problem already satisfies the triggering probability modulated bounded smoothness assumption and that

the 1
f∗ factor in the regret upper bound is not needed. This is due to being able to express the expected rewards

of actions using triggering probabilities. In [46], a Thompson Sampling based algorithm with a regret bound of

O
(
K log T/∆+K/∆2

)
is provided. This bound is achieved through a regret analysis that decomposes the regret in

terms of the number of observations of the suboptimal items by using the properties of the reward in the cascading

bandit setting.

Online Learning: In the classical online learning problem, an agent chooses an action, the loss function at that

round is revealed, and the evaluation of the loss at the chosen action is incurred as regret. In [15], label efficient

prediction with expert advice is studied, in which, the forecaster, after guessing the next element of the sequence,

can only ask to observe its true value for a limited number of times. In [47], there are hints in an online linear

optimization problem which are correlated with the cost function. An algorithm that achieves O(log T ) regret with

O(
√
T ) hints is given.

Stochastic Probing: It is a problem where the distributions of a set of elements are known, but not the actual

outcomes, and the aim is to maximize the expected utility by probing under certain constraints. This problem has

applications such as database query optimization [48], radar systems [49], and Bayesian auctions [14]. In Pandora’s

problem, each probe has a cost, and the goal is to maximize the largest observed value minus the probing costs.

While this problem was formulated and solved in [50], different settings of it are widely studied [51]–[53].

IV. THE UCBP ALGORITHM

We propose an algorithm called Upper Confidence Bound with Probes (UCBP) that utilizes the structure of the

action set and expected rewards to minimize the regret using the UCB strategy. In UCB [2], at each round t, the

arm with the highest UCB index Ui(t) is pulled, i.e.,

i(t) = argmax
i
Ui(t), Ui(t) = µ̂i(t) +

√
2 log t

Ni(t)

where µ̂i(t) is the empirical mean reward of arm i, i(t) is the arm that is pulled in round t, and Ni(t) is the number

of times arm i is pulled until round t. The first term in Ui(t), µ̂i(t) is to exploit the best performing arm, and the

second term, also referred to as the exploration bonus, is used to explore other arms since it allows the algorithm

pull the arms that have not been pulled too much. With this formulation, UCB algorithm balances exploration and

exploitation to achieve optimal regret. We use similar ideas in our UCBP algorithm by appropriately defining the

mean arm rewards and the exploration bonuses. The UCBP algorithm works as follows. At each round t, first, the

empirical mean rewards of arms are determined using

µ̂i(t) =

t−1∑
τ=1

ri(τ)1{i ∈ S(τ)}
Ni(t)

where S(t) denotes the set of arms whose reward is observed (by either pulling or probing) in round t and Ni(t)

denotes the number of times arm i is observed by round t. The UCB indexes for each arm i are computed as

Ui(t) = µ̂i(t) + C(i,∅)(t)
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where C(i,∅)(t) =
√
2 log(t)/Ni(t). Then, the probe UCB indexes are evaluated for probing actions by using

Pi,j(t) = ν̂(i,j)(t) + C(i,j)(t), where

ν̂(i,j)(t) =

t−1∑
τ=1

max(ri(τ), µ̂j(t))1{i ∈ S(τ)}
Ni(t)

− c, and

C(i,j)(t) =

√
2 log(t)

Nj(t)
+

√
2 log(t)

Ni(t)
.

Here ν̂(i,j) represents the empirical mean reward of action (i, j), and C(i,j)(t) is the exploration bonus associated

with action (i, j). The pseudo-code is provided in Algorithm 2. The derivation of the exploration bonuses is in §B.

Lastly, the UCB indexes of the actions Ui(t), ∀i ∈ [K]; and Pa(t), ∀a ∈ A \ [K] are compared and the one with

highest UCB index is chosen. If this action is probing, i.e. a = (i, j), arm i is probed to observe ri(t), then arm i

is pulled if ri(t) > µ̂j(t), and arm j otherwise.

Algorithm 2 UCBP

1: Input: cost of probing c, action set A

2: Initialize: Ni = 0, 1 ≤ i ≤ K

3: Sample each base arm once

4: for each round t do

5: i∗t = argmaxi Ui(t)

6: at = (jt, kt) = argmaxa∈Ap
Pa(t)

7: if Ui∗t
(t) > Pat

(t) then

8: Pull arm i∗t , get r(t) = rt(i
∗
t )

9: else

10: Probe arm jt, observe reward rt(jt)

11: if rt(jt) > µ̂kt
(t) then

12: Pull arm jt, get r(t) = rt(jt)− c

13: else

14: Pull arm kt, get r(t) = rt(kt)− c

15: end if

16: end if

17: Update UCB indices for all arms

18: end for

A. Analysis of UCBP

We now characterize the performance of the UCBP algorithm by providing theoretical upper and lower bounds

on the expected cumulative regret. We first state a mild assumption on the reward distributions of the arms that

are required for the theoretical analysis. We refer the readers to the Appendix for detailed proofs of the results

presented in this section.

Assumption 1. For each Γi and Γj , i, j ∈ [K], i ̸= j, we have P(ri ≤ µj) ≥ ϵ for some ϵ > 0.

Assumption 1 ensures the backup arm is pulled at least ϵ fraction of the time in expectation when action (i, j)

is chosen. This assumption is needed in our setting, since if for some arm j ∈ [K] the gap of actions (j, ·) and

(j, ∅) are much larger than the gap of the actions (·, j); then the algorithm will mostly choose actions of the form

(·, j), meaning arm j will only be selected as the backup arm, which might not produce enough samples for arm j

without this assumption. This assumption is similar to p∗ in combinatorial bandits with probabilistically triggered

arms, where the p∗ defined as the minimum positive probability that an arm is triggered by any action [41]. In this
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work, the triggering probability modulated bounded smoothness assumption is used to remove the dependency of

the regret bounds on p∗. The main idea behind this assumption is that when an arm is unlikely to be triggered by

an action, the importance of that arm also diminishes, and changing that arm’s expected mean can only cause a

small change in the expected reward of an action. Using this assumption, regret bounds that do not depend on p∗,

but do depend on B, the bounded smoothness constant, are proved for combinatorial bandit problems that satisfy

this assumption. However, they also prove in [41, Theorem 3] that for the general combinatorial bandit settings that

do not necessarily satisfy this assumption, the regret lower bound scales with the factor 1
p∗ , demonstrating that the

1
p∗ factor in regret bound cannot be avoided without making additional assumptions. In our setting, this triggering

probability modulated bounded smoothness assumption cannot be used, as observing the backup arm in a probe

action is not an event with a constant probability, but rather a choice of the algorithm that depends on the reward

distribution of the probe arm, and on the estimated mean of the backup arm. As a result of this, our regret bounds

scale with the 1
ϵ factor.

B. Gap-independent Expected Regret Upper Bound

Theorem IV.1 (Gap-independent Expected Regret Upper Bound). Under Assumption 1, when UCBP is run on the

action set A and the cost of probing is c ≥ 0, its cumulative expected regret is upper bounded as

RT ≤
8
√
KT log T

ϵ
+Rref(T ) +

5π2K

3
+K

where Rref(T ) is the reference point regret.

In Lemma IV.4, we show that Rref(T ) = O(
√
KT log T ), which together with Theorem IV.1 shows that the

gap-independent regret of UCBP is O(
√
KT log T ).

Proof. Since we incur regret whenever a suboptimal action is taken, or when the decision to pull the probe arm or

the backup arm after observing the outcome of the probe is incorrect, we upper bound the expected number of

times each suboptimal action or decision is chosen by the UCBP Algorithm. The proof follows some of the steps in

the proof of Lemma 1 in [54], and Lemma A.2 in [55].

Since regret incurred from the reference point error when an action involving probing is chosen is additive to the

regret from the suboptimality of the chosen action, letting Ba(t) denote the event that the decision to pull the probe

or backup arm is correct, i.e. Ba(t) = 1{râ(t) = ra(t)}, the empirical regret can be decomposed as

R̂T =

T∑
t=K+1

∑
a∈A

[
1{a(t) = a,Ba(t)} · (ν∗ − νa(t)(t)) + 1{a(t) = a,Bca(t)} · (ν∗ − νa(t)(t) + da(t))

]
+K

The summation in time starts from t = K + 1 due to the UCBP algorithm sampling each arm once in the first K

rounds, and this can contribute at most K to regret since the rewards are bounded. Expected regret can be obtained

by taking the expectation of this expression
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RT = E

[
T∑

t=K+1

∑
a∈A

[
1{a(t) = a,Ba(t)} · (ν∗ − νa(t)(t)) + 1{a(t) = a,Bca(t)} · (ν∗ − νa(t)(t) + da(t))

]]
+K

= E

[
T∑

t=K+1

∑
a∈A

[
1{a(t) = a} · (ν∗ − νa(t)(t)) + 1{a(t) = a,Bca(t)} · da(t)

]]
+K

Define the following events

Et := {|µ̂i(t)− µi| ≤ C(i,∅)(t) ∧ |ν̂(i,j)(t)− ν(i,j)| ≤ C(i,j)(t), ∀i, j ∈ [K], i ̸= j}, and

E(T ) :=
T⋂

t=K+1

Et

where Et is the event that all confidence intervals hold in round t, and E(T ) is the event that all confidence

intervals hold for all rounds K + 1 ≤ t ≤ T . Regret can be decomposed based on this event E(T ) as:

RT ≤ E

[
T∑

t=K+1

∑
a∈A

[
1{a(t) = a} · (ν∗ − νa(t)(t)) + 1{a(t) = a} · da(t)

] ∣∣∣E(T )]+ T∑
t=K+1

P(Ec1(t)) +K

Define

Ra(T ) := E

[
T∑

t=K+1

∑
a∈A

1{a(t) = a} · (ν∗ − νa(t)(t))
∣∣∣E(T )] = E

[
T∑

t=K+1

Rt(a)
∣∣∣E(T )]

Rref(T ) := E

[
T∑

t=K+1

∑
a∈A

1{a(t) = a} · da(t)
∣∣∣E(T )]

where Rt(a) :=
∑

a∈A 1{a(t) = a} · (ν∗ − νa(t)(t)) is the regret of choosing action a(t) at round t (without

the reference point error) under the event that the confidence intervals hold. Rref(T ) denotes the cumulative regret

incurred from reference point error until round T , and Ra(T ) denotes the cumulative regret incurred until round T

from suboptimal action choices (without the reference point error). We start by upper bounding Rt(a). For this, the

regret in round t can be written in terms of the upper confidence bound as:

ν∗ − νa(t)(t) = ν∗ − Ua(t)(t) + Ua(t)(t)− νa(t)(t) ≤ (ν∗ − Ua∗(t)) + Ua(t)(t)− νa(t)(t)

where the inequality Ua(t)(t) ≥ Ua∗(t) holds since the UCBP algorithm selects the action with the highest UCB

index. Under the event E(T ), we have that ν∗ ≤ Ua∗(t). Hence, under E(T ), it holds that

ν∗ − νa(t)(t) ≤ Ua(t)(t)− νa(t)(t) ≤ Ua(t)(t)− La(t)(t) ≤ 2Ca(t)

It can be seen that Ca(t) =
∑

i∈a(t) C(i,∅)(t) since if a(t) = (i, j), C(i,j)(t) = C(i,∅)(t) + C(j,∅)(t); and if

a(t) = (i, ∅), Ca(t) = C(i,∅)(t).

