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Abstract—The study of spreading processes on complex net-
works has gained significant attention recently. For example,
bond percolation models considering population heterogeneity
have been used to provide insights into disease spread and
misinformation control. However, most of these studies focus
on single-layer contact networks. In our work, we examine
how the spreading process is impacted by the existence of
multiple contact network layers, considering layer-dependent
population heterogeneity from a principled, mathematical per-
spective. Using SIR dynamics, we derive expressions for three
key epidemiological measures: the probability of emergence, the
epidemic threshold, and the expected epidemic size. Through
extensive simulations, we demonstrate that our analytical results
match the numerical results near-perfectly in the finite node
regime. These findings reveal the interplay among the multi-
layer network structures, transmission dynamics, and popu-
lation heterogeneity in determining the final outcome of the
spreading process. Furthermore, we investigate the impact of
layer-dependent population heterogeneity and identify important
factors for developing effective and economical layer-oriented
spreading control strategies. Overall, our work provides insights
into developing and analyzing mitigation and control strategies
for disease spread and information diffusion across multi-layer
complex networks.

Index Terms—Heterogeneous bond percolation, Branching
Process, Population Heterogeneity, Multi-layer networks, Net-
work Epidemics

I. INTRODUCTION

The attention towards studies on spreading processes over
complex networks has grown in recent years, driven by the
impact of pandemics like COVID-19 and SARS, as well as
concerns regarding misinformation diffusion [2]. Researchers
have extensively examined mathematical models over complex
networks to provide insights into the dynamics of spreading
pathogens or information [3]–[6]. The susceptible-infectious-
recovered (SIR) compartmental model, in particular, has re-
ceived significant interest due to its ability to capture the
propagation of both pathogens and information [7]–[9]. Ad-
ditionally, its steady-state analysis is closely linked to bond-
percolation over networks [9], [10].

More recently, there has been interest on studying the
SIR spreading process with increasing complexity of the
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underlying contact network (e.g., clustered networks [11]–[13]
and multi-layer networks [8], [14], [15]) and the heterogeneity
[9], [16] of the population. For example, Tian et al. [16]
investigated a SIR model with population heterogeneity that
manifest from different types of masks that the individuals in
the population might be wearing. More broadly, population
heterogeneity can also arise from factors such as age, gender,
socio-economic status, and access to healthcare and other
resources [17]–[19] in the population. In the context of infor-
mation diffusion, population heterogeneity becomes relevant
as individuals may exhibit different tendencies in accepting
and transmitting information based on their personalities and
fact-checking behaviors [2], [20]. Allard et al. [7] also studied
the SIR model with population heterogeneity and showed that
their steady-state can be analyzed through a semi-directed
bond percolation model.

This paper is motivated by the fact that most studies on
spreading processes with population heterogeneity consider
single-layer networks. However, most real-world spreading
processes take place over multi-layer networks. In viral spread-
ing, different layers might represent viral spreading paths in
different environments, e.g., community, school, workplace,
etc, each with a different rate of viral transmissibility [21].
Similarly, (mis)information tends to spread over multiple so-
cial media platforms, each with different rates and dynamics
of propagation. To the best of our knowledge, there have
only been a few prior efforts [7], [22] on studying the SIR
model while incorporating both population heterogeneity and
the multi-layer nature of the contact network. Bongiorno and
Zino [22] proposed a model that incorporates both population
heterogeneity and a multi-layer contact network, but they
do not provide mathematical analysis for the three epidemic
quantities and instead rely on simulation results. The work
by Allard et al. [7] considers multi-type networks with ar-
bitrary joint degree distribution. However, their work does
not provide a detailed analysis of the impact of multi-layer
network structures and the associated multi-layer transmission
dynamics on the final spreading results. Our preliminary work
[1] studied the multi-layer mask model, which takes into
account both population heterogeneity and multi-layer contact
network. However, it only considers layer-independent popu-
lation heterogeneity and thus lacks the capability to investigate
mitigation strategies that target specific layers, e.g., in some
regions, masks are mandated at school but not communities
during pandemics [23].
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Inspired by these, our main contribution is to provide a
thorough analysis of the spreading process in a class of
multi-layer networks considering layer-dependent population
heterogeneity. For illustrative purposes, we suppose popu-
lation heterogeneity results from different types of masks
(with different efficiencies) that individuals are wearing in
the viral spreading context; we also reserve one mask-type to
represent individuals who do not wear any mask. We present
the analytical solution of the multi-layer mask model for
three key epidemiological quantities: probability of emergence
(PE), epidemic threshold, and expected epidemic size (ES).
Epidemics refer to large-scale spreading events such as viral
pandemics or information memes. The emergence of epidemics
represents situations where the spreading process leads to a
positive fraction of the population being infected in the limit of
the number of nodes going to infinity. Our analytical solutions
disentangle the impact of multiple factors, including the multi-
layer network structure, transmission dynamics, and layer-
dependent population heterogeneity distribution, on these three
quantities of interest.

Utilizing the analytical results, we first compare the dy-
namics of multi-layer networks and their monoplex (single-
layer) projections. There has been recent interest [15] in
understanding whether monoplex projection of a multi-layer
network can still capture the essential properties of a spreading
process. We find that projecting a multi-layer network into
a single-layer network leads to significant differences in the
dynamics warranting a separate multi-layer network structure
analysis. Second, we explore layer-dependent population het-
erogeneity by investigating layer-oriented mitigation control
policies. A comparison metric quantifying the expected cost
of mask allocation is proposed and has been shown useful in
characterizing different layer-oriented mitigation policies. We
identify the transmission power of each layer in the multi-
layer contact network, and the participation rate of nodes
in the secondary layer as two crucial factors in developing
effective and economical mitigation strategies. We believe
these results provide fundamental insights into the spreading
process over multi-layer complex networks when taking into
account population heterogeneity. Thus, they might help de-
velop mitigation and control strategies for disease spread and
information diffusion.

The structure of this paper is as follows. In Sec. II, we
formally describe the multi-layer contact network model and
the layer-dependent population heterogeneity model. Sec. III
contains our theoretical analysis, where we derive expressions
for the probability of emergence, the epidemic threshold, and
the expected size of the epidemic. Our theoretical results are
verified in Sec. IV, where our analytical results show a near-
perfect match with the simulation results. Sec. V compares the
single-layer and multi-layer networks. Sec. VI explores layer-
dependent population heterogeneity by investigating several
layer-oriented mitigation control strategies. Finally, we con-
clude and discuss future avenues of research in Sec. VII.

II. MODEL

A. Contact network model

Next, we introduce the multi-layer contact network model.
For simplicity, we present a two-layer network model that
can generalize to networks with more than two layers. We
consider a two-layer contact network generated as follows.
Consider a population of size n with individuals labeled as
N = {1, . . . , n}. An edge exists between two nodes if there is
a chance to transmit the spreading item (e.g., a piece of news,
a virus) between them once in contact. The pattern of these
potential transmission-causing contacts forms a network. Let C
represent the first contact layer defined on the node set N . Let
S represent the second contact layer with the assumption that
each node in N is a member of S with probability α ∈ (0, 1].
Formally, we let

P [i ∈ NS ] = α, i = 1, . . . , n (1)

where NS denotes the set of individuals who also participate
the school layer. Edges belonging to network C (resp., S) are
noted as type-c (resp. type-s) edges.

