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ABSTRACT. Since December 2019, COVID-19 has caused worldwide devastation. To de-
vise effective countermeasures, it is important to develop mathematical models that help
us to understand and predict the spreading of COVID-19, as well as to provide guidelines
on what can be done to limit its spread. To this end, we leverage recent work of Eletreby
et al. (2020) which studies a model where multiple strains of a virus propagate through a
network while also undergoing mutations. Highlighting the recent reports on a mutation
of SARS-CoV-2 that is thought to be more transmissible than the original strain, we discuss
the importance of incorporating mutations and evolutionary adaptations in epidemic mod-
els. We also demonstrate how the results of Eletreby et al. (2020) can be used to assess the
effectiveness of mask-wearing in limiting the spread of COVID-19. These are supported by
simulation results showing the impact of various mutation and mask-wearing possibilities.
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MEDIA SUMMARY

The spread of COVID-19 has led to a massive loss of life around the world since December
2019. Various countermeasures against the virus have been implemented, resulting in the closure
of schools and businesses worldwide. It is of paramount importance to develop mathematical
models that can accurately predict the spread of COVID-19 so that the virus can be contained and
restrictions can be safely lifted.

An important fact missing from most epidemiology models is that viruses may mutate over
time, leading to several strains with potentially different transmission properties, including highly
infectious strains; recent reports show that this has already happened in SARS-CoV-2. Our recent
work (Eletreby et al., 2020) aimed to bridge this gap by studying a model where a virus may
mutate into a different strain when it infects a host. There, we established analytical results that
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accurately predict the number of individuals infected by each strain, whereas models that do not
consider the possibility of mutations are shown to give incorrect predictions.

In this article, we demonstrate how our recent work on predicting the spread of a virus with
mutations can be utilized to address some important questions concerning COVID-19. We exam-
ine several scenarios where a virus may mutate into more infectious strains, and illustrate through
simulations how the epidemic spreads in each of these cases. We also show how the multiple-
strain model can be used to assess the effectiveness of mask-wearing in limiting the spread of
COVID-19.

1. INTRODUCTION

From its start in December 2019 in Wuhan, China, the novel coronavirus (known to cause a res-
piratory disease known as COVID-19) has spread rapidly and broadly and has since devastated a
significant fraction of the world population. The World Health Organization (WHO) has identi-
fied the spread of COVID-19 as a pandemic, and as of February 2021, over 100 million individuals
were infected, with about 2.5 million dying of the disease. In addition, the spread of the virus and
the countermeasures taken against it have severely impacted the economy, with industries such
as tourism, travel and entertainment suffering the most. Schools at all levels are closed in sev-
eral countries around the world; and highly anticipated events, including the Tokyo 2020 Summer
Olympics and Euro 2020 Championship, were cancelled. In summary, the spread of COVID-19
is among the most catastrophic events affecting the health and well-being of humans worldwide
since World War II.

A key scientific goal concerning COVID-19 is to develop mathematical models that help us to
understand and predict its spreading behavior, as well as to provide guidelines on what can be
done to limit its spread. With tight restrictions on traveling, large gatherings, and commercial
entertainment in place across many jurisdictions, another important question is to understand the
order and time in which these restrictions can be safely eliminated.

In the recent work (Eletreby et al., 2020), a class of spreading processes (including information
propagation in online social networks and virus propagation) was studied under a multiple-strain
model with mutations; i.e., a mutation may take place at each host leading to a different strain
of the virus/information with different transmissibility from the originally acquired strain. Their
work aimed to bridge the disconnect between how spreading processes propagate and evolve in
real life versus mathematical and simulation models that ignore evolutionary adaptations. The
results in Eletreby et al. (2020) are shown to predict accurately the epidemic threshold, expected
epidemic size, and the expected fraction of individuals infected by each strain in this model. The
key finding is that classical epidemic models that do not consider the evolution of the strain lead
to incorrect predictions on the spreading dynamics when mutations that affect transmission are
present.

The purpose of the current paper is to discuss how the findings in Eletreby et al. (2020) can help
address some key questions concerning the spread of COVID-19. We highlight the recent reports
on a mutation of SARS-CoV-2 that is thought to be more transmissible than the original strain, and
discuss the importance of incorporating mutation and evolutionary adaptations (together with the
network structure) in epidemic models. We also demonstrate how the multiple-strain transmission
model studied in Eletreby et al. (2020) can be used to assess the effectiveness of mask-wearing in
limiting the spread of COVID-19. Finally, we present simulation results on a few sample cases
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to demonstrate our ideas and the utility of the findings of Eletreby et al. (2020) in the context of
COVID-19.

The rest of the paper is organized as follows. In Section 2, we present the model studied by Ele-
treby et al. (2020) and summarize its main results. There, we also summarize some recent reports
on the mutations that SARS-CoV-2 has exhibited so far. In Section 3, we present our ideas on how
the model and findings of Eletreby et al. (2020) can be utilized to better understand the spread of
COVID-19. There, we show, through an analogy between the multiple-strain virus propagation
and a single-strain propagation where some individuals wear a mask, that the results in Eletreby
et al. (2020) can help assess the effectiveness of mask-wearing in the spread of COVID-19. Finally,
in Section 4 we present numerical results to demonstrate our main ideas in a few sample cases. We
remark that our forthcoming conference publication (Sridhar et al., 2021) will support our work in
this paper by providing an abridged discussion and additional simulations to validate our claims.