Define o(t) ⊂ a(t) as the set of arms whose reward is observed in round t; and Ht = (a(1), r(1), o(1), · · · , a(t−

1), r(t− 1), o(t− 1), a(1)) as the history of UCBP up to choosing action a(t), and let E[·|Ht] be the conditional

expectation given this history. Also let pi(a(t), t) denote the conditional probability of observing the reward of arm
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i at round t when the chosen action is a(t) given Ht. Following the analysis in [55], regret can be decomposed in

the following way if the upper confidence bounds hold:

Ra(T ) = E

[
T∑

t=K+1

Rt(a)

∣∣∣∣E(T )
]

= E

[
T∑

t=K+1

E[Rt(a)|Ht]

∣∣∣∣E(T )
]

(2)

≤ E

 T∑
t=K+1

E

 ∑
i∈a(t)

2C(i,∅)(t)|Ht

 ∣∣∣∣E(T )


= E

 T∑
t=K+1

E

 ∑
i∈a(t)

2C(i,∅)(t) · E
[
1{i ∈ o(t)}
pi(a(t), t)

|Ht

]
|Ht

 ∣∣∣∣E(T )
 (3)

≤ 2

ϵ
· E

 T∑
t=K+1

E

 ∑
i∈a(t)

C(i,∅)(t)1{i ∈ o(t)}|Ht

 ∣∣∣∣E(T )
 (4)

≤ 2

ϵ
· E

 T∑
t=K+1

E

 ∑
i∈a(t)

√
2 log t

Ni(t)
1{i ∈ o(t)}|Ht

 ∣∣∣∣E(T )


=
2
√
2 log T

ϵ
· E

[
T∑

t=K+1

E

[
K∑
i=1

√
1

Ni(t)
1{i ∈ o(t)}|Ht

] ∣∣∣∣E(T )
]

≤ 2
√
2 log T

ϵ
· E

 K∑
i=1

Ni(T )∑
x=1

√
1

x

 (5)

≤ 4
√
2 log T

ϵ
· E

[
K∑
i=1

√
Ni(T )

]

≤ 4
√
2 log T

ϵ
· E


√√√√K

K∑
i=1

Ni(T )

 (6)

≤ 8
√
KT log T

ϵ
(7)

Eq. (2) is due to the tower rule. In Eq. (3) we used the fact that given Ht, the probability of 1{i ∈ o(t)} is

pi(a(t), t). In Eq. (4), we used pi(a(t), t) ≥ ϵ; in Eq. (5), we used the fact that the summation of the confidence

intervals of a base arm i from round t = K + 1 to T can be expressed using the total number of times the arm is

sampled to remove the dependency on individual rounds where the arm is sampled. Cauchy-Schwarz inequality is

used to obtain Eq. (6); and for Eq. (7), the fact that T ≤
∑K

i=1Ni(T ) ≤ 2T is used.

It can be seen from Lemma IV.2 that,
T∑

t=K+1

P(Ec1(t)) ≤
5π2K

3
.

Combining this with (7), it can be concluded that:

RT =Ra(T )+Rref(T ) +K2 ≤ 8
√
KT log T

ϵ
+Rref(T ) +

5π2K

3
+K
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Also, using the fact that Rref(T ) ≤ 2
√
2KT log T

ϵ from Lemma D.2, it can also be seen that

RT =Ra(T )+Rref(T ) +K2 ≤ (8+2
√
2)
√
KT log T

ϵ
+

5π2K

3
+K

Lemma IV.2. The expected number of times the event E(T ) does not happen can be upper bounded as
T∑

t=K+1

P[Ec1(t)] ≤
5π2K

3

Proof. Through a union bound over all the probabilities of each upper confidence bound not holding, we have that
T∑

t=K+1

P[Ec1(t)] ≤
K∑
i=1

T∑
t=K+1

2t−3 +

K∑
i=1

T∑
t=K+1

4t−3 +

K∑
i=1

T∑
t=K+1

4t−3 (8)

= 10K

T∑
t=K+1

t−3 ≤ 5π2K

3
(9)

where for i ∈ [K], the first summation term in the right side of (8) is for the exploration bonus of µ̂i(t), the second

term is for the exploration bonus of ν̂(i,1)(t) and the last term is for the exploration bonus of ν̂(1,i)(t). Note that in

(9), we used the fact that
∑∞

n=1
1
n2 = π2

6 to upper bound the summation.

C. Gap-dependent Expected Regret Upper Bound

Theorem IV.3 (Gap-dependent Expected Regret Upper Bound). Under Assumption 1, when UCBP is run on the

action set A and the cost of probing is c ≥ 0, its expected cumulative regret is upper bounded as

RT ≤
K∑
i=1

16 log T

δi
+Rref(T ) +

5π2K

3
+K, where

δi =


ρi if a∗ = (i, ∅)
2min(ρi,∆(i,∅))

3 if ρi

2 ≤ ∆(i,∅) ≤ 2ρi

ϵ

min(ρi,∆(i,∅)) otherwise

and ρi = mina∈Ap,i\{a∗}
(
ϵ∆a

4

)
.

Note that the cost of probing c is included in the gap of actions. In Lemma IV.4, we show that the reference

point regret is Rref(T ) = O(K log T ) when the reward distributions are discrete. Together with Theorem IV.3, this

shows that the gap-dependent regret of UCBP is O(K log T ) when the reward distribution is discrete.

Proof Sketch. The proof follows some of the steps in the proof of Theorem 3 in [56]. The key idea is to use

the event Gt = {a(t) ∈ Ap, at least one of the base arms in a(t) was observed at most 32 log t
∆2

a(t)

times} to upper

bound the number of times actions a ∈ Ap can happen, as it can be seen that the probing action a(t) can only be

chosen when Gt happens. The upper bound on the number of times actions a ∈ As can happen is obtained from the

analysis of the standard UCB algorithm. Combining these upper bounds for all a ∈ A while also considering that

probe actions provide samples from both base arms with at least ϵ probability, we derive an upper bound on the
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number of times each base arm is sampled. The result follows by upper bounding the regret when we consider the

worst case the samples for the base arms can be obtained (when we assume samples of the base arms are obtained

from possible actions with highest gap). The detailed proof is in Appendix C.

We now provide upper bounds on reference point regret, which is incurred since the algorithm does not have

information on the true means, and only uses the estimated means in the reference point decision. We show that

for arbitrary reward distributions, Rref(T ) = O(
√
KT log T ), while tighter upper bounds can be established with

additional assumptions on reward distributions.

Lemma IV.4. a) Regret due to the reference point error can be upper bounded as:

Rref(T ) ≤
2
√
2KT log T

ϵ

b) If the distributions Γi for each i ∈ [K] are defined over a discrete support D in [0, 1], then Rref(T ) is upper

bounded as Rref(T ) ≤
∑K

i=1
4 log T
ϵγi

where we use dl ∈ D, 1 ≤ l ≤ |D| to denote the elements of the set D; and

we let γi := minl |dl − µi| if µi ̸∈ D, and γi := |dl − dl+1| if µi ∈ D . It can be seen that γi > 0 always holds.

Under this assumption, it can be seen that the gap-dependent regret upper bound is O(K log T ). Proof for these

results is given in Appendix D.

Theorem IV.5 (Lower Bound on Expected Regret). For the multi-armed bandit setting with costly probes where the

optimal action is unique, the lower bound on the expected cumulative regret for any uniformly good algorithm, as

defined in [1], is:

lim inf
T→∞

RT

log T
≥ C(Γ),

where C(Γ) is the minimal value of the following linear optimization problem:

min
ba≥0, ∀a∈A\{a∗}

∑
a∈A\{a∗}

ba∆a s.t. ∀i ∈ [K],
∑

a∈Ai,a ̸=a∗

ba ≥
[

min
a∈Ai,a ̸=a∗

{DKL(Γa||Γ∗)}
]−1

where Ai = {(i, j) : j ∈ ([K] ∪ {∅}) \ {i}} ∪ {(j, i) : j ∈ [K] \ {i}}, Γ(i,∅) = Γi, Γ(i,j) = max(ri, µj)− c is the

distribution function of action (i, j) for i ̸= j, Γ∗ is the distribution function of the optimal action, and DKL(·||·)

is the Kullback–Leibler divergence.

Proof of this result is given in Appendix E. It can be seen that the lower bound on regret of UCBP is Ω(K log T )

since C(Γ) is Ω(K). Since the upper bound on expected regret is also O(K log T ) under discrete rewards in

Theorem IV.3, excluding the ϵ term, we can conclude that the gap-dependent upper bound of the UCBP algorithm

is order-wise optimal.

Corollary IV.6. If the rewards of the arms are distributed over the discrete support D, when UCB-naive-probe is

run on A and the cost of probing is c ≥ 0, the gap-independent upper bound for the expected regret, denoted as

RU (T ), is:

RU (T ) ≤ 4
√
2|D|K2T log T +

π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

= O(
√
|D|K2T log T ) +O(1)
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Fig. 2. Plots of the cumulative empirical regret of the UCBP, TSP and UCB-naive-probe algorithms for recommending the best genre in the

MOVIELENS dataset.