We generate network C and S independently via the config-
uration model in line with prior work on stochastic epidemic
models [24], [25]. In other words, the network topology is
generated randomly from the given degree distribution. The
degree distributions for C and S are given as {pck} and {psk},
where k = 0, 1, .... pck (resp. psk) denotes the probability
that an arbitrary node on network C (resp. S) has degree
k, i.e., it is connected to k other nodes via an undirected
type-c (resp. type-s) edge. We assume the degree distributions
are well-behaved, i.e., their moments of arbitrary order are
finite [25] (e.g., Poisson degree distributions, power law degree
distributions with exponential cut-off, etc.).

We describe the procedure of generating layer C given
its degree distribution {pck} using the configuration model.
Generation of layer S is similar. First, we draw a set of random
numbers of size n from the degree distribution {pck}, denoted
as {kic}, i = 1, ..., n. Stubs of type-c edges emerging from
node i is given as kic. Then we randomly choose pairs of
these stubs and place edges on the graph joining them up.
This requires the sum

∑n
i=1 k

i
c to be even because each edge

added to the graph must have two ends. We draw a new set
if the set {kic} sum to an odd number.

After generating layer C and layer S independently, the
multi-layer network H is formed by taking the disjoint union
of C and S, i.e., H = C

∐
S. In this setting, an arbitrary node

i in N will have a colored degree represented by an integer
vector di =

[
kic, k

i
s

]
, where kic (resp., kis) stands for its number

of type-c edges (resp. type-s). The colored degree distribution
for node i is thus given by:

pdi =
(
αpcki

s
+ (1− α)1

[
ki
s = 0

])
· pski

c
, di =

(
ki
c, k

i
s

)
. (2)

where the term (1−α)1
[
kis = 0

]
accounts for the case where

node i is not a member of layer S, and its number of type-
s edges is automatically zero. Following, we denote random
graphs C and S as C(n, {pck}) and S(n;α, {psk}), respectively.
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B. Layer-dependent population heterogeneity

In their seminal work [9], Newman studied the SIR
(susceptible-infectious-recovered) model over a contact net-
work generated by the configuration model through bond
percolation theory. Newman’s model captures complex vi-
ral transmission mechanisms via the average transmissibility
parameter T. Many works have since incorporated various
node-level heterogeneity based on Newman’s model [1], [16],
[18], among which Tian and Yağan [1] studied a SIR model
with layer-independent population heterogeneity over multi-
layer networks. Specifically, they study a two-layer contact
network, where each layer is denoted as layer-C and layer-S,
respectively. They assume separate baseline transmissibilities
Tc and Ts for layer-C and layer-S. In other words, Tc and Ts

are the probability of transmission (i.e., transmissibility) over
type-c and type-s edges, respectively. Population heterogeneity
is modeled via the inward and outward efficiency of different
types of masks that individuals might wear. Assuming that
there are M types of masks, the mask distribution is given
by p = {p1, ..., pM} where pi represents the fraction of
individuals who wear masks of type-i. Let ϵout,i (resp. ϵin,i)
denote the outward (resp. inward) efficiency of mask type-i,
where 0 ≤ ϵout,i ≤ 1 and 0 ≤ ϵin,i ≤ 1 for all 1 ≤ i ≤ M .
Two transmissibility matrices Tc and Ts, each of size M×M ,
represent all possible transmissibilities over layer C and S,
respectively. More specifically,

Tc[i, j] = (1− ϵout,i) (1− ϵin,j)Tc, 1 ≤ i, j ≤ M (3)

Ts[i, j] = (1− ϵout,i) (1− ϵin,j)Ts, 1 ≤ i, j ≤ M (4)

where Tc[i, j] (resp. Ts[i, j]) gives the probability that,
an infected node wearing a type-i mask transmits the
virus/information to a susceptible node wearing a type-j mask
given that they are connected by a type-c (resp. type-s) link.

Assumptions are made regarding population heterogeneity
and the corresponding transmission dynamics in Ref. [1].
Mask distribution is assumed to be independent of the net-
work structure and the spreading process. Each node keeps
a consistent mask choice across layers. However, in real life,
population heterogeneity can be correlated with the network
structure. For example, there were times and regions where
surgical masks were mandated in schools but not in com-
munities during the COVID-19 pandemic [23]. Similarly, in
information spreading, some people are more willing to speak
out (or be silent) online than in real life, or vice versa [26].
Modeling layer-dependent population heterogeneity will thus
provide a better understanding of the role of the multi-layer
network structure in the spreading processes, and assist in
developing layer-specific control strategies in mitigating a
spreading process.

In this work, we incorporate layer-dependent population
heterogeneity by associating node type with the node’s layer-
dependent mask-wearing behavior. In other words, nodes can
exhibit different mask-wearing behaviors in different layers of
contact networks. In particular, given M ≥ 1 different types of
masks, an arbitrary node v in the population N is type-ij if it
wears a type-i mask in layer-C and a type-j mask in layer-S.
This will lead to M2 node types in total, with the node type

distribution given as m = {mij}, 1 ≤ i, j ≤ M . Individual
node type is independently drawn from this distribution. We
assume the node type is pre-assigned before the spreading
process starts. We also assume that node type is independent
of the multi-layer network structure and does not depend on
whether the node participates in layer-S. We shall see that
pi =

∑M
j=1 mij .

For integers 1 ≤ i, j, r, t ≤ M , the transmissibility from
a type-ij infected node to a type-rt susceptible node is thus
given by: (1−ϵout,i)(1−ϵin, r)Tc if the transmission occurs via
a type-c edge, and (1− ϵout,j)(1− ϵin, t)Ts if the transmission
occurs via a type-s edge.

Even though there are M2 node types, M ×M (rather than
M2×M2) possible transmissibilities exist on each layer. This
is because the transmissibility for an infectious-susceptible
node pair only depends on the corresponding mask types and
the baseline transmissibility given the edge type that connects
them. Therefore, we continue using the same Tc and Ts

in (3) and (4) to represent all possible transmissibilities for
each layer, but with extended semantics in usage. Specifically,
for a type-ij infected node, it transmits the spreading item
to a type-rt susceptible node with probability Tc[i, r] if the
transmission occurs over a type-c edge, as with probability
Ts[j, t] if the transmission occurs over a type-c edge, where

Tc[i, r] = (1− ϵout,i) (1− ϵin,r)Tc, 1 ≤ i, r ≤ M (5)

Ts[j, t] = (1− ϵout,j) (1− ϵin,t)Ts, 1 ≤ j, t ≤ M (6)

III. ANALYTICAL RESULTS

This section presents the derivation of the probability of
emergence (PE), the epidemic threshold, and the expected
epidemic size (ES). Emergence is defined as the event where
the spreading process leads to a positive fraction of the infected
population in the limit of the number of nodes n going
to infinity. Epidemics refer to large-scale spreading events
such as viral pandemics or information memes. Formally,
with S(n) denoting the final fraction of infected nodes in
the population size of n, the probability of emergence with
a random initiator is given by PE = limn→∞ P[S > 0].
Further, we are also interested in the epidemic threshold that
separates the parameter space where limn→∞ P[S > 0] = 0
from those that yield limn→∞ P[S > 0] > 0. Finally, we
compute the expected epidemic size when they take place,
i.e., limn→∞ E[S|S > 0].

A. Probability of Emergence and Epidemic Threshold

Consider random graphs C(n, {pck}) and S(n;α, {psk}) as
introduced in Section II-A. In order to study the viral trans-
mission in the multi-layer network H = C

∐
S, we consider

a branching process that starts by giving the pathogen to an
arbitrary node and the recursively identify the set of nodes
that are reached and infected by exploring its neighbors. As
mentioned in Section II-B, a type-ij infected node transmits
the pathogen to a type-rt susceptible neighbor with probability
Tc[i, r] = Tc(1−ϵi,out)(1−ϵr,in) if the link connecting them
is type-c (or, with probability Ts[j, t] = Ts(1−ϵj,out)(1−ϵt,in
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if the link between them is type-s), independently from all
other neighbors.