2. MODELING THE SPREAD OF A VIRUS

Modeling the spread of epidemics. What causes an outbreak of a disease? How can we predict
its emergence and control its progression? Over the past several decades, multidisciplinary re-
search efforts have been converging to tackle the above questions, aiming for providing a better
understanding of the intricate dynamics of disease propagation and accurate predictions on its
course (Anderson et al., 1992; Barabási, 2016; Daszak et al., 1999; Fraser et al., 2004; Granell et al.,
2014; Lloyd-Smith et al., 2005; Moreno et al., 2002; Morens et al., 2004; Newman, 2002; Pastor-
Satorras & Vespignani, 2001; Wei et al., 1995; Wolfe et al., 2007). At the heart of these research
efforts is the development of mathematical models that provide insights on predicting, assessing,
and controlling potential outbreaks (Brauer et al., 2012; Diekmann & Heesterbeek, 2000; Keeling
& Rohani, 2011; Siettos & Russo, 2013). The early mathematical models relied on the homoge-
neous mixing assumption, meaning that an infected individual is equally likely to infect any other
individual in the population, without regard to her location, age, or the people with whom she
interacts. A finer approach is taken by metapopulation models, where the population is divided into
several sub-populations in which the epidemic may have different propagation characteristics or
may interact in different ways (Hanski & Hanski, 1999; Keeling & Rohani, 2002; Watts et al., 2005).
More recently, network epidemics has emerged as a mathematical modeling approach that takes the
underlying contact network between individuals into consideration (Allard et al., 2009; Barabási,
2016; Keeling & Eames, 2005; Miller & Kiss, 2014; Newman, 2002; Pastor-Satorras et al., 2015). The
main goal of these mathematical models is to characterize the speed and scale of propagation and
to provide insights into how the parameters of a disease, e.g., its basic reproductive number denoted
by R0, can be used to predict the ultimate reach of the virus. In a nutshell, R0 is defined as the
mean number of secondary infections in a naive population, i.e., the expected number of infec-
tions directly generated by one individual in a population where all individuals are susceptible to
infection.

Evolution of infectious diseases. A common theme among the proposed models for network epi-
demics is the assumption that the virus is transferred across individuals without going through
any modification or evolution (Anderson et al., 1992; Balthrop et al., 2004; Dodds & Watts, 2004;
Newman et al., 2002; Qian et al., 2012; Sahneh et al., 2013; Yağan & Gligor, 2012; Yağan et al., 2013;
Zhuang & Yağan, 2016). However, in real-life spreading processes, pathogens evolve in response
to changing environments and medical interventions (Alexander & Day, 2010; Antia et al., 2003;
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Leventhal et al., 2015; Morens et al., 2004; Pfennig, 2001). Although the vast majority of molecu-
lar changes are neutral or deleterious, there can be strong selection to promote the spread of rare
adaptive changes in pathogens. In fact, 60% of the (approximately) 400 emerging infectious dis-
eases that have been identified since 1940 are zoonotic 1 (Jones et al., 2008; Morse et al., 2012a).
A zoonotic pathogen is usually poorly adapted, poorly replicated, and inefficiently transmitted
when first introduced into the human population (Parrish et al., 2008), but it may eventually ac-
quire and fix mutations that allow it to spread more efficiently from human to human (Jones et al.,
2008; Morens et al., 2004; Morse et al., 2012b; Pfennig, 2001; Plowright et al., 2017; Woolhouse
et al., 2005). Evolutionary adaptations are often the result of amino-acid substitutions in pathogen
proteins that facilitate host cell binding, entry, and release. Some pathogens, such as seasonal
influenza viruses, undergo ongoing amino-acid substitutions in immunogenic proteins that fa-
cilitate escape from immunity in the host population. But the molecular basis of adaptation can
also include recombination and reassortment (e.g., H5N1 influenza) as well as hybridization (e.g.,
Phytophthora alni) (Woolhouse et al., 2005). In fact, a key event that caused the emergence of the
1918 H1N1 influenza pandemic was a re-assortment of viral RNA segments during co-infection,
resulting in a novel virus with increased infectivity and virulence (Klempner & Shapiro, 2004).

The emergence of COVID-19 provides an ongoing example of pathogen evolution, and it high-
lights the role of molecular evolution in facilitating pathogen establishment in a new host species.
Originally a non-human disease, the ability of COVID-19 to undergo animal-to-human transmis-
sion and eventually human-to-human transmission was paved by mutation and selection that
produced a strain that is well-adapted to the human host. In addition to the original mutation
that led COVID-19 to spread among humans, there is evidence (Long et al., 2020; Tang et al., 2020)
that the novel coronavirus has already diverged into distinct lineages with functional differences.
Detailed molecular studies (Zhang et al., 2020) have identified a specific point mutation in the
spike protein that allows the virus to infect host cells more readily; and this mutation also ap-
pears to dominate other variants epidemiologically. In the coming weeks and months, COVID-19
may evolve a greater variety of functional variants, including functions related to transmissibility,
virulence, and even, eventually, vaccine escape. Functionally distinct strains of COVID-19 may
co-evolve or compete with one another.