Corollary IV.7. If the rewards of the arms are distributed over the discrete support D, the gap-dependent upper

bound for RU (T ) is:

RU (T ) ≤
∑

a∈AN\{u∗}

8 log T

∆a
+ |D|K2 +

π2[(|D| − 1)(K2 −K) +K]

3

= O(|D|K2 log T ) +O(1)

where ∆(i,∅,∅) = ∆i, ∆(i,j,dl) = c+ ν∗ −E [ri · 1{ri ≥ dl}+ µj · 1{ri < dl}], and u∗ is the optimal action in this

setting.

The proofs of both Corollary IV.6 and IV.7 are provided in Appendix F.

D. Discussion of the Results

To our knowledge, this work is the first to consider a multi-armed bandit setting with arbitrary bounded reward

distributions where before pulling an arm, the agent is allowed to probe one arm to observe its reward for a cost

c ≥ 0. This is a complex problem setting different from most previous bandit formulations both due to the large

action space of K2 actions, and the possibility of still incurring regret due to the reference point error even when

the chosen action is optimal. Further, the use of a stronger regret benchmark that uses the optimal action rather than

µ∗ makes the analysis rather intricate.

Compared to UCB-naive-probe, and to the prior work for slightly different settings whose regrets scale with

Õ(K2) on the number of arms, the regret of UCBP scales with Õ(K) since UCBP narrows down the action space

by utilizing the structure of the problem. Due to the partial observability of the backup arm, we incur an additional

1/ϵ term in regret, but this is in line with the lower bound given in [41, Theorem 3]. UCB-naive-probe, on the other

hand, incurs additional D term in regret as the reference point value affects the mean reward of a super arm. We

would like to note that we assume cost of probing c as a constant for simplicity of the theoretic analysis, but this

work can easily be extended to the setting where c is time dependent or cost of probing is different for each arm.

E. Simulations

We now evaluate the performance of the proposed UCBP Algorithm in a real world setting. Since to our knowledge,

there are no other bandit algorithms for our specific problem setting, we compare our results with the results from

the UCB-naive-probe algorithm which we introduced as a baseline in §II; and with TSP, the Thompson Sampling
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Algorithm 3 TSP

1: Input: cost of probing c, action set A, exploration

parameter β

2: Initialize: Ni = 0, 1 ≤ i ≤ K

3: Sample each base arm once

4: for each round t do

5: Sample θi(t) ∼ N
(
µ̂i(t),

β
Ni(t)

)
6: i∗t ← argmaxj θj(t)

7: i∗∗t ← argmaxj ̸=i∗t
θj(t)

8: γi(t) ∼ N
(
ψ̂(i,i∗t )

(t), β
Ni(t)

+ β
Ni∗t

(t)

)
, ∀i ̸= i∗t

9: γi∗t (t) ∼ N
(
ψ̂(i∗t ,i

∗∗
t )(t),

β
Ni∗(t)(t)

+ β
Ni∗∗t

(t)

)
10: j∗t = argmaxi∈[K] γi(t)

11: kt = i∗t if j∗t ̸= i∗t , else kt = i∗∗t

12: if θi∗t (t) > γj∗t (t) then

13: Pull arm i∗t , get r(t) = rt(i
∗
t )

14: else

15: Probe arm j∗t , observe reward rt(j∗t )

16: if rt(j∗t ) > µ̂kt(t) then

17: Pull arm j∗t , get r(t) = rt(j
∗
t )− c

18: else

19: Pull arm kt, get r(t) = rt(kt)− c

20: end if

21: end if

22: Update µ̂i(t), and Ni(t) = Ni(t− 1) + 1 for all

observed arms i ∈ o(t)

23: end for
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Fig. 3. Plots of the cumulative empirical regret of the UCBP and UCB-naive-probe algorithms for recommending the best item in the Open

Bandit dataset.

based version of UCBP. The TSP algorithm operates as follows. First, samples θi(t) for mean arm rewards are

generated for base arms using a Gaussian distribution with mean µ̂i(t) and variance β
Ni(t)

, where β > 1 is the

exploration parameter. To estimate the mean probe reward, the backup arm will either be i∗t = argmaxj θj(t)

or i∗∗t = argmaxj ̸=i∗t
θj(t) depending on the probe arm. Note that this step is not done explicitly in the UCBP

algorithm as the backup arm for the probing action with the highest UCB value is already either the base arm with

highest or second highest UCB value. After this step, the mean probe reward for action (i, j) can be calculated

using these samples as

ψ̂(i,j)(t) =

t−1∑
τ=1

max(ri(τ), θj(t))1{i ∈ S(τ)}
Ni(t)

− c.

We generate samples for the mean probe action reward using a Gaussian distribution with mean ψ̂(i,i∗t )
(t) and variance

β
Ni(t)

+ β
Ni∗t

(t) for i ̸= i∗t , and using a Gaussian distribution with mean ψ̂(i∗t ,i
∗∗
t )(t) and variance β

Ni∗ (t)
+ β

Ni∗∗t
(t) for

i ̸= i∗t when the probe arm is i∗t . The action that has the largest sample value is chosen. If this action is probing, i.e.

a = (i, j), similar to the UCBP algorithm, arm i is probed to observe ri(t), then arm i is pulled if ri(t) > µ̂j(t), and

arm j otherwise. The pseudo-code of TSP is provided in Algorithm 3. The simulation results of UCB-naive-probe,
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UCBP, and TSP are provided below for the MOVIELENS and the Open Bandit datasets.

The MOVIELENS Dataset: The MOVIELENS dataset contains a total of 1M ratings on a total of 3883 movies,

where a total of 6040 users rated the movies on a scale of 1 to 5 [57]. Using this dataset, we aim to provide the

best genre recommendations to a population with an unknown demographic. To fit each movie into one genre, we

pick one genre uniformly at random from the genres associated with each movie. We model each genre as an arm,

where there are K = 18 arms, and the reward of an arm is obtained by sampling the rating of one of the users for a

movie in that genre, chosen uniformly at random. The rewards of the arms are normalized to be between [0, 1], and

the average reward of the best arm is around 0.7925. Our experimental results for this setting are shown in Figure

2, where we plot the cumulative regret averaged over 100 independent trials for 500, 000 rounds when the cost of

probing is c = 0 (Left), c = 0.075 (Middle) and c = 0.25 (Right). The shaded area represents error bars with one

standard deviation. It can be seen that both algorithms have a logarithmic regret curve, and both the UCBP and the

TSP algorithm outperforms the baseline UCB-naive-probe algorithm. Comparing UCBP and TSP, it can be seen that

both have very similar regret curves. UCBP performs slightly better than TSP when c = 0 and c = 0.075; and TSP

performs slightly better than UCBP when c = 0.25. While Thompson Sampling based algorithms are known to

perform better empirically than UCB based algorithms in general, it was shown in [58] that Thompson Sampling

might perform suboptimally in combinatorial bandits or in settings with high dimensions; hence these results are not

unexpected.

The Open Bandit Dataset: Open Bandit Dataset is a public real-world logged bandit dataset provided by ZOZO,

Inc., the largest fashion e-commerce company in Japan [59]. The dataset includes data from three different campaigns,

and we selected the campaign from “Men’s” items which contains a total of 4, 077, 727 data points showing whether

the user clicked on the item or not when an item is recommended in one of the three positions, left, middle, or

right. To make the clicks independent from the position, we only select the 1, 358, 878 data points recommended

in the left position. We model each item as an arm, there are K = 34 arms in total, and the rewards are binary

indicating whether the user clicked on the item. The average reward of the best arm is around 0.0087. The goal is

to recommend the best item to a cold (new) user. Our experimental results for this setting are shown in Figure 3,

where we plot the cumulative regret averaged over 100 independent trials for 2, 000, 000 rounds when the cost of

probing an arm is c = 0 (Left), c = 0.005 (Middle) and c = 0.01 (Right). The shaded area represents error bars

with one standard deviation. Again it can be seen that both algorithms have a logarithmic regret curve, and both the

UCBP and the TSP algorithm outperforms the baseline UCB-naive-probe algorithm. This validates the usefulness of

UCBP in practical settings.

V. EXTENSION TO MULTIPLE PROBES

One natural extension of our work is allowing multiple probes. Since the multiple probe setting is a much more

complicated problem, here we study it only for Bernoulli arm rewards, and leave the consideration of more general

bounded arm reward distributions for future work. Under Bernoulli arm rewards, the optimal strategy is to order the

arms from highest to lowest mean reward, and probe the arms in this order until obtaining a reward of 1 if the cost

to probe arms is ignored. But since probes have a cost, the optimal strategy also needs to terminate probing if the
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Algorithm 4 UCBMP

1: Input: cost of probing c, action set A

2: Initialize: Ni = 0, 1 ≤ i ≤ K

3: Sample each base arm once

4: for each round t do

5: S(t) = argsorti − Ui(t)

6: Evaluate Pi(t) values using Eq. (10)

7: s(t) = argmaxi Pi(t)

8: j ← 0

9: for i = 1 to s(t) do

10: Probe arm Si(t) , observe reward ri(t)

11: if ri(t) = 1 then

12: j ← i

13: break

14: end if

15: end for

16: If j = s(t) and rj(t) = 0, j ← K

17: Pull arm Sj(t), receive reward rj(t)

18: Update UCB indices for all observed arms

19: end for

cost of probing exceeds the expected increase in reward through probing. Hence, the optimal action will have an

upper limit on how many arms are allowed to be probed. For this end, we define Ri as the expected reward when

at most i probes are allowed. It can be seen that Ri values can be evaluated as follows:

R0 = µ1

R1 = µ1 + (1− µ1) · µ2 − c

R2 = µ1 + (1− µ1) · µ2 + (1− µ1) · (1− µ2) · µ3 − c · (2− µ1)

Ri = µ1 · (1− c) +
i+1∑
j=2

µj ·
j−1∏
k=1

(1− µk)− c ·
i−1∑
j=2

j · µj ·
j−1∏
k=1

(1− µk)− i · c ·
i−1∏
j=1

(1− µj), 3 ≤ i ≤ K − 1

Using these expected reward values, the upper limit on the number of allowed probes in the optimal action can

then be found as:

s∗ = arg max
0≤i≤K−1

Ri

The optimal action can then be represented with the tuple a∗ = (1, · · · , s∗), i.e. if s∗ ̸= 0 to probe arms from

arm 1 to arm s∗ in the given order until observing a reward of 1 and then pulling that arm. If no arm is probed or

none of the probed arms produce a reward of 1, then the arm with (s∗ + 1)th highest mean reward is pulled. The

optimal reward can be written as ν∗ = Rs∗ .