The survival probability of the aforementioned branching
process is derived through a mean-field approach utilizing
the method of generating functions [9], [25]. For integers
1 ≤ i, j, r, t ≤ M , let hc,ij(x) (resp. hs,ij(x)) denote the
generating function for “the finite number of nodes reached
and infected by following a randomly selected type-c (resp.
type-s) edge coming from a type-ij infected node.” Put differ-
ently, we have hc,ij(x) =

∑∞
m=0 vmxm where vm denotes the

“probability that an arbitrary type-c edge coming from a type-
ij infected node leads to a component of size m.” Similarly, let
Hij(x) denote the generating function for “the finite number of
nodes reached and infected by following a randomly selected
type-ij node.”

Now we derive hc,ij(x) and hs,ij(x). For integers 1 ≤
i, j, r, t ≤ M , we find that the following 2M2 self-consistency
equations hold:

hc,ij(x) =

M∑
r=1

M∑
t=1

mrt

(
1−Tc[i, r] (7)

+Tc[i, r]x
∑
d

pdkc
⟨kc⟩

hc,rt(x)
kc−1

hs,rt(x)
ks

)

hs,ij(x) =

M∑
r=1

M∑
t=1

mrt

(
1−Ts[j, t] (8)

+Ts[j, t]x
∑
d

pdks
⟨ks⟩

hc,rt(x)
kchs,rt(x)

ks−1

)
We now explain each term in (7). Consider an infected type-ij
node, say node v, and consider a type-c edge incident on it.
We condition on the type of the node on the other end of this
edge, say node u. Since the node type assignment is completed
before the spreading process and is drawn independently
for all the nodes, the direct neighbor node u is of type-rt
with probability mrt. Conditioning on node u being type-
rt, it will become infected through the type-c edge from
v, with probability Tc[i, r]. If the transmission fails with
probability 1−Tc[i, r], then node v will have zero offspring
through this edge to u, which explains the first part of (7).
If the transmission is successful with probability Tc[i, r], the
number of nodes reached and infected by node v increases by
one (i.e., node u). This is captured by the multiplicative term
x in the second half of (7). Additionally, the total size of this
branch will also include all subsequent nodes that are reached
and infected by u, which leads to the following term:∑

d

pdkc
⟨kc⟩

hc,rt(x)
kc−1

hs,rt(x)
ks .

This term is explained as follows. First, we condition on
the colored degree of node u, i.e., number of edges in both
network layers. The term pdkc/⟨kc⟩ gives the probability that
the colored degree of u is d [9]. It is the normalized probability
that a type-c edge is attached to a node at the other end with
colored degree d = (kc, ks). Therefore, following the type-c
edge from v that reaches u, u can infect other nodes with
the remaining kc − 1 edges of type-c and ks edges of type-
s. Recall that the number of nodes reached and infected by a

type-rt node by following a type-c (resp. type-s) edge attached
is generated by hc,rt (resp. hs,rt). Collecting all the sub-
branches, we obtain the term hc,rt(x)

kc−1
hs,rt(x)

ks utilizing
the powers property of generating functions [25]. The validity
of (8) can be seen in a very similar way and is omitted here
for brevity.

Utilizing (7) and (8), we now derive the generating function
Hij(x) for the entire size of the branching process. For 1 ≤
i, j ≤ M , we have

Hij(x) = x
∑
d

pdhc,ij(x)
kchs,ij(x)

ks (9)

Here, the factor x corresponds to the initial node selected
arbitrarily and infected. The selected node has colored degree
d = (kc, ks) with probability pd. The number of nodes it
reaches and infects by each of its kc (resp. ks) links of type-c
(resp. type-s) is generated through hc,ij(x) (resp. hs,ij(x)).
Summing over all the possible colored degrees, we obtain (9).

With (7)-(9) in hand, the generating function Hij(x) can
be computed in the following manner. Given any x, we can
solve for the recursive relations (7)-(8) to obtain hc,ij(x) and
hs,ij(x) for integers 1 ≤ i, j ≤ M , which in turn will yield
Hij(x) for integers 1 ≤ i, j ≤ M in light of (9).

We are interested in cases where the number of nodes
reached and infected by the initial node is infinite, representing
cases where a randomly chosen infected node triggers an
epidemic. The conservation of probability property of gener-
ating functions indicates that there exists a trivial fixed point
hc,ij(1) = hs,ij(1) = 1 (yielding Hij(1) = 1) when the
number of nodes reached and infected is always finite. In other
words, the underlying branching process is in the sub-critical
regime, and all infected components have finite size. However,
the fixed point hc,ij(1) = hs,ij(1) = 1 may not be a stable
solution to the recursion (7) to (9).

We can check the stability of this fixed point by the lin-
earization of recursion (7) to (9) around hc,ij(1) = hs,ij(1) =
1, 1 ≤ i, j, r, t ≤ M . This yields the Jacobian matrix J with

the form J =

[
Jcc Jcs

Jsc Jss

]
2M2×2M2

in which

Jcc(a, b) =
∂hc,ij(1)

∂hc,rt(1)
; Jcs(a, b) =

∂hc,ij(1)

∂hs,rt(1)

Jss(a, b) =
∂hs,ij(1)

∂hs,rt(1)
; Jsc(a, b) =

∂hs,ij(1)

∂hc,rt(1)

(10)

where a = M2D(i, j), b = M2D(r, t), 1 ≤ i, j, r, t ≤ M .
M2D is an M -base to 10-base converter to map the tuple
ij, 1 ≤ i, j ≤ M to an integer ranging from 1 to M2 for the
ease of matrix indexing. The four sub-matrices in (10), i.e.,
Jcc to Jss are each of the shape M2 × M2. For example,
when we consider taking the derivative of hc,ij(x) in (7) with
respect to one of its inputs hc,rt(x) when x = 1 (denoted
by ∂hc,ij(1)

∂hc,rt(1)
), the result corresponds to an element in the

matrix Jcc with coordinates (a, b), where a = M2D(i, j)
and b = M2D(r, t) are integers within 1 ≤ a, b ≤ M2.
Without loss of generality, we place the order of the four sub-
matrices Jcc to Jss as above. Swapping the locations of the
sub-matrices will not change the spectral radius of J because
two of the sub-matrices can always commute and thus share
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the same polynomial characteristics based on [27, Thm 3]. We
will use this property again to show PE and ES share the same
transition points later in Appendix Sec. A.

If all eigenvalues of J are less than one in absolute value,
i.e., if the spectral radius ρ(J) of J satisfies ρ(J) ≤ 1, then
the solution hc,ij(1) = hs,rt(1) = 1 is stable and Hij(1) = 1
becomes the physical solution for all 1 ≤ i, j ≤ M . In this
case, the fraction of infected nodes will tend to zero as the
number of nodes n goes to infinity. In contrast, if ρ(J) > 1,
the trivial fixed point is not stable, which indicates that the
branching process is in the supercritical regime; i.e., there is
a positive probability that the branching process will lead to
an infinite component. In this case, the fraction of nodes that
are infected will be strictly greater than zero as as the number
of nodes n goes to infinity.