Multiple-strain model with mutations. In Eletreby et al. (2020), we studied the (inhomogeneous)
multiple-strain2 model and characterized the spread and evolution of a pathogen on a contact
network. In particular, we i) developed a mathematical theory that characterizes the epidemic
threshold, expected epidemic size and the expected fraction of individuals infected by each strain;
ii) validated our results on a real-world contact network (a contact network among students, teach-
ers, and staff at a US high school (Salathé et al., 2010) and a contact network among professional
staff and patients in a hospital in Lyon, France (Vanhems et al., 2013)); and iii) provided a detailed

1A zoonosis is any disease or infection that is naturally transmissible from vertebrate animals to humans.
2At a high level, strains represent homogeneous groups within species (Balmer & Tanner, 2011) and they

generally possess unique features such as virulence, infectivity, growth rate, etc.
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analysis of the case in which co-infection is possible. The model considered in our work3 is partic-
ularly appropriate for pathogens with short infectious periods and high mutation and generation
rates, e.g., RNA viruses (Grenfell et al., 2004) such as COVID-19.

The multiple-strain model (Alexander & Day, 2010) can be briefly outlined for the two-strain
case as follows; cases with arbitrary number m of strains can be modeled similarly. Consider a
spreading process that starts with an individual, i.e., the seed, receiving infection (from an ex-
ternal reservoir) with strain-1 of a particular pathogen. The seed infects each of her contacts
independently with probability T1, called the transmissibility of strain-1. Once a susceptible in-
dividual receives the infection from the seed, the pathogen may evolve within that new host prior
to any subsequent infections. In particular, the pathogen may remain as strain-1 with probabil-
ity µ11 or mutate to strain-2 (that has transmissibility T2) with probability µ12 = 1 − µ11. If the
pathogen remains as strain-1 (respectively, mutates to strain-2) within a newly infected host, then
that host infects each of her susceptible neighbors in the subsequent stages independently with
probability T1 (respectively, T2). As the process continues to grow, if any susceptible individual re-
ceives strain-1, the pathogen may remain as strain-1 with probability µ11 or mutate to strain-2 with
probability µ12 = 1 − µ11 prior to subsequent infections. Similarly, if any susceptible individual
receives strain-2, the pathogen may remain as strain-2 with probability µ22 or mutate to strain-1
with probability µ21 = 1− µ22 prior to subsequent infections. The process continues to grow until
no additional infections are possible; see Figure 1. The key contribution of Eletreby et al. (2020) is
the mathematical theory that enables calculating the number of individuals who will be infected
by strain-1 and strain-2, respectively, as a function of the transmissibility parameters (i.e., T1 and
T2), mutation probabilities (i.e., µ11 and µ22), and the structure of the underlying contact network
(e.g., its degree distribution).

It is important to note that the transmissibilities and mutation probabilities represent average
values. In reality, the probability that individual A transmits the virus to individual B depends on
numerous factors, such as the number of times A and B interact within close physical proximity
and the amount of time A remains infectious. While the relatively simpler multiple-strain model
described above abstracts out these complexities through the use of the transmissibilities and mu-
tation probabilities, it can accurately compute quantities such as the probability that an epidemic
emerges, the epidemic threshold, and the final size of the epidemic (see, e.g., (Newman, 2002)) in
more complex models. On the other hand, the model involving transmissibilities does not capture
the time-varying behavior of the epidemic, such as the location and size of the epidemic peak. We
elaborate on models that can capture time-varying behavior in Section 4.

Modeling the contact network. In modeling the underlying contact network, we utilize random
graphs with arbitrary degree distribution generated by the configuration model (Molloy & Reed, 1995;
Newman et al., 2001). The configuration model generates random graphs with specified degree

3An important focus of Eletreby et al. (2020) was to understand the role of mutation and evolution in the
spread of information in social networks. The similarity between evolution of viruses and information was
inspired by the mechanism of natural selection. For example, a virus may go through a number of mutations,
which is mostly a random process. However, among them, the mutation that leads to highest infectiousness
may be “naturally selected” and become prevalent. A similar process can be envisioned for the spread of
information. Several people can attempt to modify a piece of information to make it more attractive, e.g., to
get more “likes" or “retweets". Then, it will be the audience who may “select” the most appealing version of
the information, and make it much more prevalent than others.
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Figure 1. The multiple-strain model for evolution. (a) The process starts with a single
individual, i.e., the seed, receiving infection with strain-1 (highlighted in orange) from an
external reservoir. (b) The seed infects each of her susceptible neighbors (highlighted in
green) independently with probability T1. (c) The pathogen mutates independently within
hosts. The pathogen remains as strain-1 with probability µ11 or mutates to strain-2 (high-
lighted in blue) with probability µ12. (d) Individuals whose pathogen has mutated to
strain-i infect their neighbors independently with probability Ti. (e) The pathogen mu-
tates independently within hosts. The pathogen remains as strain-2 with probability µ22 or
mutates to strain-1 with probability µ21. Figure (e) demonstrates the case where no second
mutation took place.

sequence (sampled from an arbitrary degree distribution), but are otherwise random, by taking a
uniformly random matching on the half-edges of the specified degree sequence. The model pro-
vides a tractable mathematical framework that allows the investigation of several key properties
related to the spreading process and how it interacts with the structure of the underlying graph, as
specified by its degree distribution. In addition, since the model could match the degree sequence
of real-world social networks, it would essentially generate graphs that resemble such real-world
networks to some extent.