We propose an algorithm called Upper Confidence Bound with Multiple Probes (UCBMP) that utilizes this optimal

strategy to choose the optimal action. Since only the empirical mean estimates of the arms are known, UCBMP

uses the UCB upper bound of empirical arm mean rewards to determine in which order arms should be probed. For

this end, let S(t) denote the ordered K-tuple whose elements are ordered by decreasing upper confidence values of

arm rewards Ui(t). At each round t, UCBMP first constructs this K-tuple S(t), and then uses it to evaluate Pi(t),
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Fig. 4. Plots of the cumulative empirical regret of the UCBMP algorithm in a Bernoulli reward bandit setting with K = 10 arms for various

probing cost values.

the upper bound on the expected reward when at most i probes are allowed. These estimated Pi(t) values can be

found as:

P0(t) = US1(t)(t)

P1(t) = US1(t)(t) + (1− US1(t)(t)) · US2(t)(t)− c

P2(t) = US1(t)(t) + (1− US1(t)(t)) · US2(t)(t) + (1− US1(t)(t)) · (1− US2(t)(t)) · US3(t)(t)− c · (2− US1(t)(t))

Pi(t) = US1(t)(t) · (1− c) +
i+1∑
j=2

USj(t)(t) ·
j−1∏
k=1

(1− USk(t)(t))− c ·
i−1∑
j=2

j · USj(t)(t) ·
j−1∏
k=1

(1− USk(t)(t))

− i · c ·
i−1∏
j=1

(1− USj(t)(t)), 3 ≤ i ≤ K − 1

(10)

The maximum number of probes that are allowed in round t, s(t), can then be found as s(t) = argmax0≤i≤K−1 Pi(t).

Arms are probed in the order of S(t) until observing a reward of 1, and then that arm is pulled. If a reward of 1 is

not observed in s(t) probes, then arm Ss(t)+1(t) is pulled. The reward r(t) is received from the arm that is pulled.

The pseudo-code is provided in Algorithm 4.

The regret of UCBMP can be written as R(T ) = T · ν∗ −
∑T

t=1 r(t). To evaluate the performance of UCBMP in

real world applications, we ran simulations for a Bernoulli bandit setting with K = 10 arms, where their mean

reward vector is µ = [0.7, 0.69, 0.68, 0.67, 0.66, 0.65, 0.63, 0.6, 0.5, 0.4]. The simulation results for this setting for

cost values c = [0, 0.05, 0.15, 0.18, 0.2, 0.25] are provided in Fig. 4. The optimal number of probes is s∗ = 9 when

cost is 0, 0.05, 0.15, or 0.18; is s∗ = 7 when cost is 0.2; and is s∗ = 0 when c = 0.25. As can be seen from the

plots, regret of UCBMP scales sublinearly with t. While the plots can not be directly compared as the optimal

reward value changes with cost, it can still be seen that in general regret increases with cost. This is because the

number of arms that can be probed is higher when cost is low, which provides more reward observations per round.

Also note that the plot for c = 0.25 converges slower because of this effect, since the optimal action is not to make

any probes, arm reward observations are collected slower in time. The theoretical analysis of UCBMP is much

more intricate, hence we leave the regret analysis of UCBMP as future work.
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VI. CONCLUDING REMARKS

In this paper, we introduce a previously unexplored setting for the multi-armed bandit problem with probes, where

before pulling an arm, the agent is allowed to probe one arm to observe its reward, which is sampled from a bounded

distribution, for a cost c ≥ 0. We introduce a new regret definition that is based on the expected reward of the

optimal action, and we identify the optimal strategy. We provide UCBP, a novel algorithm that utilizes this strategy

to achieve a gap-independent regret upper bound that scales with O(
√
KT log T ), and a gap-dependent bound that

scales with O(K log T ) if rewards are discrete. To demonstrate the empirical performance of UCBP, we provide a

naive UCB-based approach that has a gap-independent regret upper bound on the order of O(
√
K2T log T ), and a

gap-dependent bound on the order of O(K2 log T ). We use this algorithm as a baseline in our simulations, and

simulation results corroborate the better performance of UCBP over the UCB-naive-probe algorithm, and validate

the utility of UCBP in practical settings.

Our work opens multiple directions for future research. In section V, we extend our setting to multiple probes for

each round when the reward distributions of arms are Bernoulli, and we provide the UCBMP algorithm. This can be

further extended by providing the theoretical analysis of UCBMP, and extending UCBMP to more general bounded

arm reward distributions in future work. Another interesting future direction is to extend our bandit results to the

case with imperfect probes. We believe this can be accomplished by deriving confidence intervals for the probe

reward since the upper confidence index of the probe outcome can be used to decide whether to pull the probe arm

or the backup arm. We anticipate the regret analysis for this case to be challenging since the uncertainty of the

actions with probes will induce further suboptimal actions to be taken by the algorithm. Lastly, the case where the

rewards of different arms are correlated can also be considered. In this case, the correlation between arms can be

used to predict the rewards of the other arms from the probe outcome, thereby providing more utility to the probes.
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APPENDIX A

PRELIMINARIES

Before presenting the regret analysis of the UCBP algorithm, we start by presenting some well-known properties.

Fact A.1 (Hoeffding’s Inequality). Let Z1, Z2, · · · , Zn be i.i.d. random variables bounded between ai ≤ Zi ≤ bi,

then for any δ > 0, we have

P
(∑n

i=1 Zi

n
− E[Z] ≥ δ

)
≤ e

− 2n2δ2∑t
i=1

(bi−ai)
2
.

Lemma A.2 ( [1, Theorem 2]). Consider a K-armed bandit problem with reward distributions Γ = (Γ1, · · · ,ΓK), Γ ∈

Θ where Γi, i ∈ [K] is the reward distribution of arm i. Also define Θi = {Γ : µ(Γi) > maxj ̸=i µ(Θj)} as the

parameter set where arm i is the unique optimal arm. An algorithm π ∈ Π is defined as uniformly good if for

all Γ ∈ Θi, Rπ(T ) = o(T a), for all a > 0. Let DKL(·||·) denote the Kullback-Leibler divergence. Assume that

DKL(Γ||λ), satisfies the following two conditions:

a) 0 < DKL(Γ, λ) <∞ whenever µ(λ) > µ(Γ), and

b) ∀ϵ > 0 and ∀ϵ > 0 and ∀ Σ, λ ∈ Θ such that µ(λ) > µ(Σ),∃δ = δ(ϵ,Σ, λ) > 0 for which |DKL(Γ, λ) −

DKL(Γ, λ
′
)| < ϵ whenever µ(λ) ≤ µ(λ′

) ≤ µ(λ) + δ

Also assume that Θ is such that ∀λ ∈ Θ and ∀δ > 0,∃λ′ ∈ Γ such that µ(λ) < µ(λ
′
) < µ(λ) + δ.

Let π ∈ Π be a uniformly good algorithm. Under these assumptions, for any Γ ∈ Θj , it holds that

lim inf
T→∞

Ni(T )

log T
≥ 1

DKL(Γi,Γ∗)
, ∀i ̸= j

Fact A.3 (Conditional Probabilities). The probability of an event A can be upper bounded by conditioning on an

event B as follows

P (A) = P (A,B) + P (A,Bc)

= P (A|B)P (B) + P (A|Bc)P (Bc)

≤ P (A|B) + P (Bc) .

Upper bounds of similar form are used throughout the proof.

Fact A.4. We include the following trivial bounds for the max function when b > 0, c > 0:

max(a, b+ c) ≤ max(a, b) + c

max(a, b− c) ≥ max(a, b)− c

max(a, b)± c = max(a± c, b± c) .

We also note the following inequality when a, b > 0:

E[max(ri, a)] + bP(ri < a) ≤ E[max(ri, a+ b)] ≤ E[max(ri, a)] + bP(ri ≤ a+ b) . (11)
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APPENDIX B

DERIVATION OF CONFIDENCE INTERVALS FOR PROBING ACTIONS

In this section we derive the high probability confidence intervals used in the algorithm when the arms are probed.

First, we start by recalling the upper confidence bound used in the standard UCB algorithm [2].

Ui(t) = µ̂i(t) +

√
2 log t

Ni(t)

Fact B.1. At any time t, the probability that the true mean of the reward of arm i is within its confidence interval

interval can be upper bounded with the following two inequalities:

P

(
µi − µ̂i >

√
2 log t

Ni(t)

)
≤ e−4 log t = t−3 (12)

P

(
µ̂i − µi >

√
2 log t

Ni(t)

)
≤ e−4 log t = t−3 (13)

Proof.

P

(
µi − µ̂i >

√
2 log t

Ni(t)

)
≤

t∑
Ni(t)=1

P

(
µi − µ̂i >

√
2 log t

Ni(t)

)
≤

t∑
n=1

t−4 ≤ t−3

where we used Fact A.1. The second inequality is also proved similarly.

We now derive similar upper confidence bounds for the case where the arms are probed. In particular, we will

show the following result.

Lemma B.2. For the action a = (i, j), and the confidence interval defined as C(i,j)(t) =
√

2 log t
Nj(t)

+
√

2 log t
Ni(t)

, the

probability that the empirical probing reward being outside the confidence interval can be upper bounded as:

P

(
|ν̂(i,j)(t)− ν(i,j)| ≥

√
2 log t

Nj(t)
+

√
2 log t

Ni(t)

)
≤ 4t−3

Proof. First, using (11) with a = µ̂j(t) and b =
√

2 log t
N1(t)

, along with (12) and (13), it can be seen that each of the

following occurs with probability at least 1− t−3. Note that the rather loose bounds P (ri ≤ a+ b) ≤ 1 is used

here since the actual probabilities are unknown.

E[max(ri, µj)] ≤ E[max(ri, µ̂j(t))] +

√
2 log t

Nj(t)
(14)

E[max(ri, µ̂j(t))]−

√
2 log t

Nj(t)
≤ E[max(ri, µj)] (15)

Using (A.1), each of the following holds with probability at least 1− t−3:

E[max(ri, µ̂j(t))]−

√
2 log t

Ni(t)
≤ ν̂(i,j)(t) (16)

ν̂(i,j)(t) ≤ E[max(ri, µ̂j(t))] +

√
2 log t

Ni(t)
(17)
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Combining (14) and (15) with (16) and (17), also noting that ν(i,j) = E[max(ri, µj)], it can be seen that with

probability at least 1− 2t−4, each of the following occur:

ν(i,j) −

√
2 log t

Nj(t)
−

√
2 log t

Ni(t)
≤ ν̂(i,j)(t)

ν̂(i,j)(t) ≤ ν(i,j) +

√
2 log t

Nj(t)
+

√
2 log t

Ni(t)

Hence, P
(
|ν̂(i,j)(t)− ν(i,j)| ≥

√
2 log t
Nj(t)

+
√

2 log t
Ni(t)

)
≤ 4t−3, which concludes the analysis for the upper bound

on the probability of the estimated probing reward falling outside the confidence interval.