When ρ(J) > 1, a nontrivial fixed point exists and be-
comes the attractor of the recursions (7) to (9), leading to
a solution with hc,ij(1), hs,ij(1) < 1 which in turn yields
Hij(1) < 1. In that case, 1−Hij(1) gives the probability that
the spreading process initiated by a seed node of type-ij yields
an epidemic. Recall that S denotes the final fraction of infected
nodes. The probability of epidemic emergence PE (with a
random initiator) is thus given by PE = limn→∞ P[S >
0] =

∑M
i,j=1 mij(1 − Hij(1)). Finally, we conclude that

the epidemic threshold, i.e., the boundary that separates the
parameter regions where limn→∞ P[S > 0] = 0 from those
that yield limn→∞ P[S > 0] > 0 is given by ρ(J) = 1.

To further look into the implications of (10), utilizing (7)
to (8), we have

Jcc =
[
λcc ·T′

c ·m
]
; Jcs =

[
λcs ·T′

c ·m
]

Jsc =
[
λsc ·T′

s ·m
]
; Jss =

[
λss ·T′

s ·m
]

λcc =

〈
k2
c

〉
− ⟨kc⟩

⟨kc⟩
, λcs =

⟨kcks⟩
⟨kc⟩

λss =

〈
k2
s

〉
− ⟨ks⟩

⟨ks⟩
, λsc =

⟨kcks⟩
⟨ks⟩

(11)

where Tc
′[a, b] = Tc[i, r], Ts

′[a, b] = Tc[j, t],m =
diag(m),where m[a, a] = m[i, j], a = M2D(i, j), b =
M2D(r, t), 1 ≤ i, j, r, t ≤ M . Here m is a diagonal matrix
of the node type distribution m = {mij}. In matrix Tc

′

(resp. Ts
′), each element in Tc (resp. Ts) will be at least

duplicated for M2 times. T′
c and T′

s are functions of the
mask efficiencies and baseline transmissibilities, encoding
all possible transmission scenarios when taking into account
layer-dependent population heterogeneity over layer-C and S,
respectively. Note T′

c and T′
s are not symmetric unless Tc

and Ts are symmetric, which only holds on when 1 − ϵout
and 1 − ϵin are colinear.

Observe that the four sub-matrices of J in (11) follow
the same pattern, i.e., they are composed of three parts
from left to right: i) a parameter that attributes the multi-
layer network structure; ii) a heterogeneous edge-type and
node-type dependent transmissibility term; and iii) a node
type distribution term. This result disentangles the impact of
multiple factors on the final state of the spreading process: the
degree distribution of different layers of the contact network

as a whole, viral transmission dynamics, and layer-dependent
population heterogeneity.

In the special case where population heterogeneity is layer-
independent, Tc and Ts are rank-1 and can be decomposed
into Tc · ϵout · ϵin⊤ and Ts · ϵout · ϵin⊤, respectively. In
other words, the node type here is not correlated with the
network structure, and ϵout · ϵin⊤ is a property of each
type of masks. The Jacobian matrix for the layer-independent
population heterogeneity can be further simplified as follows:[[

Tc

Ts

]
·
[

λcc λcs

λsc λss

]]
⊗

(
(1 − ϵout) · (1 − ϵin

⊤) · p
)

(12)
where p = diag(p) (recall p is mask type distribution), and
⊗ is the Kronecker product sign. The spectral radius ρ(J) is
thus

ρ

([
Tc

Ts

]
·
[

λcc λcs

λsc λss

])
·ρ
(
(1 − ϵout) · (1 − ϵin

⊤) · p
)

(13)
The expression (13) further disentangles the network-related

and mask-related factors and shows the trade-off between them
upon the critical behavior of the spreading process. From
(13), it is straightforward to derive the spectral radius for
the single layer network that has degree distribution {pk}
with mean degree ⟨k⟩ and baseline transmissibility T with
population heterogeneity by the same set of masks. Namely,
(14). This expression was obtained in [18] for single-layer
contact networks.

ρ(Jsingle-layer) =
⟨k2⟩ − ⟨k⟩

⟨k⟩ · T · ρ
(
(1 − ϵout) · (1 − ϵin

⊤) · p
)

(14)

B. Expected epidemic size

In this section, we compute the expected size of epidemics
when they take place, i.e., limn→∞ E[S | S > 0]. We will
also compute the fraction of infected nodes in each type. Our
approach is similar to that used in [1], [4], [5], [18], [28]. Since
the multi-layer network H is locally tree-like as the network
size approaches infinity [29], we can consider it as a tree-
structure, where there is a single node of type-ij at the top
level (referred to as the root). We label the levels of the tree
from ℓ = 0 at the bottom to ℓ = ∞ at the top. Without loss
of generality, we assume that the spreading event starts at the
bottom of the tree and proceeds toward the top. In other words,
we assume that a node at level ℓ+1 can only be infected by one
of its neighbors in level ℓ. Let qijc,ℓ (respectively, qijs,ℓ) denote
the probability of a type-ij node at level ℓ who is connected
to its parent at level ℓ+1 through a type-c (respectively, type-
s) edge is not infected. Our goal is to compute qij∞ which
represents the probability that the root node, which is of type-
ij, is not infected. Given that the root node is arbitrary, qij∞
also gives the expected fraction of type-ij nodes that will not
be infected during the spreading process. Put differently, we
have limn→∞ E[Sij | S > 0] = 1− qij∞ with Sij denoting the
fraction of nodes of type-ij that are infected in the spreading
process; we also have E[S] =

∑M
i,j=1 mijE[Sij ].
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Now we derive qijc,ℓ and qijs,ℓ in a recursive manner. For each
i, j = 1, . . . ,M , we find that

qijc,ℓ+1 =
∑

d=(kc,ks)

pdkc
⟨kc⟩

fij(qc,ℓ, qs,ℓ, kc − 1, ks) (15)

qijs,ℓ+1 =
∑

d=(kc,ks)

pdks
⟨ks⟩

fij(qc,ℓ, qs,ℓ, kc, ks − 1) (16)

where qc,ℓ = [q11c,ℓ, q
12
c,ℓ, ..., q

MM
c,ℓ ], and

fij(qc,ℓ, qs,ℓ, kc, ks) =(
M∑
r=1

M∑
t=1

mrt(1−Tc[r, i] + qrtc,ℓTc[r, i])

)kc

·

(
M∑
r=1

M∑
t=1

mrt(1−Ts[t, j] + qrts,ℓTs[t, j])

)ks

(17)

In order to see why (15) holds, let u be a type-ij node at
level ℓ+1 who is connected to its unique parent at level ℓ+2
with an edge of type-c. As already mentioned, qijc,ℓ+1 gives the
probability that u is not infected. As before, we first condition
on the colored degree of u being d = (kc, ks) which has
probability pdkc

⟨kc⟩ . Under the assumption that nodes can only
be infected by neighbors in the layers below, node u can be
infected through either one of kc − 1 edges of type-c and ks
edges of type-s in layer ℓ (given that one of its type-c edges
is used to connect it to the parent node in layer ℓ + 2). We
establish (15) by noting that fij(qc,ℓ, qs,ℓ, kc, ks) represents
the probability that a type-ij node with kc edges of type-c
and ks edges of type-s with nodes in layer ℓ is not infected.
The expression (16) can be seen to hold similarly.