3. UTILIZING THE MULTIPLE-STRAIN MODEL WITH MUTATIONS TO BETTER UNDERSTAND THE

SPREAD OF COVID-19.

As mentioned earlier, the main goal of this paper is to discuss potential ways that the model
and results in Eletreby et al. (2020) can help shed light on the spread of COVID-19. We believe
that the multiple-strain model of spreading processes can be utilized towards i) understanding
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the impact of potential mutations in COVID-19, and ii) assessing the impact of some mitigation
strategies (e.g., mask-wearing) on the spread of COVID-19. Below, we explain in more detail how
to achieve these goals, and present sample simulation results in Section 4.

3.1. Understanding the potential impact of mutations. In light of the discussion above, we be-
lieve it is of utmost importance to incorporate potential mutations and evolution into the mathe-
matical models used for predicting the future spread of COVID-19. This may help us better pre-
pare for different mutation scenarios, including worst-cases for the current or future pandemics.
For example, it may help us understand the effects of a new strain emerging with significantly
different spreading characteristics than existing ones. In Section 4, we provide several examples
from simulations under different mutation scenarios to demonstrate these ideas.

3.2. Understanding the impact of mitigation strategies. In addition to understanding the po-
tential impact of different mutation scenarios, we believe that the multiple-strain model (and the
accompanying results) can also help in evaluating the impact of some mitigation strategies imple-
mented to slow down the spread. At a high level, this is motivated by the intuitive similarity
between “a virus mutating and becoming less easy to infect individuals” and “people following
mitigation measures (e.g., social distancing, wearing masks, etc.) and thus becoming less easy to
contract the disease”. The analogy here is strengthened by the fact that those who do not obey mit-
igation strategies are more likely to infect each other (in a similar manner to carrying a different
strain of the virus) than those who are obeying the guidelines.

Below, we formally show how the impact of people wearing masks can be captured by the
multiple-strain model in Eletreby et al. (2020). In Section 4, we provide simulation results for a few
cases to demonstrate this analogy and show that the analytical results in Eletreby et al. (2020) can
be directly used to determine the probability of emergence under the mask model introduced below.

Mapping the impact of wearing masks to the mutation model. We introduce a potential ap-
proach to understand the impact of mask wearing through the mutation model introduced in
Eletreby et al. (2020). First, some notation is defined. Let TNN , TNM , TMN , TMM denote the proba-
bilities that an infectious individual will transfer the virus to each of their contacts in the network
(independently from each other) according to the four possibilities given below.

• TNN : probability that a non-mask-wearing individual infects a non-mask-wearing indi-
vidual.

• TMN : probability that a mask-wearing individual infects a non-mask-wearing individual.
• TNM : probability that a non-mask-wearing individual infects a mask wearing individual.
• TMM : probability that a mask-wearing individual infects a mask-wearing individual.

We remark that TNN , TMN , TNN , TMM represent average values of transmission probabilities
across the entire population based on mask-wearing behavior4. Intuitively, we have (e.g., see
Eikenberry et al. (2020), Ngonghala et al. (2020), Stutt et al. (2020))

TMM < TMN < TNM < TNN(3.1)

4To obtain a more accurate picture of the spreading dynamics, it might be important to take into account
the heterogeneity in the population that may lead to large variations in transmission probabilities; e.g., it was
shown that some people act as super-spreaders (Liu et al., 2020; Lloyd-Smith et al., 2005; Riou & Althaus,
2020).
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The assumption TMN < TNM can be explained as follows. The mask is likely to be useful in limit-
ing the droplets emanating from an infectious person, but not as effective in preventing a healthy
person catching the virus from a non-mask-wearing, infectious individual (Eikenberry et al., 2020).
Finally, we assume that each individual has a probability p of wearing a mask independently from
others. As a starting point, it is convenient to assume that mask-wearing behavior is independent
from the network structure. Future studies may focus on more complex cases to capture the no-
tion that if most of one’s friends are not wearing a mask, then he/she is also likely to not wear
a mask (and, vice versa). Henceforth, we refer to the spreading model with parameters p, TMM ,
TMN ,TNM , TNN described above as the mask model.