APPENDIX C

PROOF OF THEOREM IV.3

We provide the gap-dependent regret analysis of the UCBP algorithm in this section. Since we incur regret

whenever a suboptimal action is taken, or when the decision to pull the probe arm or the backup arm after observing

the outcome of the probe is incorrect, we upper bound the expected number of times each suboptimal action or

decision is chosen by the UCBP Algorithm. The proof follows some of the steps in the proof of Theorem 3 in [56],

and the proof of Lemma A.2 in [55].

Since regret incurred from the reference point error when an action involving probing is chosen is additive to the

regret from the suboptimality of the chosen action, again letting Ba(t) denote the event that the decision to pull the

probe or backup arm is correct, i.e. Ba(t) = 1{râ(t) = ra(t)}, the empirical regret can be decomposed as

R̂T =

T∑
t=K+1

∑
a∈A

[
1{a(t) = a,Ba(t)} · (ν∗ − νa(t)(t)) + 1{a(t) = a,Bca(t)} · (ν∗ − νa(t)(t) + da(t))

]
+K

The summation in time starts from t = K + 1 due to the UCBP algorithm taking each action once in the first K

rounds, and this can contribute at most K to regret since the rewards are bounded. Expected regret can be obtained

by taking the expectation of this expression

RT = E

[
T∑

t=K+1

∑
a∈A

[
1{a(t) = a,Ba(t)} · (ν∗ − νa(t)(t)) + 1{a(t) = a,Bca(t)} · (ν∗ − νa(t)(t) + da(t))

]]
+K

= E

[
T∑

t=K+1

∑
a∈A

[
1{a(t) = a} · (ν∗ − νa(t)(t)) + 1{a(t) = a,Bca(t)} · da(t)

]]
+K

Define the following events

Et := {|µ̂i(t)− µi| ≤ C(i,∅)(t) ∧ |ν̂(i,j)(t)− ν(i,j)| ≤ C(i,j)(t), ∀i, j ∈ [K], i ̸= j}, and

E(T ) :=
T⋂

t=K+1

Et

where Et is the event that all confidence intervals hold in round t, and E(T ) is the event that all confidence

intervals hold for all rounds K + 1 ≤ t ≤ T . Regret can be decomposed based on this event E(T ) as:
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RT ≤ E

[
T∑

t=K+1

∑
a∈A

[
1{a(t) = a} · (ν∗ − νa(t)(t)) + 1{a(t) = a} · da(t)

] ∣∣∣E(T )]+ T∑
t=K+1

P(Ec1(t)) +K

Define

Ra(T ) := E

[
T∑

t=K+1

∑
a∈A

1{a(t) = a} · (ν∗ − νa(t)(t))
∣∣∣E(T )] = E

[
T∑

t=K+1

Rt(a)
∣∣∣E(T )]

Rref(T ) := E

[
T∑

t=K+1

∑
a∈A

1{a(t) = a} · da(t)
∣∣∣E(T )]

where Rt(a) :=
∑

a∈A 1{a(t) = a} · (ν∗− νa(t)(t)) is the regret of the action (without the reference point regret)

under the event E(T ). We start by upper bounding Ra(T ).

Similar to the proof of gap-independent upper bound in Section ??, define o(t) ⊂ a(t) as the set of arms whose

reward is observed in round t; Ht = (a(1), r(1), o(1), · · · , a(t− 1), r(t− 1), o(t− 1), a(1)) as the history of UCBP

up to choosing action a(t) and let E[·|Ht] be the conditional expectation given this history. Let Ba(t), a ∈ Ap

denote the event that the reward of both the probe arm and the backup arm is observed in round t. Also let p(a(t), t)

denote the conditional probability of observing the reward of arm i at round t when the chosen action is a(t) given

Ht. Following the analysis in [55], regret can be decomposed in the following way if the confidence intervals hold:

Ra(T ) = E

[
T∑

t=K+1

Rt(a)

∣∣∣∣E(T )
]

= E

[
T∑

t=K+1

E[Rt(a)|Ht]

∣∣∣∣E(T )
]

(18)

= E

 T∑
t=K+1

E

∑
a∈Ap

1{a(t) = a} · (ν∗ − νa(t)(t)) +
∑
a∈As

1{a(t) = a} · (ν∗ − νa(t)(t))|Ht

 ∣∣∣∣E(T )


= E

[
T∑

t=K+1

E
[ ∑
a∈Ap

1{a(t) = a} · (ν∗ − νa(t)(t)) · E
[
1{Ba(t)}
p(a(t), t)

|Ht

]
(19)

+
∑
a∈As

1{a(t) = a} · (ν∗ − νa(t)(t))|Ht

]∣∣∣∣E(T )
]

≤ E

 T∑
t=K+1

E

∑
a∈Ap

1{a(t) = a,Ba(t)} ·
ν∗ − νa(t)(t)

ϵ
+
∑
a∈As

1{a(t) = a} · (ν∗ − νa(t)(t))|Ht

 ∣∣∣∣E(T )


(20)

= E

 T∑
t=K+1

∑
a∈Ap

1{a(t) = a,Ba(t)} ·
∆a

ϵ
+
∑
a∈As

1{a(t) = a} ·∆a

∣∣∣∣E(T )


Eq. (18) is due to the tower rule. In Eq. (19) we used the fact that given Ht, the probability of the event Ba(t) is

p(a(t), t). In Eq. (20), we used p(a(t), t) ≥ ϵ.
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To upper bound this expression, we note the following condition for an action to be chosen at round t. Given

event Et, for action a to occur in round t, the upper confidence index of action a needs to be above the upper

confidence index of the optimal action a∗ at round t. Hence, the arm can only be pulled in round t if

ν̂a∗(t) + Ca∗(t) ≤ ν̂a(t) + Ca(t)

is satisfied. Using the fact that ν∗ ≤ ν̂a∗(t) + Ca∗(t), we have

ν∗ ≤ νa + 2Ca(t)

∆a

2
≤ Ca(t)

If a = (i, ∅) ∈ As, this condition can be written as:

∆(i,∅)

2
≤ C(i,∅)(t) =

√
2 log t

Ni(t)

Ni(t) ≤
8 log t

∆2
(i,∅)

Further, if a = (i, j) ∈ Ap, this condition can be written as:

∆(i,j)

2
≤ C(i,j)(t) =

√
2 log t

Ni(t)
+

√
2 log t

Nj(t)

Define event Ra(t) = {2Ca(t) ≥ ∆a}. It can be seen that action a can be chosen in round t only when Ra(t)

happens. Also define

Gt =

{
a(t) ∈ Ap, at least one of the base arms in a(t) was observed at most

32 log t

∆2
a(t)

times

}
It can be seen that action a(t) ∈ Ap cannot be chosen under the event Gct . This is since for Gct to happen, both

of the base arms need to be sampled more than 32 log t
∆2

a(t)

times. Then, under Gct when a(t) ∈ Ap, we have that

Ca(t) =
∑

i∈a(t)

√
2 log t

Ni(t)
≤ 2

√√√√ 2 log t
32 log t
∆2

a(t)

=
∆a(t)

2

Since the event Ra(t) does not hold when Gct happens, it can be seen that action a(t) can only be chosen in

round t when Gt happens. Further, define

Gi,t := Gt ∩

{
i ∈ a(t), Ni(t) ≤

32 log t

∆2
a(t)

}
as the event that the base arm i is not observed sufficiently often under event Gt. Then, it can be seen that

1{Gt,∆a(t) > 0} ≤
K∑
i=1

1{Gi,t,∆a(t) > 0}.

Using this, regret can be bounded as:

Ra(T ) ≤ E

 T∑
t=K+1

∑
a∈Ap

1{a(t) = a,Ba(t)} ·
∆a

ϵ
+

K∑
i=1

1

{
a(t) = (i, ∅), Ni(t) ≤

8 log t

∆2
(i,∅)

}
·∆(i,∅)

∣∣∣∣E(T )
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≤ E

[
T∑

t=K+1

(
K∑
i=1

1{Gi,t,Ba(t)} ·
∆a(t)

ϵ
+

K∑
i=1

1

{
a(t) = (i, ∅), Ni(t) ≤

8 log t

∆2
(i,∅)

}
·∆(i,∅)

)∣∣∣∣E(T )
]

Let ∆min,i := mina∈Ap\{a∗} s.t. i∈a (∆a) be the smallest gap of suboptimal probing actions that include base

arm i, and let

Si :=

{∆a : a ∈ Ap \ {a∗}, i ∈ a} ∪ {2∆i,∅} , if a∗ ̸= (i, ∅)

{∆a : a ∈ Ap \ {a∗}, i ∈ a} , if a∗ = (i, ∅)

be the set of gaps of suboptimal actions that involve probing and also 2 times the gap of the action (i, ∅) if (i, ∅)

is not the optimal action. Also let σi,1 ≥ · · · ≥ σi,Mi be the gaps of the actions in Si ordered from the one with

largest gap to the smallest one, and let ηi be the index where σi,ηi
= 2∆i,∅ (the index of action (i, ∅)) if action

(i, ∅) is suboptimal; for the case where action (i, ∅) is optimal, let ηi = 0. Using this, define τi,j = ∆i,∅ if j = ηi,

and τi,j =
σi,j

ϵ otherwise. Note that Mi is equal to either 2K − 1 or 2K − 2 depending on whether the optimal

action contains the base arm i. Then,

Ra(T ) ≤ E

 T∑
t=K+1

 K∑
i=1

Mi∑
j=1

1
{
Gi,t,Ba(t),∆a(t) = σi,j

}
∪ 1

{
a(t) = (i, ∅), Ni(t) ≤

8 log t

∆2
(i,∅)

}
· τi,j

∣∣∣∣E(T )


≤ E

 T∑
t=K+1

 K∑
i=1

Mi∑
j=1

1

{
i ∈ a(t), Ni(t) ≤

32 log t

σ2
i,j

}
· τi,j

∣∣∣∣E(T )


Here, the terms σi,j are related to how many times a base arm should be observed, and the terms τi,j are related

to mean error received in expectation until the rewards observed from the action lead to an observation of the

rewards of all the base arms involved in that action. To proceed, as in [56], we consider the worst case the samples

for the base arms can be obtained. The key idea is observing that highest regret is possible when we assume 32 log T
σ2
i,1

samples are obtained by sampling the action with highest gap σi,1 for an expected regret of τi,1 per sample; and

then when we sample the action with σi,2 gap 32 log T
σ2
i,2
− 32 log T

σ2
i,1

times and receive an expected regret of τi,2 per

sample; and so on. This key idea can only be used when σi,j and τi,j have the same ordering, i.e. when τi,j is also

the jth largest τi,· for all possible j values. It can be seen that except the pull action (i, ∅), the σi,j and τi,j terms

will follow the same ordering, so we consider the following five cases.