We now explain why (17) holds. For a node with kc
edges of type-c and ks edges of type-s in layer ℓ to be
not infected, it should not receive the pathogen from any
of these neighbors. Given the independence of infection
events, we see that fij(qc,ℓ, qs,ℓ, kc, ks) should be of the form
fij(qc,ℓ)

kcfij(qs,ℓ)
ks with fij(qc,ℓ) (respectively, fij(qs,ℓ))

defined as the probability that a type-ij node with only one
edge of type-c (respectively, type-s) with nodes in layer ℓ is
not infected. In order to compute fij(qc,ℓ), we condition on
the type of the node that is connected in layer ℓ, which is type-
rt with probability mrt. Then, we note that a type-ij node in
layer ℓ + 1 will be infected by a type-rt neighbor in layer ℓ
that it is connected via a type-c link if both of the following
events hold: the node in layer ℓ is infected, which happens
with probability (1 − qrtc,ℓ), and the pathogen is transmitted
from the node in layer ℓ to its parent in layer ℓ + 1, which
happens with probability Tc[r, i]. Collecting, we see that the
probability of a type-ij node in layer ℓ+1 to be not infected
by a type-rt neighbor in layer ℓ that it is connected via a
type-c is given by

1− (1− qrtc,ℓ)Tc[r, i] = 1−Tc[r, i] + qrtc,ℓTc[r, i]

Proceeding similarly for fij(qs,ℓ), we establish (17).

We are now able to compute qij∞ for each i, j = 1, . . . ,M .
First, solving (15)-(16) in the limit of ℓ → ∞ we compute
qc,∞ and qs,∞. Using these, we then get

qij∞ =
∑

d=(kc,ks)

pdfij(qc,∞, qs,∞, kc, ks) (18)

by conditioning on the colored degree of the root node. Finally,
we have limn→∞ E[Sij | S > 0] = 1− qij∞ and the expected
epidemic size is given by ES = limn→∞ E[S | S > 0] =∑M

i,j=1 mij(1− qij∞).
Note the convergence to the fixed point qc,∞ and qs,∞

is guaranteed. Moreover, ES and PE share the same phase
transition point defined by ρ(J) = 1. More discussion on the
convergence guarantee and phase transition can be found in
Appendix Section A.

IV. NUMERICAL RESULTS

In this section, we present simulation results in the finite
node regime with an eye toward validating our analytical
results. Note that the analytical results are exact in the limit of
the number of nodes n going to infinity. Throughout, we fix
the number of nodes as n = 106. We run 10,000 independent
experiments for each parameter setting and report the average
of these independent trials. The network C and S are generated
based on configuration model using degree distributions with
finite moments. We validate our results using two types of
degree distributions: Poisson and power law with exponential
cutoff. Poisson distribution is chosen for its simplicity and
the fact that it is one of the most widely-used and analyzed
degree distributions in spreading processes. We choose power
law with exponential cutoff distribution, too, because they are
applied to a wide range of real-world networks [5], [30], and
they are well-behaved, i.e., have finite moments.

The fraction of nodes participating in network layer S is
denoted by α. The baseline transmissibilities are denoted by
Tc and Ts for networks C and S, respectively.

A. Opposite trends between PE and ES

In this experiment, we report an interesting trend that a
higher probability of emergence may not correspond to a larger
expected epidemic size given when the epidemic happens. We
assume there are three types of masks: inward-good, outward-
good, and no-mask. When the inward efficiency of a mask
is better than its outward efficiency, we call them inward-
good masks. Similarly, we call masks with higher outward
efficiency as outward-good masks. In the viral spread context,
inward-good masks are more effective for self-protection when
the subject is immersed in the environment of virus particles
than blocking the virus emitted from the infected person’s
respiratory system [31]. Similarly, outward-good masks are
better at source control than the protection of the wearer [32].
We use vectors ϵin and ϵout to represent the inward and
outward efficiencies for all types of masks. For simplicity, we
only consider layer-independent population heterogeneity.

We assume there are three types of individuals in
the population: inward-good mask wearers, outward-good
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mask wearers, and people who don’t wear masks, repre-
sented as type-1, type-2, and type-3 nodes, respectively.
We have the proportion vector of three types as m =
[moutward-good, minward-good, mno-mask]. We fix the proportion of
no-mask-wearers at 0.1, and vary the proportion of outward-
good-mask-wearers moutward-good from 0.1 to 0.9. Based on
(13), to compare inward-good and outward-good masks fairly,
the parameter choice for the inward-good mask and outward-
good mask should follow that (1 − ϵout,o)(1 − ϵin,o) =
(1 − ϵout,i)(1 − ϵin,i), where ϵout,o and ϵin,o (ϵout,i and ϵin,i
resp.) represent the outward and inward efficiencies for the
outward-good mask (inward-good mask resp.). The efficiency
parameters of the masks are selected as ϵout = [0.7, 0.4, 0],
and ϵin = [0.4, 0.7, 0].

0.2 0.4 0.6
moutward− good

0.2

0.4

0.6

Probability

0.2 0.4 0.6
moutward− good

0.2

0.4

0.6

Epidemic Si e
α=0.1, th
α=0.3, th
α=0.5, th
α=0.7, th
α=0.9, th
α=0.1, sim
α=0.3, sim
α=0.5, sim
α=0.7, sim
α=0.9, sim

Fig. 1. Probability of emergence (left) and expected epidemic size given
emergence (right) show opposite trends as moutward-good increases. ϵout =
[0.7, 0.4, 0], and ϵin = [0.4, 0.7, 0]. mno-mask = 0.1. Tc = 0.6, Ts = 0.5.
{pck} ∼ Poisson(6), {pck} ∼ Poisson(8). Node set size n = 1, 000, 000,
and each data point of the simulation result is averaged over 10,000 trials.
Analytical results (marked th) show a near-perfect match with the simulation
results (marked sim).

Fig. 1 shows that as moutward-good increases, PE decreases,
and ES increases, with different α values. This implies that
a source-control-oriented strategy is crucial to prevent the
epidemic from emerging over a multi-layer network at the
early stages of the virus spreading, i.e., when the infection
fraction has not reached a significant percentage. However, if
an epidemic has already occurred and a significant fraction
of the population has already been infected, it becomes most
effective to implement a self-protection-oriented strategy to
reduce the final fraction of the infected nodes. This also
demonstrates that it is necessary to consider two different
phases when considering mitigation strategies for spreading
processes. This trend is first reported in Ref. [16] over single-
layer networks. Here we validate it over multi-layer networks
under different second-layer participation rates.

B. Impact of the node-type distribution
In this experiment, we show how the node-type distribution

affects the spreading process, e.g., in terms of probability and
expected size of epidemics. We assume there are two types
of masks: surgical mask (type-1) and cloth mask (type-2).
The outward and inward efficiencies are denoted by ϵout =
[ϵout,1, ϵout,2], and ϵin = [ϵin,1, ϵin,2]. The entire population is
thus split into four non-overlapping categories: type-1 on C
and type-1 on S, type-2 on C and type-1 on on S, type-1 on
C and type-2 on S, and type-2 on C and type-2 on S. We
let m = [m11,m21,m12,m22] denote the proportion of the 4
types of nodes. Here we fix m11 = 0.1, and vary m21 and
m12, and we set m22 = 0.9−m21 −m12.
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Fig. 2. Probability of emergence (left) and epidemic size given emergence
(right) varying m21 for different m12 values. We set m11 = 0.1 and m22 =
0.9 − m21 − m12. {pck} ∼ Poisson(6), {psk} ∼ Poisson(8) and α = 0.6.
Tc = 0.6, Ts = 0.5, ϵout = [0.8, 0.5], and ϵin = [0.7, 0.5]. Node set size
n = 1, 000, 000, and each data point of the simulation result is averaged over
10,000 trials. Analytical results (marked th) show a near-perfect match with the
simulation results (marked sim).