In the SIR/bond percolation model (Allard et al., 2009; Newman, 2002; Yağan et al., 2013), the
main parameter of interest is the transmissibility of the virus, which represents the mean probability
that an infectious person transfers the virus to a susceptible person. Here, the mean is taken due
to the fact that not every individual has the same contact frequency/behavior with each of their
neighbors in the network. In the formulation described above, we can define and calculate two
transmissibility parameters, one for mask-wearing individuals (say, T1) and one for non-mask-
wearing individuals (say, T2). Initially, the probability that a susceptible vertex wears a mask is
p, so we may compute the initial transmissibilities T1 and T2 by first conditioning on the mask-
wearing status of a susceptible neighbor and then taking an expectation:

T1 = TMM · p+ TMN · (1− p),
T2 = TNM · p+ TNN · (1− p).

(3.2)

With the ordering given at (3.1), we obtain T1 < T2. The parameters T1, T2 in (3.2) can be viewed
as the transmission probabilities of two different strains of the virus. Those wearing a mask are as-
sumed to be carrying strain-1 that has a smaller transmissibility than strain-2 carried by non-mask-
wearers. Next, we calculate the mutation probabilities; e.g., probability that an individual who is
infected by a strain-1-carrying individual (i.e., a mask-wearer) transmits to its contacts strain-2 of
the virus (i.e., transmits with the probability T2 associated with non-mask-wearers). For a newly
infected individual whose mask-wearing behavior is unknown, assume that we know the mask-
wearing behavior of the person who infected them. We can calculate the posterior probability of
this newly infected person wearing a mask as

P[newly infected is wearing a mask at time t | they were infected by a mask-wearer]

=
TMM ∗ p

TMM ∗ p+ TMN ∗ (1− p)
=: µ11.

In the mutation model of Eletreby et al. (2020), µ11 represents the probability that a person infected
by strain-1 of the virus remains in strain-1. In the mask model, the quantity µ11 has a potentially
useful meaning as well. In particular, each person infected by a mask-wearer will also be a wearing
a mask with probability µ11 (and not wearing a mask with probability µ12 = 1 − µ11). Put differ-
ently, for a mask-wearing infectious person, µ11 (respectively, µ12) represents the expected fraction
of mask-wearers (respectively, non-mask-wearers) among those that they infect.
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Following the same approach, it is easy to compute all four mutation probabilities and thus the
mutation probability matrix. We have

µ11 :=
TMM ∗ p

TMM · p+ TMN · (1− p)
,

µ12 :=
TMN · (1− p)

TMM · p+ TMN · (1− p)
,

µ21 :=
TNM · p

TNM · p+ TNN · (1− p)
,

µ22 :=
TNN · (1− p)

TNM · p+ TNN · (1− p)
.

(3.3)

This completes the analogy between the mask model and the multiple-strain model (Eletreby
et al., 2020), paving the way to understanding the transmission behavior of the virus while taking
into account mask-wearing behavior. To provide a concrete numerical example, if the parameters
of the mask model are

p = 0.8; [TMM TMN TNM TNN ] = [0.2 0.3 0.4 0.8],(3.4)

then the corresponding parameters for the multiple-strain model with mutations are given by

[T1 T2] = [0.22 0.48]; µ =

[
8/11 3/11

2/3 1/3

]
Using the analogy between the mask model and the multiple-strain model with mutations, we

can leverage the analytical results obtained in Eletreby et al. (2020) and Alexander and Day (2010)
to study the mask model. It is important to note that the two models are equivalent (with the
analogy introduced above) as long as the parameter p gives the probability that a susceptible indi-
vidual wears a mask throughout the spreading process. In other words, the analogy would lead
to exact results at the early stages of the spreading process, i.e., when the population is naive until
a significant fraction of the population becomes infected. After that point, we would expect the
fraction of susceptible individuals who wear a mask to increase as more people are infected (given
that non-mask-wearers are more likely to be infected than mask-wearers), making it necessary to
render the parameter p, and thus the mutation probabilities in (3.3) and transmissibilities in (3.2),
time-varying. Consequently, the probability that an epidemic emerges is the same in both models,
meaning that previous results on the mutation model (Alexander & Day, 2010; Eletreby et al., 2020)
can be directly used in calculating the probability of emergence in the mask model; see Section 3.3
for a formal discussion of this. Although the results of Eletreby et al. (2020) do not lead to exact
predictions for the expected size of the epidemic under the mask model, they can still be used to
obtain rough estimates for the epidemic size as we illustrate in Figure 6 in Section 4.

3.3. The probability of emergence. We now provide a formal argument to show that the ana-
lytical results from Alexander and Day (2010), Eletreby et al. (2020) on the mutation model yield
precise results for the probability of epidemic emergence under the mask model. Recently, Tian et
al. (2020) derived the probability that an epidemic emerges in the mask model by a direct analysis
of the model. We briefly review their results. Let {pk}∞k=0 be the degree distribution of the contact
network, where pk is the probability that a vertex has degree k. Let g be the probability generating
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function (PGF) for the degree distribution, defined by

g(z) :=

∞∑
k=0

pkz
k.