Case 1: If a∗ = (i, ∅), we do not need to consider ηi in the upper bound, the regret can simply be upper bounded

as:

Ra(T ) ≤ Ra,i(T )

Ra,i(T ) ≤
K∑
i=1

32 log T ·

[
τi,1 ·

1

σ2
i,1

+

Mi∑
k=2

τi,k ·

(
1

σ2
i,k

− 1

σ2
i,k−1

)]

= 32 log T ·

[
σi,1
ϵ
· 1

σ2
i,1

+

Mi∑
k=2

σi,k
ϵ
·

(
1

σ2
i,k

− 1

σ2
i,k−1

)]
The following upper bound can be derived to upper bound this expression as in Lemma 4 of [60]:

σi,1 ·
1

σ2
i,1

+

Mi∑
k=2

σi,k ·

(
1

σ2
i,k

− 1

σ2
i,k−1

)
=

1

σi,Mi

+

Mi−1∑
k=1

σi,k − σi,k+1

σ2
i,k
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≤ 1

σi,Mi

+

Mi−1∑
k=1

σi,k − σi,k+1

σi,kσi,k+1

≤ 1

σi,Mi

+

Mi−1∑
k=1

1

σi,k+1
− 1

σi,k
≤ 2

σi,Mi

Using this, it can be seen that

Ra,i(T ) ≤ 32 log T · 2

ϵσi,Mi

=
64 log T

ϵ∆min,i

Case 2: If ∆i,∅ ≤
ϵ∆min,i

8 , we will have ηi =Mi, and τi,Mi
≤ τi,Mi−1, so the regret can be upper bounded as:

Ra,i(T ) ≤
K∑
i=1

32 log T ·

[
τi,1 ·

1

σ2
i,1

+

Mi−1∑
k=2

τi,k ·

(
1

σ2
i,k

− 1

σ2
i,k−1

)
+ τi,Mi

·

(
1

σ2
i,Mi

− 1

σ2
i,Mi−1

)]

= 32 log T ·

[
σi,1
ϵ
· 1

σ2
i,1

+

Mi−1∑
k=2

σi,k
ϵ
·

(
1

σ2
i,k

− 1

σ2
i,k−1

)
+
σi,Mi

2
·

(
1

σ2
i,Mi

− 1

σ2
i,Mi−1

)]
Similar to case 1, we have:

σi,1 ·
1

σ2
i,1

+

Mi−1∑
k=2

σi,k ·

(
1

σ2
i,k

− 1

σ2
i,k−1

)
≤ 2

σi,Mi−1

Using this, it can be seen that

Ra,i(T ) ≤ 32 log T ·

[
2

ϵσi,Mi−1
+

1

2σi,Mi

− σi,Mi

2σ2
i,Mi−1

]
(21)

Noting that σi,Mi−1 ≥ 4
ϵσi,Mi

, we have

Ra,i(T ) ≤ 32 log T ·

[
1

2σi,Mi

+
1

2σi,Mi

− σi,Mi

2σ2
i,Mi−1

]
≤ 32 log T

σi,Mi

=
32 log T

2∆(i,∅)
=

16 log T

∆(i,∅)

Case 3: If ϵ∆min,i
8 ≤ ∆i,∅ ≤

ϵ∆min,i
4 , using Eq. (21) with σi,Mi−1 ≥ 2

ϵσi,Mi
, we have

Ra,i(T ) ≤ 32 log T ·

[
1

σi,Mi

+
1

2σi,Mi

− σi,Mi

2σ2
i,Mi−1

]
≤ 48 log T

σi,Mi

=
24 log T

∆(i,∅)

Case 4: If 2∆i,∅ ≤ ∆min,i ≤ 4
ϵ∆i,∅ , we will have ηi =Mi, so the regret can be upper bounded as:

Ra,i(T ) ≤
K∑
i=1

32 log T ·

[
τi,1 ·

1

σ2
i,1

+

Mi−1∑
k=2

τi,k ·

(
1

σ2
i,k

− 1

σ2
i,k−1

)
+ τi,Mi

·

(
1

σ2
i,Mi

− 1

σ2
i,Mi−1

)]

= 32 log T ·

[
σi,1
ϵ
· 1

σ2
i,1

+

Mi−1∑
k=2

σi,k
ϵ
·

(
1

σ2
i,k

− 1

σ2
i,k−1

)
+
σi,Mi

2
·

(
1

σ2
i,Mi

− 1

σ2
i,Mi−1

)]

≤ 32 log T ·

[
2

ϵσi,Mi−1
+

1

2σi,Mi

− σi,Mi

2σ2
i,Mi−1

]
Using 2σi,Mi

≥ ϵσi,Mi−1, it can be seen that:

Ra,i(T ) ≤ 32 log T ·
[

3

ϵσi,Mi−1

]
=

96 log T

ϵσi,Mi−1
=

96 log T

ϵ∆min,i
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Case 5: If ∆min,i ≤ 2∆i,∅, we will have ηi ̸=Mi, so the regret can be upper bounded as:

Ra,i(T ) ≤ 32 log T ·

τi,1 · 1

σ2
i,1

+

Mi∑
k=2,k ̸=ηi

τi,k ·

(
1

σ2
i,k

− 1

σ2
i,k−1

)
+

2

ϵ
τi,ηi ·

(
1

σ2
i,ηi

− 1

σ2
i,ηi−1

)
≤ 32 log T

ϵ
·

[
σi,1 ·

1

σ2
i,1

+

Mi∑
k=2

σi,k ·

(
1

σ2
i,k

− 1

σ2
i,k−1

)]

≤ 64 log T

ϵσi,Mi

=
64 log T

ϵ∆min,i

Combining all these cases, it can be concluded that

RT ≤
K∑
i=1

16 log T

δi
+Rref(T ) +

5π2K

3
+K

where

δi =


ρi if a∗ = (i, ∅)
2min(ρi,∆(i,∅))

3 if ρi

2 ≤ ∆(i,∅) ≤ 2ρi

ϵ

min(ρi,∆(i,∅)) otherwise

, and ρi = mina∈Ap\{a∗} s.t. i∈a

(
ϵ∆a

4

)
.

APPENDIX D

UPPER BOUND ON REFERENCE POINT REGRET

Recall that we call the error introduced due to an incorrect decision on pulling the probe arm or the backup arm

the reference point error. We will denote the regret incurred from the reference point error when action a is taken in

round t as da(t). This regret da(t) is additive to the regret of choosing a suboptimal action a, since da(t) captures

the additional regret of the incorrect decision compared to the correct decision when deciding to pull the probe arm

or the backup arm. Hence, da(t) can be expressed as:

da(t) =

0 if a(t) = (i, ∅)

ra(t)− râ(t) if a(t) = (i, j)

where râ(t) = ri(t)1{ri(t) > µ̂j(t)}+ rj(t)1{ri(t) ≤ µ̂j(t)} is the reward received from action (i, j) in round t

when µ̂j(t) is used as the reference point, and ra(t) = ri(t)1{ri(t) > µj}+rj(t)1{ri(t) ≤ µj} is the reward received

from the optimal decision rule, i.e. when µj is used as the reference point. Also recall that Ba(t) = 1{râ(t) = ra(t)}

denotes the event that the decision to pull the probe or backup arm is correct.

Let o(t) ⊂ a(t) be the set of arms whose reward is observed in round t. Let Ht = (a(1), r(1), o(1), · · · , a(t−

1), r(t− 1), o(t− 1), a(1)) be the history of UCBP up to choosing action a(t).

Lemma D.1. Given Ht, under the event that the confidence intervals hold in round t, the upper bound on reference

point regret if action (i, j), ∀i ∈ [K] is chosen at round t is d(i,j)(t) ≤ C(j,∅)(t).
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Proof. To upper bound d(i,j)(t), notice that when ri(t) is not between the values of µ̂j(t) and µj , d(i,j)(t) = 0

will hold since the decision will not be incorrect in these instances. Hence, the decision to pull the probe arm

or the backup arm can be incorrect only when ri(t) is between the values of µ̂j(t) and µj , and this can be

analyzed in two different cases. Assuming the observed reward from the probe is ri(t), the first case is when

µ̂j(t) ≥ ri(t) ≥ µj . Then, the UCBP algorithm will decide to pull the backup arm j to get expected reward

µj even though the optimal decision is to pull arm i and get reward ri(t). The gap in reward compared to

the optimal decision is d(i,j)(t) = ri(t) − µj ≤ µ̂j(t) − µj = C(j,∅)(t) in this case. The second case is when

µj ≥ ri(t) ≥ µ̂j(t), then it will be decided to pull arm i and get reward ri(t) even though the optimal decision is

to pull the backup arm j to get expected reward µj . Again, the gap in reward compared to the optimal decision is

d(i,j)(t) = µj − ri(t) ≤ µj − µ̂j(t) = C(j,∅)(t).

Lemma D.2. The cumulative reference point regret until round T can be upper bounded as:

Rref(T ) ≤
2
√
2KT log T

ϵ

Proof. To derive an upper bound on the reference point regret, it can be seen from Lemma D.1 that d(i,j)(t) ≤

C(j,∅)(t). Defining Na(T ) :=
∑T

t=K+1 1{a(t) = a} as the total number of times action a is taken until round T ;

and Bj(T ) :=
∑K

i=1,i̸=j N(i,j)(T ) as the total number of times action (·, j) is taken until round T , the reference

point regret can be upper bounded as follows.