In Fig. 2, we investigate how the probability of emergence
(PE) and expected epidemic size given emergence (ES) change
as we vary m21 and m12 when the degree distributions are
Poisson. We see that the simulation results match the analytical
solutions with near-perfect accuracy, confirming our analytical
results’ usefulness in the finite node regime. Moreover, the
results are also helpful in understanding the impact of node-
type distributions. It is seen that with fixed m11 and m12,
as m21 increases (m22 decreases), PE and ES decrease.
Namely, while the fraction of nodes wearing cloth masks
on layer-C and surgical masks on layer-S increases, PE and
ES decrease. This shows that masks with better efficiencies
on layer-S help in reducing the risk and size (if it already
exists) of an epidemic. On the other hand, with fixed m11

and m21, increasing m12 (decreasing m22) decreases PE and
ES. Similarly, this indicates that better masks on layer-C are
also helpful. In Sec. VI, we further investigate the interplay
between the node-type distribution and multi-layer network
structure.
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Fig. 3. Probability of emergence (left) and epidemic size given emergence
(right) varying m21 for different m12 values. We set m11 = 0.1 and
m22 = 0.9−m21−m12. {pck} and {psk} follow power law with exponential
cutoff where the power exponent equals 2.5, and the cutoff equals 10. The mean
degree is 1.028. We set α = 0.6. Tc = 0.4, Ts = 0.7, ϵout = [0.5, 0], and
ϵin = [0.4, 0]. Node set size n = 1, 000, 000, and each data point of the
simulation result is averaged over 10,000 trials. Analytical results (marked th)
show a near-perfect match with the simulation results (marked sim).

Fig. 3 reports the results when the underlying networks have
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Fig. 4. Comparison of PE and ES for the multi-layer network model (abbrev.
ML) and the single-layer projection (abbrev. SL) by degree projection. λc = 7,
Tc = 0.6 and Ts = 0.5. Suppose there are only two types of masks with
ϵout = [0.8, 0.5], ϵin = [0.7, 0.5]. For the purpose of projection, we con-
sider layer-independent population heterogeneity with mask type distribution
mML = mSL = [0.4, 0.6].

their degree distribution following power law with exponential
cutoff. There as well, we see a near-perfect match with a
different type of degree distribution.

V. COMPARISON BETWEEN MULTI-LAYER AND
SINGLE-LAYER NETWORKS

This section compares the dynamics of spreading processes
over a single-layer network with that over a multi-layer
network. In other words, we consider whether projecting a
multi-layer network into a single-layer network leads to any
significant differences in the dynamics that warrant a separate
analysis of the multi-layer network structure. For simplicity,
we assume the degree distribution of the contact network is
Poisson.

As mentioned in Sec. II-A, we generate layer-S and layer-
C separately based on the configuration model, with respec-
tive degree distributions {psk} and {pck}. This results in the
colored degree distribution as shown in (2). One approach to
project the multi-layer network degree distribution to a single-
layer network degree distribution is to ignore the color (i.e.,
edge type) of the edges and match all stubs randomly with
each other. For example, if layer-C has degree distribution
Poisson(λc) and baseline transmissibility Tc, and layer-S has
degree distribution Poisson(λs) and baseline transmissibility
Ts, the corresponding single-layer projection will have a
degree distribution given by

pdSL =

{
Poisson(λcTc) + Poisson(λsTs) w.p. α
Poisson(λcTc) w.p. 1− α.

Here, w.p. is short for with probability and α denotes the
probability that a node belongs to both layers. 1

Assuming there are two types of masks in the population
for convenience, we consider layer-independent population
heterogeneity for the multi-layer network model for the single-
layer projection. Given the same mask efficiencies and distri-
bution, we compare PE and ES for multi-layer (abbrev. ML)

1Here, we use Poisson(λcTc) to represent the degree distribution of layer-C
after bond percolation with occupation probability Tc since Binomial(n; p)
with np = λ converges in distribution to Poisson(λ) as n → ∞; and, if
the original degree distribution is Binomial(n; p), after bond percolation with
occupation probability Tc, it becomes Binomial(n; pT ).

and projected single-layer (abbrev. SL) models. Fig. 4 shows
the results when λs = 7 and 10 with fixed λc = 7 while
varying α. We see that PE-SL and ES-SL do not match the
corresponding ML results. First, the SL results are not able
to accurately predict the epidemic threshold. Second, there
is a discrepancy between ML and SL results. It is observed
that when both PE-ML and PE-SL (ES-ML and ES-SL follow
the same trend) are non-zero, increasing α decreases this
discrepancy.

We now explain why there exists a discrepancy between
ML and SL. The key difference between the ML and SL
network models is the correlation between the degrees of the
neighboring nodes. When α is small, for example, α = 0.1,
only 10% of the nodes have type-c edges, and they can only
be randomly matched with other type-c edges in the ML case.
In this case, a small fraction of the population will have
statistically higher degrees than the rest, and the additional
links they have only connect nodes with high degrees together.
This results in a positive correlation, i.e., assortativity, between
the degrees of pairs of connected nodes. High-degree nodes
provide a higher probability of transmitting the spreading item
to the rest compared to the low-degree nodes, and higher
assortativity will amplify such an effect. This is also the reason
that transition points of SL come later than ML as α increases,
and the ML predictions for PE and ES are above the SL ones.

We further consider the case where the single-layer and
multi-layer models match the spectral radius values ρ(J)2

given by (13) and (14), because the degree projection method
above does not match the transition points between SL and
ML. Both (13) and (14) disentangle three impact factors on the
critical transition behavior of a spreading process: a term that
attributes the network structure, a term incorporating baseline
transmissibilities, and a population heterogeneity term. This
provides a direct method of projection that keeps the same
spectral radius for ML and SL: given the same the population
heterogeneity term, and letting

⟨k2⟩ − ⟨k⟩
⟨k⟩

· T = ρ

([
Tc

Ts

]
·
[

λcc λcs

λsc λss

])
.

Fig. 5 shows the results of the second projection method by
matching spectral radius with varying α. We can see that even
after matching spectral radius, SL can not accurately predict
PE and ES. Similar to Fig. 4, when α increases, the difference
between the predictions of SL and ML decreases in most cases.

In summary, we find that the projected single-layer network
cannot accurately predict PE and ES for the corresponding
multi-layer network when ignoring the edge type and ag-
gregating the layers, as well as matching spectral radius.
Thus the single-layer projection of a multi-layer network can
not capture the essential properties (e.g., PE and ES) of a
spreading process.

2In the special case where M = 1, it is also known as the basic
reproduction number, R0, defined as the secondary infections in a naive
population. It is known that if R0 is greater than one then the PE is positive,
i.e., epidemics can take place. When R0 ≤ 1, however, the PE is zero [9]. In
fact authors of [16] defined and calculated R0 for their heterogenous bond
percolation model as a natural extension of the M = 1 case, yielding the same
result shown in (14). In this paper, ρ(J) is not exactly the basic reproduction
number based on the definition, but it shares the same transition behavior at
ρ(J) = 1, and is able to obtain (14).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

0.0 0.2 0.4 0.6 0.8 1.0
α

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
PE

PE-SL, λs=10
PE-ML, λs=10
PE-SL, λs=7
PE-SL, λs=7

0.0 0.2 0.4 0.6 0.8 1.0
α

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ES

ES-SL, λs=10
ES-ML, λs=10
ES-SL, λs=7
ES-SL, λs=7

Fig. 5. Comparison of PE and ES for the multi-layer network model (abbrev.
ML) and the single-layer projection (abbrev. SL) by matching spectral radius
given by (13) and (14).