We also define the G to be the PGF for the excess degree distribution, defined by

G(z) :=

∞∑
k=0

kpk
〈k〉

zk,

where 〈k〉 =
∑∞
k=0 kpk is the mean degree. They showed that the PGF for the number of infected

neighbors of patient zero of each type (mask-wearing and non-mask-wearing) is given by

γM (s, t) = g(1− T1 + T1(sµ11 + tµ12)),

γN (s, t) = g(1− T2 + T2(sµ21 + tµ22))
(3.5)

where γM is the PGF if patient zero wears a mask, and γN is the PGF if patient zero does not wear
a mask. Similarly, the PGF for the number of infected neighbors of a later-generation infective of
each type is given by

ΓM (s, t) = G(1− T1 + T1(sµ11 + tµ12)),

ΓN (s, t) = G(1− T2 + T2(sµ21 + tµ22))
(3.6)

where, as before, ΓM is the PGF if the later-generation infective wears a mask, and ΓN is the
PGF if the later-generation infective does not wear a mask. Finally, using well-known results
from branching process theory, if (Q1, Q2) is the smallest non-negative solution of the equation
(s, t) = (ΓM (s, t),ΓN (s, t)), then we have (P1, P2) = (γM (Q1, Q2), γN (Q1, Q2)) where P1 (resp.,
P2) is the probability that the epidemic dies out in finite time if patient zero wears a mask (resp.,
does not wear a mask). The probability of emergence is the probability of the complement of the
aforementioned event, given by 1− P1 (resp., 1− P2) if patient zero wears a mask (resp., does not
wear a mask). A key insight from Tian et al. (2020) is that the PGFs in (3.5), (3.6) are the same PGFs
used in the derivation of the probability of emergence in a two-strain model with mutations with
transmissibilities T1, T2 and mutation probabilities µ. This shows that the probability of emergence
is the same in the mask model and the mutation model.

In Tian et al. (2020), the authors also derived the epidemic threshold. Define the matrices

T :=

(
TMM TMN

TNM TNN

)
and p :=

(
p 0

0 1− p

)
.

Then the basic reproduction number is given by

(3.7) R0 =

(
〈k2〉 − 〈k〉
〈k〉

)
ρ(Tp),

where ρ(Tp) is the spectral radius of Tp. Then, the epidemic threshold is expressed in the usual
manner through the basic reproduction number, with a positive probability of epidemic emergence
only if R0 > 1; if R0 < 1, the spreading process almost surely dies out without reaching a positive
fraction of the population.

It would be of interest to extend the results of Tian et al. (2020) and study a model that incor-
porates both mutations and the impact of mask-wearing. This would involve deriving a new set
of formulas for the PGFs of number of infected nodes under different strains and mask-wearing
behavior. It might be possible to accomplish this by extending (3.5)-(3.6) in combination with the
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corresponding formulas from Eletreby et al. (2020) to a new, and a more complicated, set of for-
mulas; e.g., we would need to have four formulas for the case with two viral strains. Another
interesting direction for future work would be to use a multi-layer contact network with layers
representing different types of relationships between nodes; e.g., co-worker, neighbor, school, etc.
This might help in understanding the impact of reducing, or entirely eliminating, the contact rate
in certain layers (e.g., by closing schools) in slowing down the spread of the virus.

4. SIMULATION RESULTS

In this section, we present some simulation results pertaining to the mutation model and mask
model. The goal of our simulations is to qualitatively illustrate how, in the case of the mutation
model, an unlikely but highly virulent strain of a virus can rapidly spread through a contact net-
work, and, in the case of the mask model, how the efficacy of masks and the fraction of mask-users
influences the spread of a virus. It is of special interest to understand how masks and viral muta-
tions can affect the spread of SARS-CoV-2, so we choose our simulation parameters to match that
of SARS-CoV-2. We emphasize that there is still much that is unknown about the spreading dy-
namics of COVID-19, particularly as to how asymptomatic individuals spread the virus. Thus our
results should be taken as a qualitative assessment of how the COVID-19 pandemic may change
and evolve.

We begin by reviewing our simulation model. As mentioned earlier, the mask and mutation
models abstract the complex mechanics of viral spreading into the transmissibility parameters,
which represent the probability that an individual eventually infects a given neighbor. While such
a model can be readily analyzed from a theoretical lens, it does not describe the time-varying
behavior of the epidemic (e.g., where the peak in cases occur, how long the epidemic persists
before the population recovers, etc.). To properly account for time-varying behavior, we assume
that the time it takes for an infected individual to transmit the virus to a neighbor is an Exp(r)

random variable, which is independent of all other randomness in the system. The parameter r is
the contact rate, which represents the average number of potentially viral-spreading interactions in
a given day. The contact rate may depend on the strain that is being transmitted, or could depend
on whether the host or target is wearing a mask. If we denote the infectious period, which is the
amount of time an infected person is contagious, by IP , the transmissibility of the virus is given
by

T = 1− e−IP ·r.