Rref(T ) = E

[
T∑

t=K+1

∑
a∈A

1{a(t) = a} · da(t)
∣∣∣E(T )]

≤ E

 T∑
t=K+1

E

 K∑
j=1

1{a(t) = (·, j)} · C(j,∅)(t)
∣∣∣Ht

 ∣∣∣∣E(T )
 (22)

= E

 T∑
t=K+1

E

 K∑
j=1

1{a(t) = (·, j)} · C(j,∅)(t) · E
[
1{j ∈ o(t)}
pj(a(t), t)

|Ht

] ∣∣∣Ht

 ∣∣∣∣E(T )
 (23)

≤ 1

ϵ
· E

 T∑
t=K+1

E

 K∑
j=1

1{a(t) = (·, j)} · C(j,∅)(t) · 1{j ∈ o(t)}
∣∣∣Ht

 ∣∣∣∣E(T )
 (24)

=
1

ϵ
· E

 T∑
t=K+1

E

 K∑
j=1

1{j ∈ o(t)} ·

√
2 log t

Nj(t)

∣∣∣∣∣Ht

 ∣∣∣∣∣E(T )


=

√
2 log T

ϵ
· E

[
T∑

t=K+1

E

[
K∑
i=1

1{i ∈ o(t)} ·

√
1

Ni(t)

∣∣∣∣∣Ht

] ∣∣∣∣∣E(T )
]

≤
√
2 log T

ϵ
E

· K∑
i=1

Bi(T )∑
x=1

·
√

1

x


≤ 2
√
2 log T

ϵ
· E


√√√√K

K∑
i=1

Bi(T )

 (25)

Again Eq. (22) is due to the tower rule. In Eq. (23) we used the fact that given Ht, the probability of j ∈ o(t)

is pj(a(t), t). In Eq. (24), we used pj(a(t), t) ≥ ϵ; and Cauchy-Schwarz inequality is used in Eq. (25). Using
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∑K
i=1Bi(T ) ≤ T concludes the proof.

Lemma D.3. If the distributions Γi for each i ∈ [K] are defined over a discrete support D in [0, 1], the cumulative

reference point regret until round T can be upper bounded as:

Rref(T ) ≤
K∑
i=1

4 log T

ϵγi

where we use dl ∈ D, 1 ≤ l ≤ |D| to denote the elements of the set D; and we let γi := minl |dl − µi| if µi ̸∈ D,

and γi := |dl − dl+1| if µi ∈ D.

Proof. First, d(i,∅)(t) = 0,∀i ∈ [K] since this type of action does not involve probing. Hence, Rref(T ) can be

written as

Rref(T ) = E

[
T∑

t=K+1

∑
a∈A

1{a(t) = a,Bca(t)(t)} · da(t)
∣∣∣E(T )]

≤ E

 T∑
t=K+1

E

 K∑
j=1

1{a(t) = (·, j),Bca(t)(t)} · C(j,∅)(t)
∣∣∣Ht

 ∣∣∣∣E(T )
 (26)

= E

 T∑
t=K+1

E

 K∑
j=1

1{a(t) = (·, j),Bca(t)(t)} · C(j,∅)(t) · E
[
1{j ∈ o(t)}
pj(a(t), t)

|Ht

] ∣∣∣Ht

 ∣∣∣∣E(T )
 (27)

≤ 1

ϵ
· E

 T∑
t=K+1

E

 K∑
j=1

1{a(t) = (·, j),Bca(t)(t)} · C(j,∅)(t) · 1{j ∈ o(t)}
∣∣∣Ht

 ∣∣∣∣E(T )
 (28)

=
1

ϵ
· E

 T∑
t=K+1

E

 K∑
j=1

1{j ∈ o(t),Bca(t)(t)} ·

√
2 log t

Nj(t)

∣∣∣∣∣Ht

 ∣∣∣∣∣E(T )


=

√
2 log T

ϵ
· E

[
T∑

t=K+1

E

[
K∑
i=1

1{i ∈ o(t),Bca(t)(t)} ·

√
1

Ni(t)

∣∣∣∣∣Ht

] ∣∣∣∣∣E(T )
]

(29)

Again Eq. (26) is due to the tower rule. In Eq. (27) we used the fact that given Ht, the probability of j ∈ o(t) is

pj(a(t), t); and in Eq. (28), we used pj(a(t), t) ≥ ϵ. Recall from Lemma D.1 that for the cases where ri(t) is not

between the values of µ̂j(t) and µj , d(i,j)(t) = 0 will hold since B(i,j)(t) will happen in these instances. This also

entails d(i,j)(t) = 0 when C(j,∅)(t) < γj since it cannot be the case that µ̂i(t) ≤ dj ≤ µi or µi ≤ dj ≤ µ̂i(t) when

C(j,∅)(t) < γj . Hence, for action (i, j), regret can only be incurred for the rounds where

C(j,∅)(t) =

√
2 log t

Nj(t)
≥ γj

happens. Rearranging the terms,

Nj(t) ≤
2 log t

γ2j
≤ 2 log T

γ2j

Hence, the event Bc(i,j)(t) can happen at most Nj(t) ≤ 2 log T
γ2
j

times in expectation. Using this, the summation

index in (29) can be changed from t to Nj(t).

Rref(T ) ≤
√
2 log T

ϵ
·

K∑
j=1

2 log T

γ2
j∑

Nj(t)=1

√
1

Nj(t)
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=

√
2 log T

ϵ
·

K∑
i=1

2 log T

γ2
i∑

x=1

·
√

1

x

≤
K∑
i=1

√
2 log T

(
1 +

∫ 2 log T

γ2
i

1

√
1

x
dx

)

=

K∑
i=1

√
2 log T

(
1 + 2

√
2 log T

γ2i
− 2

)

≤
K∑
i=1

4 log T

γi

This completes the proof.

APPENDIX E

PROOF OF LEMMA IV.5

In the standard K-armed bandit problem, the reward distributions of arms are given by Γi,∀i ∈ [K]. However,

in our multi-armed bandit setting with probes, the agent chooses actions that are composed of one or more arms.

To characterize the distributions of these actions, we define Γ(i,j) = max(ri, µj) − c = ri · 1{ri > µj} + rj ·

1{ri ≤ µj}− c, i ̸= j as the distribution function of action (i, j), and Γ∗ as the distribution function of the optimal

action a∗. We denote the distribution function of action (i, ∅) as Γ(i,∅), it can be seen that its distribution is the

same as the distribution function of arm i, i.e. Γ(i,∅) = Γi. We also use DKL(·||·) to denote the Kullback–Leibler

divergence function. From Lemma A.2, we know that the following holds for the standard multi-armed bandit

problem:

lim inf
T→∞

E [Ni(T )]

log T
≥ 1

DKL(Γi,Γ∗)

To expand this result into our problem setting of multi-armed bandits with probes, we note the dependency between

different actions. First, it can be seen that taking action a = (i, j) yields in a sample of base arm i, and if the backup

arm is pulled, it also yields in a sample of base arm j. Therefore, letting Ai = {(i, j) : j ∈ ([K]∪{∅})\{i}}∪{(j, i) :

j ∈ [K] \ {i}}, it can be seen that taking an action a ∈ Ai may possibly yield samples of arm i (it may not yield

in a sample when arm i is the backup arm and the backup arm is not pulled). We let si(t) denote the total number

of samples obtained for arm i up to round t when the reward of arm i is observed through taking an action a ∈ Ai.

Further, also note that one reward sample of action (i, j) can be produced from one reward sample of base arm i

and one sample from arm j (these samples need not be from the same time instant as we assume the stochasticity

of the reward samples across time). Let s(i,j)(t) denote the total number of samples obtained on action a = (i, j)

when all the information from samples of all actions up to round t are used to produce samples of other actions,

i.e. when samples of base arms i and j are used to obtain the maximum possible number of samples of action

a = (i, j), it can be seen that s(i,j)(t) = min(si(t), sj(t)).

Now that we have seen that s(i,j)(t) captures the total amount of samples obtained from action a = (i, j) (by

also utilizing the information obtained for action a = (i, j) when an action a
′ ∈ Ai ∪Aj is taken), Lemma A.2 can

be used to lower bound the total number of samples (sampled or constructed from other samples) of an action a as:
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lim inf
T→∞

E
[
s(i,j)(T )

]
log T

≥ 1

DKL(Γ(i,j),Γ∗)
(30)

Combining (30) with the fact that s(i,j)(t) = min(si(t), sj(t)), we have that

lim inf
T→∞

E [si(T )]

log T
≥ 1

DKL(Γ(i,j),Γ∗)

Deriving similar inequalities for all actions that involve arm i, which are (i, ∅), and for some j ̸= i, (i, j) and

(j, i), and excluding the optimal action a∗, we have

lim inf
T→∞

E [si(T )]

log T
≥
[

min
a∈Ai,a̸=a∗

{DKL(Γa||Γ∗)}
]−1

(31)

where Ai = {(i, j) : j ∈ ([K] ∪ {∅}) \ {i}} ∪ {(j, i) : j ∈ [K] \ {i}}. It can be seen that si(t) can be upper

bounded by the following:

si(t) ≤
∑

j∈[K]∪{∅}
(i,j)̸=a∗

N(i,j)(t) +
K∑
j=1

j ̸=i, (j,i)̸=a∗

N(j,i)(t) (32)

since in the best case, when an action (i, j) is taken, the rewards of both arm i and arm j can be observed.