VI. LAYER-ORIENTED SPREADING CONTROL WITH
LIMITED COST

Utilizing the layer-dependent population heterogeneity
model, we develop and discuss three layer-oriented mask
allocation strategies given certain constraints on the total cost
of masks. We name the three strategies Policy 1, Policy
2, and Policy 3, respectively. As mentioned, the multi-layer
contact network H = C

∐
S is composed of layer C and

layer S, where nodes in the layer-C participate in layer-S
with probability α. In this section, we assume there are two
types of masks: mask and no-mask, labeled as mask type-
1 and mask type-2. The outward and inward efficiencies are
denoted by ϵout = [ϵout,1, ϵout,2], and ϵin = [ϵin,1, ϵin,2], where
0 < ϵout,1, ϵin,1 ≤ 1 and ϵout,2 = ϵin,2 = 0. Similar to Sec.
IV, the entire population is split into four non-overlapping
categories. Policy 1 provides a baseline where each node
in N has consistent mask-wearing behavior across the two
layers of the contact network. Policy 2 explores a case where
nodes do not wear masks over layer-S. In contrast, Policy 3
requires masks to be mandated over layer-S. More specifically,
let mπ = [mπ

11,m
π
21,m

π
12,m

π
22] denote the proportion of the

above 4 categories for Policy π, where π = 1, 2, 3. Policy 1
has m1 = [m1

11, 0, 0,m
1
22] where m1

11 + m1
22 = 1; Policy 2

has m2 = [0,m2
12, 0,m

2
22], m2

12 + m2
22 = 1; Policy 3 has

m3 = [m3
11, 0,m

3
21, 0] and m3

11 +m3
21 = 1.

To quantify the expected total cost of policy π spending
on masks for a fair comparison among the three policies, we
propose the below formula:

E[costπ] =
M∑

i,j=1

E[costij ] ·mπ
ij (19)

where i, j = 1, ...,M and π = 1, 2, 3. E[costij ] denotes the
expected cost for a type-ij individual, which is independent of
the spreading process and the policies. In the considered case
where M = 2, we have E[cost11] = 1 + α, E[cost12] = 1,
E[cost21] = α, and E[cost22] = 0.

With these in hand, we investigate two problems in turn:
(i) Given a budget of C for the cost of masks, i.e., let
E[cost1] = E[cost2] = E[cost3] = C, which policy yields the
best mitigation effect (i.e., the lowest PE of an epidemic)? (ii)
To prevent the epidemic from happening, which policy yields
the lowest expected cost?

A. PE with the same expected cost
Next, we compare the effectiveness of different policies for

mitigating the spreading which is measured by reduction in
PE. In what follows, for simplicity, we generate the networks
using Poisson degree distributions. Fig. 6 shows the results for
Policy 1, 2 and 3 when their expected costs are the same, as
we increase m1

11 from 0.1 to 0.9 when α = 0.1 and α = 0.9.
Given m1

11 (x-axis), we have m1 = [m1
11, 1−m1

11, 0, 0]. C =
E[cost1] can be obtained via (19). With E[cost2] = E[cost3] =
C, we can solve for m2

12 and m3
11. We note that it is not

guaranteed to have valid solutions (i.e., in the range [0, 1])
for m2

12 and m3
11. If the solutions have negative values, we

replace them with 0s, and similarly, if they are larger than 1,
we replace them with 1s. As shown in Fig. 6(a), when α = 0.1,
given m1

11 and thus C, we can match E[cost2] = E[cost3] = C
by varying m1

11. However, in Fig. 6(b), when α = 0.9, E[cost3]
can not always be made exactly C, e.g., if m1

11 < 0.5 because
it is lower-bounded by α. Similarly, when m1

11 > 0.5, E[cost2]
reaches the upper bound 1 and can not be made exactly C.

Now we compare PE1, PE2, and PE3 considering the differ-
ent matching conditions for the expected costs as shown in Fig.
6(a) and 6(b). To explore the effectiveness of layer-dependent
mask assignment policies, we further take into account the
transmission power of each layer. Inspired by (14), we roughly
estimate the transmission power of each layer by the product
of the first moment of the degree distribution that generates the
contact network layer and the baseline transmissibility of that
layer, With Poisson(λc) generating layer-C and Poisson(λs)
generating layer-S in this analysis, we consider three cases:
(i) Tcλc = Tsλs; (ii) Tcλc = 10Tsλs; (iii) 10Tcλc = Tsλs.
The results are shown in Fig. 7.
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(a) α = 0.1
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(b) α = 0.9

Fig. 6. E[cost1] (dashed line), E[cost2] (cross) and E[cost3] (plus) with varying
m1

11 when α = 0.1 (a), and α = 0.9 (b).

In Fig. 7, we can see that the transmission power is a
significant factor in determining the best control policy. It
is more effective for a layer-oriented policy to direct more
masks to the layer that has higher transmission power. When
the transmission power of layer-C is larger than layer-S, as
shown in Fig. 7(c) and 7(d), Policy 2 that directs as many
masks as possible has the lowest PE for most cases. Only
at m1

11 = 0.9 when α = 0.9, PE1 < PE2 due to E[cost2]
reaching the upper bound of 1. When 0.5 < m1

11 < 0.9 in
Fig. 7(d), even with a lower expected cost than Policy 1 and
3, Policy 2 yields the lowest PE among all. Similarly, in Fig.
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(a) Tcλc = Tsλs, α = 0.1
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(b) Tcλc = Tsλs, α = 0.9
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(c) Tcλc = 10Tsλs, α = 0.1
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(d) Tcλc = 10Tsλs, α = 0.9
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(e) 10Tcλc = Tsλs, α = 0.1
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(f) 10Tcλc = Tsλs, α = 0.9

Fig. 7. PE1 (dashed line), PE2 (cross) and PE3 (plus) with varying m1
11.

Throughout Tc = Ts = 0.5, and ϵout = ϵin = [0.8, 0] . For (a) and (b), λc =
λs = 20. For (c) and (d), λc = 20, λs = 2. For (e) and (f), λc = 2, λs = 20.

7(e) and 7(f), when layer-S has a higher transmission power,
Policy 3 that mandates masks on layer-S is the best mitigation
policy. When layer-C and layer-S share the same transmission
power, as shown in Fig.7(a) and Fig.7(b), there is no single
policy that outperforms others as α increases. In the specific
case of Fig. 7(a), Policy 2 shows slightly lower PE than the
other two policies, potentially due to the small participation
rate of layer-S and equal transmission power of the two layers.
Therefore the contribution to the spreading process of layer-
S is not as significant as layer-C, which can also be seen
from the comparison with Fig. 7(e). However, in Fig. 7(b)
where α = 0.9, when the two layers are more coupled, due to
the same transmission power of the two layers, the baseline
Policy 1, which favors neither layer, yields the lowest PE.
Moreover, Fig. 7 shows that, when the transmission power
of layers are different, increasing α increases the discrepancy
of PE between the best policy and others. This indicates that

with a cost, when layer-S has a higher participation rate, it
is particularly important to consider layer-oriented spreading
control policies based on the transmission power of different
layers.

B. The impact of expected cost on epidemic boundaries

Next, we discuss a different problem from that in Sec. VI-A,
where we aim to find the optimal resource allocation strategy
with a given budget. Here, our primary goal is to find a policy
that prevents the epidemic from happening at the lowest cost.
In particular, we need to find the expected costs for each policy
at the corresponding epidemic boundary, i.e., the region in the
parameter space identified by the epidemic threshold ρ(J) =
1. Fig. 8 shows the boundary of m − α plane for Policy 1,
2 and 3 when the transmission power of layer-C is equal to,
greater than, and less than that of layer-S.