Parameter selection. The reproductive number, R0, of SARS-CoV-2 is estimated to be between
1.4 and 3.9 based on data from the earliest 425 confirmed cases in Wuhan, China (Li et al., 2020);
we will use the conservative estimate R0 = 4.0. The same authors estimate the serial intervals,
which is the average time between infections, to be 7.5 days. For our model, this implies that the
contact rate is r = 1/7.5 days−1. We next estimate the infectious period. There have been multiple
studies on the viral shedding period (Bullard et al., 2020; van Kampen et al., 2020; Wölfel et al.,
2020), which indicate that the median viral shedding period after the onset of symptoms is at most
8 days. A recent survey of epidemiological studies of COVID-19 by McAloon et al. (2020) showed
that the median time to symptom onset is 5 days. Since viral shedding can occur even before the
onset of symptoms (He et al., 2020), a conservative estimate of the median infectious period (the
amount of time for which an individual may infect others) is 13 days. Since the time between
infections is an exponential random variable with a mean of 7.5 days, the transmissibility can be
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(a) (b)

(c) (d)

Figure 2. Plots (a) and (c) compare the instantaneous and cumulative number of infec-
tions when µ12 = 0 and µ12 = 0.001, while plots (b) and (d) compare the instantaneous
and cumulative number of infections when µ12 = 0 and µ12 = 0.003. Though the differ-
ence in mutation probability is quite small, the infection curves have noticeably different
characteristics, such as the height and location of the epidemic peak.

computed as

T = 1− e−13/7.5 ≈ 0.8.

If we assume that the contact network as a Poisson(λ) degree distribution, (3.7) implies that R0 =

λT . If we use the conservative estimate R0 = 4, this shows that a reasonable approximation is
λ = 5; i.e., each individual interacts with 5 others, on average.

Emergence of highly contagious strains. We consider a scenario where there is initially a single
strain of the virus, but with some very small probability it may mutate into a highly contagious
strain. In our simulations, we set T1 = 0.3, T2 = 0.8, µ12 = 0, 0.001, 0.003 and µ22 = 1.0. We
simulated the epidemic on random networks with 5000 nodes and a Poisson(5) degree distribu-
tion. We conducted 1000 independent simulations, and averaged the time-varying behavior across
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(a) (b)

(c) (d)

Figure 3. Time-varying infection curves for various values of p, when cloth masks or sur-
gical masks are used. Plots (a) and (c) compare the instantaneous and cumulative infection
curves for various p when ε = 0.5 (cloth masks), while plots (b) and (d) compare the in-
stantaneous and cumulative infection curves for various p when ε = 0.2 (surgical masks).
We see that surgical masks significantly impede the spread of the virus compared to cloth
masks as the fraction of mask-wearers increases.

all experiments.5 Our results are displayed in Figure 2. There are several interesting phenomena
that are highlighted by these plots. While Strain 1 dominates the infection curve when µ12 = 0,
Strain 2 dominates Strain 1 by a wide margin even if µ12 is as small as 0.001; this margin is dra-
matically larger in the case where µ12 = 0.003. Hence even if there is a very small chance that a
virus could evolve into a highly contagious strain, it is likely in some cases that the more infectious
strain will spread the most. Our forthcoming conference publication (Sridhar et al., 2021) includes
simulations for additional transmissibilities which illustrate the same qualitative phenomenon.

5Specifically, the model is solved in continuous time, and the continuous-time curves are sampled at every
0.01 units of time (days, in this case) to generate the instantaneous and cumulative curves for each simulation.
These curves are then averaged over all the independent simulations.
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(a) (b)

Figure 4. Time-varying infection curves for various ε when p = 0.77. Plot (a) shows the
instantaneous infection curves, and plot (b) shows that cumulative infection curves. The
choice of ε significantly affects the peak height and location, with the epidemic essentially
dying out on its own when ε = 0, 0.2.

The impact of mask-wearing. As before, we assume that the contact rate between two non-mask-
wearing individuals is r = 1/7.5 days−1. When one or both of the individuals are wearing a mask,
the contact rate decreases since it is harder to transmit the virus. To make this idea more precise,
let εi denote the inward efficiency of a mask, defined to be the probability that the mask fails to block
the pathogen from coming inside the mask. Similarly, let εo denote the outward efficiency of a mask,
defined to be the probability that a mask-wearing individual transmits a pathogen to others. An
inward efficiency of εi = 0 implies that no pathogen can pass from the outside to the inside of a
mask, while εi = 1 means that the mask is useless at blocking pathogens from outside. Similar
interpretations hold for εo = 0, 1. Let rMM denote the contact rate between two mask-wearers, let
rMN denote the contact rate between mask-wearing infective and a non-mask-wearing neighbor,
with similar interpretations for rNM and rNN . We can then write

rMM = εiεor,

rMN = εor,

rNM = εir,

rNN = r.

Using the estimate IP = 13 days, we can compute the transmissibility TMM as

TMM = 1− e−εiεo 13
7.5 .