Combining (31) and (32), we have

lim inf
T→∞

E
[∑

a∈Ai,a ̸=a∗ Na(t)
]

log T
≥
[

min
a∈Ai,a ̸=a∗

{DKL(Γa||Γ∗)}
]−1

(33)

Denoting lim infT→∞
E[Na(T )]

log T = ba, (33) can be rewritten as:∑
a∈Ai,a ̸=a∗

ba ≥
[

min
a∈Ai,a̸=a∗

{DKL(Γa||Γ∗)}
]−1

, ∀i ∈ [K]

Using the number of samples of the suboptimal actions, the expected cumulative regret can be given as

RT ≥
∑

a∈A\{a∗}

E [Na(T )]∆a

lim inf
T→∞

RT

log T
≥ lim inf

T→∞

∑
a∈A\{a∗} E [Na(T )]∆a

log T

lim inf
T→∞

RT

log T
≥

∑
a∈A\{a∗}

ba∆a

Therefore, we can conclude that for the multi-armed bandit setting with costly probes where there is a unique

optimal action, the expected cumulative regret for any uniformly good algorithm, as defined in [1], is lower bounded

as

lim inf
T→∞

RT

log T
≥ C(Γ),

where C(Γ) is the minimal value of the following linear optimization problem:

min
ba≥0, ∀a∈A\{a∗}

∑
a∈A\{a∗}

ba∆a

s.t. ∀i ∈ [K],
∑

a∈Ai,a̸=a∗

ba ≥
[

min
a∈Ai,a ̸=a∗

{DKL(Γa||Γ∗)}
]−1
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TABLE IV

NOTATIONS FOR THE UCB-NAIVE-PROBE ALGORITHM

AN Action set

a = (i, j, dl) Super arm of selecting i as probe and j as backup arm and using dl as the reference

a = (i, ∅, ∅) Super arm of pulling arm i

Na(t) Number of times super arm a is sampled until round t

Ua(t) UCB index of action a at round t

u∗ The optimal action

ν∗ Mean reward of the optimal action

, Γ(i,∅) = Γi, Γ(i,j) = max(ri, µj)− c is the distribution function of action (i, j) for i ̸= j, Γ∗ is the distribution

function of the optimal action, and DKL(·||·) is the Kullback–Leibler divergence.

Also note that C(Γ) is Ω(K). This can be seen by summing all the constraint equations:

K∑
i=1

 ∑
a∈Ai,a ̸=a∗

ba

 ≥ K∑
i=1

[
min

a∈Ai,a ̸=a∗
{DKL(Γa||Γ∗)}

]−1

(34)

We have that
K∑
i=1

 ∑
a∈Ai,a̸=a∗

ba

 =

K∑
i=1

 ∑
a∈Ai,a̸=a∗

lim inf
T→∞

E [Na(T )]

log T

 ≤ 2
∑

a∈A\{a∗}

lim inf
T→∞

E [Na(T )]

log T

We define Di
KL = mina∈Ai,a ̸=a∗ {DKL(Γa||Γ∗)}. Then, (34) can be rewritten as:∑

a∈A\{a∗}

lim inf
T→∞

E [Na(T )]

log T
≥ 1

2

K∑
i=1

Di
KL

From this, it can be concluded that the lower bound on regret of UCBP is Ω(K log T ).

APPENDIX F

DERIVATION OF THE EXPECTED REGRET UPPER BOUND OF THE UCB-NAIVE-PROBE

ALGORITHM

We provide the regret analysis of the UCB-naive-probe algorithm in this section. The table for the notations

used in this section is provided in Table IV. Note that actions for this algorithm are defined over 3-tuples of

the form (i, j, dl) and (i, ∅, ∅). The action a = (i, j, dl) denotes that the probe arm is arm i, the backup arm is

arm j, and the reference point is dl. While definitions of variables are the extensions of the variables defined

for the 2-tuple actions in the UCBP algorithm to the setting with 3-tuple actions, we briefly define them for this

setting for completeness. For pulling actions, ν is defined as ν(i,∅,∅) = µi, i ∈ [K], and for probing actions,

ν(i,j,dl) = −c + E [ri · 1{ri ≥ dl}+ rj · 1{ri < dl}] , i, j ∈ [K], i ̸= j, dl ∈ D, l ∈ [D] \ {1} (to exclude the

smallest possible discrete value). ν̂a(t) is the empirical estimation of νa. Na(t) is the number of times action a is

chosen up to round t. The confidence interval can be defined as:

C(i,j,dl)(t) =

√
2 log t

N(i,j,dl)(t)
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Using this, the UCB indices for super arms are defined as Ua(t) = ν̂a(t) + Ca(t). The optimal action is denoted as

u∗. The gaps of actions are defined as ∆(i,j,dl) = ν∗−E [ri · 1{ri ≥ dl}+ µj · 1{ri < dl}] + c, and ∆(i,∅,∅) = ∆i.

We first start with the gap-dependent upper bound as the gap-independent bound will be derived from the

gap-dependent bound.

A. Gap-Dependent Regret Upper Bound For UCB-naive-probe

Regret is incurred whenever a suboptimal action is taken. Therefore, we upper bound the expected number of

times each suboptimal super arm is pulled by the UCB-naive-probe algorithm. Similar to the regret analysis of

UCBP, first, the regret is decomposed into components reflecting the regret of each suboptimal action. We condition

the occurrence of suboptimal actions on the event that the confidence intervals hold to help upper bound the number

of times each suboptimal action is chosen, and then we sum the regret from each to obtain the expected regret of

the UCB-naive-probe algorithm. The empirical regret of the UCB-naive-probe algorithm can be written as:

R̂U (T ) =

T∑
t=|D|K2+1

∑
a∈A

1{a(t) = a} · (ν∗ − νa(t)(t)) + |D|K2

Expected regret can be obtained by taking the expectation of this expression

RU (T ) = E
[
R̂U (T )

]
= E

 T∑
t=|D|K2+1

E

[∑
a∈A

1{(a(t) = a} · (ν∗ − νa(t)(t))
∣∣Ht

]+ |D|K2

We condition this expression using E(T ) := {|ν̂a(t) − νa| ≤ Ca(t), ∀a ∈ A}, the event that all confidence

intervals hold in round t. Then the expected regret can be upper bounded as:

RU (T ) ≤ E

 T∑
t=|D|K2+1

E

[∑
a∈A

1{(a(t) = a)} · (ν∗ − νa(t)(t))
∣∣Ht

] ∣∣∣E(T )
+ E

 T∑
t=|D|K2+1

P(Ec1(t))


= E

 T∑
t=|D|K2+1

∑
a∈A\{u∗}

1{(a(t) = a)}

∣∣∣∣∣E(T )
 ·∆a + E

 T∑
t=|D|K2+1

P(Ec1(t))


=

∑
a∈A\{u∗}

E

 T∑
t=|D|K2+1

1{(a(t) = a)}

∣∣∣∣∣E(T )
 ·∆a + E

 T∑
t=|D|K2+1

P(Ec1(t))


Defining E [Na(T )] := E

[∑T
t=|D|K2+1 1{(a(t) = a)}

∣∣∣∣∣E(T )
]

, RT can be upper bounded as:

RU (T ) ≤
∑

a∈A\{u∗}

E [Na(T )] ·∆a + E

 T∑
t=|D|K2+1

P(Ec1(t))

 (35)

To upper bound E [Na(T )] , we will show that the suboptimal action a ̸= u∗ cannot occur at any round t ≤ T if

the total number of times the super arm a has been sampled (pulled or probed) is Na(T ) ≥ 8 log T
∆2

a
. We start by
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noting that for action a to occur, the upper confidence index of action a needs to be above the upper confidence

index of the optimal action u∗ at round t. Hence, the arm can only be pulled if

ν̂u∗(t) + Cu∗(t) < ν̂a(t) +

√
2 log t

Na(t)

is satisfied. Using the fact that ν∗ ≤ ν̂u∗(t) + Cu∗(t), and ν̂a(t) ≤ νa + Ca(t) under the event E(T ), we have

ν∗ < νa + 2

√
2 log t

Na(t)

Na(t) ≤
8 log t

∆2
a

This means that action a can only be taken in rounds t ≤ T when Na(t) <
8 log t
∆2

a
is satisfied. Noticing that this

can happen at most 8 log T
∆2

a
times until round T upper bounds the expected number of times action a is taken, hence

E [Na(T )] ≤
8 log T

∆2
a

(36)

We now bound the term
∑T

t=1 P[Ec1(t)]. Note that from (12) and (13), we have that the probability that the

confidence interval for any arm a does not hold is upper bounded by 2t−3. Using this, through a union bound over

all the probabilities of each confidence interval not holding, we have that

E

[
T∑

t=1

P[Ec1(t)]

]
≤

K∑
i=1

T∑
t=1

2t−3 +

|D|∑
l=2

K2−K∑
i=1

T∑
t=1

2t−3 (37)

= 2((|D| − 1)(K2 −K) +K)

T∑
t=1

t−3

≤ π2[(|D| − 1)(K2 −K) +K]

3
(38)

where the first summation term in the right side of (37) is for the actions of the form (i, ∅, ∅), and the second term

is for the actions of the form (i, j, dl). In (38), we again use the fact that
∑∞

n=1
1
n2 = π2

6 .

Combining (36) and (38), it can be concluded that

RU (T ) ≤
∑

a∈AN\{u∗}

8 log T

∆a
+
π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

= O(|D|K2 log T ) +O(1)

B. Gap-Independent Regret Upper Bound For UCB-naive-probe

The gap-independent upper bound can be obtained from the gap dependent upper bound by dividing the action

set into two as follows

AN,1 :=

{
a ∈ A \ {u∗} : ∆a ≥

√
8|D|K2 log T

T

}

AN,2 :=

{
a ∈ A \ {u∗} : ∆a <

√
8|D|K2 log T

T

}



41

Using (35), we have

RU (T ) ≤
∑

a∈AN\{u∗}

E [Na(T )] ·∆a + E

 T∑
t=|D|K2+1

P(Ec1(t))


≤

∑
a∈AN,1\{u∗}

E [Na(T )] ·∆a +
∑

a∈AN,2\{u∗}

E [Na(T )] ·∆a +
π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

For a ∈ AN,1, use E [Na(T )] ≤ 8 log T
∆2

a
, and for a ∈ AN,2, use ∆a ≤

√
8|D|K2 log T

T . Then

RU (T ) ≤
∑

a∈AN,1\{u∗}

8 log T

∆2
a

·∆a +
∑

a∈AN,2\{u∗}

E [Na(T )] ·
√

8|D|K2 log T

T
+
π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

Using
∑

a∈AN,2\{u∗} E [Na(T )] ≤ T , and the fact that |AN,1| ≤ |D|K2 we have

RU (T ) ≤
∑

a∈AN,1\{u∗}

8 log T

∆a
+ T

√
8|D|K2 log T

T
+
π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

≤
∑

a∈AN,1\{u∗}

√
8T log T

|D|K2
+ T

√
8|D|K2 log T

T
+
π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

≤ |D|K2 ·

√
8T log T

|D|K2
+
√
8|D|K2T log T +

π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

≤ 4
√
2|D|K2T log T +

π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

= O(
√
|D|K2T log T ) +O(1)
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