On the LHS of each panel in Fig. 8, for each policy π, π =
1, 2, 3, the curves separate the areas where epidemics can take
place (north-east of the curves) from the areas where they can
not (south-west of the curves). Here we explore the trade-off
between α and mπ

ij on the epidemic boundary where ρ(J) = 1
while fixing other parameters. For clarity, we are only showing
α−m1

22 plane for Policy 1, α−m2
22 plane for Policy 2, and α−

m3
21 plane for Policy 3. For example, in the α−m1

22 plane in
Fig. 8(a), for Policy 1, consider two types of nodes type-11 and
type-22 where m1

11+m1
22 = 1, and E[cost11] = 0,E[cost22] =

1 + α. As α increases, the maximum fraction of nodes that
can wear no mask on both layers such that epidemics are not
possible decreases. In fact, in all α − mπ

ij planes in Fig. 8,
regardless of the transmission power of the layers, increasing
α decreases the maximum fraction of less-cost node types for
a policy that is needed for epidemics to not happen.

In Fig. 8(c), when the transmission power of the secondary
layer S is higher, it is also more economical (i.e., lower
expected cost) to control layer-S. However, in Fig. 8(b), when
the transmission power of layer-C is higher, controlling layer-
S takes the least cost. These two trends echo our conclusions
in Sec. VI-A that given a total cost, it is more effective to
assign more masks to the layer that has higher transmission
power. Most interestingly, in Fig. 8(a), when the transmission
power of the two layers is the same, it is most economical to
prioritize controlling the spreading on the layer-S to prevent
the epidemic, as shown by results of Policy 3. First, on the
LHS, Policy 3 allows more fractions of less-cost node types in
the population. Meanwhile, on the RHS, Policy 3 also spends
the least expected costs compared to other policies. This is
likely due to the fact that the second layer provides extra
transmission pathways and thus increases the connectivity of
the contact network, which makes it critical to block the
transmission over the second layer to prevent the epidemic
from happening.

VII. CONCLUSIONS

In this work, we provide a comprehensive analysis of
the spreading process in multi-layer networks with layer-
dependent population heterogeneity. We present analytical
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Fig. 8. Epidemic boundaries of α−mp
ij planes (LHS) and the corresponding

E[costp] (RHS) on the epidemic boundaries. Policy 1, 2 and 3 correspond to
dashed lines, cross and plus, respectively. Each curve in α − mp

ij planes is
the epidemic boundary identified by ρ(J) = 1 for a policy when considering
the trade-off between α and the fraction of the nodes whose node types have
less cost for that policy. The north and east of each curve in α − mp

ij planes
specify the region for which epidemics are possible, while the south and west
parts of each curve stand for the region where epidemics can not occur. Each
policy’s corresponding expected costs on the epidemic boundary are provided
on its RHS. Throughout ϵout = ϵin = [0.8, 0] . For (a), Tc = 0.2, Ts = 1,
λc = 4, λs = 0.8. For (b), Tc = 0.05, Ts = 0.5, λc = 22, λs = 0.22. For
(c), Tc = 0.2, Ts = 1, λc = 0.7, λs = 1.4.

solutions for three key epidemiological measures: probabil-
ity of emergence (PE), epidemic threshold, and expected
epidemic size (ES). Our solutions disentangle the impact
of multi-layer network structure, transmission dynamics, and
population heterogeneity distribution on the final state of the
spreading process. We validate our analytical results with
extensive simulations. Comparing multi-layer networks to their
single-layer projections, we find significant differences in
the dynamics, emphasizing the need for separate analysis of
multi-layer structures. We also explore the impact of layer-
dependent population heterogeneity by studying three layer-
oriented mitigation control policies. We propose a metric to

quantify the expected cost of mask allocation, which helps
characterize different policies. We identify the transmission
power of each layer and the participation rate of nodes in the
secondary layer as crucial factors for developing effective and
economical mitigation strategies. Our findings provide insights
into the spreading process in multi-layer complex networks
with population heterogeneity and can help develop mitigation
and control strategies for disease spread and information
diffusion.
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APPENDIX A
CONVERGENCE AND PHASE TRANSITION OF ES

We remark that the convergence to the fixed point qc,∞
and qs,∞ is guaranteed. Namely, taking the limit ℓ → ∞ in
(15) - (18) is a well-defined operation since the multi-type
branching process corresponding to (15) and (16) is positive
regular and non-singular under the assumption that mij > 0,
Tc[i, j] > 0, Ts[i, j] > 0 for all integers 1 ≤ i, j ≤ M .
Then the convergence to the fixed point qc,∞ and qs,∞ is
guaranteed as long as the initial condition qc,0 and qs,0 have
positive entries [33, Theorem V.3.2], which hold under the
condition the epidemic emerges.

Just as in the PE, there is a phase transition between ES
being zero (qc,∞ = 1, qs,∞ = 1) and ES being positive
(qc,∞ < 1, qs,∞ < 1). Similar to (8) and (16). Let J ′

denote the Jacobian matrix of relations (15) and (16), we
show the threshold for the ES is given by ρ(J ′) = 1 where

J ′ =

[
J ′

cc J ′
cs

J ′
sc J ′

ss

]
2M2×2M2

with

J ′
cc(a, b) =

∂qijc,∞(1)

∂qrtc,∞(1)
; J ′

cs(a, b) =
∂qijc,∞(1)

∂qrts,∞(1)

J ′
ss(a, b) =

∂qijs,∞(1)

∂qrts,∞(1)
; J ′

sc(a, b) =
∂qijs,∞(1)

∂qrtc,∞(1)

(20)

where a = M2D(i, j), b = M2D(r, t); 1 ≤ i, j, r, t ≤ M .
More specifically,

J ′
cc =

[
λcc ·T′⊤

c ·m
]
; J ′

cs =
[
λcs ·T′⊤

c ·m
]

J ′
sc =

[
λsc ·T′⊤

s ·m
]
; J ′

ss =
[
λss ·T′⊤

s ·m
] (21)

When ρ(J ′) is less than or equal to 1, qc,∞ = 1, qs,∞ = 1.
When ρ(J ′) is greater than 1, qijc,∞, qijs,∞ < 1 for all 1 ≤ i, j ≤
M . It can be seen that J ′ shares the exactly same transition
points defined by ρ(J) = 1.

We show this by proving J⊤ and J ′ have the same
spectrum, which in turn implies that ρ(J) = ρ(J ′) because
ρ(J) = ρ(J⊤). Note that J⊤ has the following form:

J⊤ =

[
J⊤

cc J⊤
sc

J⊤
cs J⊤

ss

]
where

J⊤
cc =

[
λcc ·T′⊤

c ·m
]
; J⊤

cs =
[
λcs ·T′⊤

c ·m
]

J⊤
sc =

[
λsc ·T′⊤

s ·m
]
; J⊤

ss =
[
λss ·T′⊤

s ·m
] (22)

The only difference between (22) and (21) is the anti-diagonal
blocks (left-bottom to upper-right) swapping the positions.
This can be seen through the stronger property that the
characteristic polynomials of the two matrices are identical.
Specifically, based on Theorem 3 of the determinant of block
matrix in Ref. [27], for block matrix (11), where JscJss =
JssJsc, we have det(J) = det(JccJss − JcsJsc) =
det(J⊤

ssJ
⊤
cc − J⊤

scJ
⊤
cs). Similarly, due to J ′

ccJ
′
cs = J ′

csJ
′
cc,

det(J ′) = det(J⊤
ssJ

⊤
cc − J⊤

scJ
⊤
cs). Putting together the results

of this section and Section III-A, we have shown that when
ρ(J) ≤ 1, the epidemic dies out in finite time, whereas when
ρ(J) > 1, the epidemic eventually infects a positive fraction
of the population.