We can derive TMN , TNM , TNN through similar computations.
Several papers have assessed the effectiveness of different types of masks in preventing the

transmission of respiratory droplets; we refer the reader to the review in Eikenberry et al. (2020,
Section 2.3). For simplicity, we shall assume that the inward and outward efficiencies are the
same: ε = εi = εo. Based on the discussion by Eikenberry et al. (2020), a reasonable estimate of
ε is 0.5 if cloth masks are used, and 0.2 if surgical masks are used. Our first set of results can be
found in Figure 3, which shows how the infection curves change as the fraction of mask-wearers,
p, varies between 0 and 1 when cloth masks or surgical masks are used. In Figure 4, we display
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(a) (b)

(c)

Figure 5. The probability of emergence as a function of p and ε. Lines (marked as "theory")
correspond to analytical results from Eletreby et al. (2020) and Alexander and Day (2010)
corresponding to the mutation model, while the symbols are obtained by empirical sim-
ulation of the mask model. Plot (a) studies the probability of emergence as a function of
p when ε = 0.5 (cloth masks) and plot (b) does the same when ε = 0.2 (surgical masks).
Plot (c) considers the probability of emergence as a function of ε when p = 0.77. The
blue points/curves correspond to the case where patient zero wears a mask, and the red
points/curves correspond to the case where patient zero does not wear a mask. For the
most part, the empirical data matches the theoretical curves very well; we expect that the
few fluctuations are due to finite-sample effects.

the infection curves when we vary ε between 0 and 1 and fix p to be a constant. We set p = 0.77,
which was the estimated fraction of mask-wearers in New Jersey as of November 20, 2020 (“IHME:
COVID-19 Projections”, 2020). For all the plots in Figures 3 and 4, the curves shown are generated
by averaging over the infection curves of 100 independent simulations run on contact networks
with 5000 nodes and a Poisson(5) degree distribution. Additional simulations regarding the time-
varying behavior of the mask model can be found in (Sridhar et al., 2021).

Next, we compare the mask model to the analytic results of the corresponding mutation model.
In Figure 5, we study the probability of emergence as a function of p when cloth masks or surgi-
cal masks are used, as well as the probability of emergence as a function of ε. To generate the
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(a) (b)

(c)

Figure 6. Expected epidemic size as a function of p and ε. Lines (marked as "theory") corre-
spond to analytical results from Eletreby et al. (2020) corresponding to the mutation model,
while the symbols are obtained by empirical simulation of the mask model. Plot (a) studies
the expected epidemic size as a function of p when ε = 0.5 (cloth masks), and plot (b) does
the same for ε = 0.2 (surgical masks). Plot (c) considers the expected epidemic size as a
function of ε when p = 0.77. The blue points/curves are the fraction of individuals who
wear a mask and are eventually infected, the red points/curves are the fraction of indi-
viduals who do not wear a mask and are eventually infected and the black points/curves
are the total fraction of infected individuals (the sum of the red and blue). Although the
theoretical results of Eletreby et al. (2020) do not match the expected epidemic size in the
mask model, they have the same general trends. The most significant differences between
the empirical data and the theoretical predictions are in plot (b).

plots in Figure 5, we conducted 10,000 independent simulations on contact networks with 50,000
nodes and a Poisson(5) degree distribution. To obtain the empirical estimates of the probability of
emergence, we counted the fraction of simulations where the epidemic infected at least 5% of the
population. We see a good fit between the empirical and theoretical values; while there are a few
deviations, we expect that these are due to finite-sample effects. Finally, we study the expected
size of the epidemic as a function of p as well as ε in Figure 6. To generate the empirical data in this
figure, we ran 100 independent simulations on contact networks with 5000 nodes and a Poisson(5)
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degree distribution. If the epidemic did not infect more than 5% of the population, we threw out
the simulation result and re-ran the simulation until it infected more than 5% of the population.
This allowed us to estimate the expected epidemic size conditioned on the ultimate survival of the
epidemic.

While the analytical predictions from the mutation model do not match the empirical results
from the mask model perfectly concerning the expected epidemic size, they still provide a ballpark
estimate and can potentially be useful. As explained before, the mismatch can be attributed to
the fact that the fraction p of the mask-wearers among the susceptible population changes over
time as the pathogen spreads to a significant fraction of the population, leading to a change in
the mutation probabilities from the values calculated via (3.3). Further simulations in Sridhar et al.
(2021) show that, in some cases, even though the expected size of the epidemic differs in the mask
and mutation models, the time-varying behaviors of the two models are very close in the earlier
stages of the epidemic propagation.

5. CONCLUSION

The COVID-19 pandemic has claimed hundreds of thousands of lives along with disrupting
the lives of billions. A key scientific goal towards helping with the fight against COVID-19 is
to develop mathematical models to understand and predict its spreading behavior, as well as to
assess the effectiveness of mitigation strategies implemented to limit its spread.

In this paper, we discuss how the multiple-strain epidemic model with mutations studied in
Eletreby et al. (2020) can help address key questions concerning the spread of COVID-19. High-
lighting the recent reports on a mutation of SARS-CoV-2 that is believed to be more transmissible
than the original strain, we discuss the importance of incorporating mutation and evolutionary
adaptations in epidemic models. We also demonstrate how the results of Eletreby et al. (2020)
can be used to assess the effectiveness of mask-wearing in limiting the spread of COVID-19. We
present simulation results on a few sample cases to demonstrate our ideas and the utility of the
findings of Eletreby et al. (2020) in the context of COVID-19.

We believe that this paper may stimulate more research efforts on incorporating virus mutation
and evolutionary adaptations in epidemic models. We also expect that the analogy established
here between the mutation model and the mask model can help facilitate sound assessment of the
effectiveness of masks in mitigating the spread of COVID-19.
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