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Spreading Processes With Layer-Dependent
Population Heterogeneity Over

Multilayer Networks
Yurun Tian and Osman Yağan

Abstract—The study of spreading processes on complex net-
works has gained significant attention recently. For example, bond
percolation models considering population heterogeneity have been
used to provide insights into disease spread and misinformation
control. However, most of these studies focus on single-layer contact
networks. In our work, we examine how the spreading process is
impacted by the existence of multiple contact network layers, con-
sidering layer-dependent population heterogeneity from a princi-
pled, mathematical perspective. Using SIR dynamics, we derive ex-
pressions for three key epidemiological measures: the probability of
emergence, the epidemic threshold, and the expected epidemic size.
Through extensive simulations, we demonstrate that our analytical
results match the numerical results near-perfectly in the finite
node regime. These findings reveal the interplay among the multi-
layer network structures, transmission dynamics, and population
heterogeneity in determining the final outcome of the spreading
process. Furthermore, we investigate the impact of layer-dependent
population heterogeneity and identify important factors for devel-
oping effective and economical layer-oriented spreading control
strategies. Overall, our work provides insights into developing and
analyzing mitigation and control strategies for disease spread and
information diffusion across multi-layer complex networks.

Index Terms—Heterogeneous bond percolation, branching
process, population heterogeneity, multi-layer networks.

I. INTRODUCTION

THE attention towards studies on spreading processes over
complex networks has grown in recent years, driven by

the impact of pandemics like COVID-19 and SARS, as well as
concerns regarding misinformation diffusion [1]. Researchers
have extensively examined mathematical models over complex
networks to provide insights into the dynamics of spreading
pathogens or information [2], [3], [4], [5]. The susceptible-
infectious-recovered (SIR) compartmental model, in particular,
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has received significant interest due to its ability to capture
the propagation of both pathogens and information [6], [7],
[8]. Additionally, its steady-state analysis is closely linked to
bond-percolation over networks [8], [9].

More recently, there has been interest on studying the SIR
spreading process with increasing complexity of the underlying
contact network (e.g., clustered networks [10], [11], [12] and
multi-layer networks [7], [13], [14]) and the heterogeneity [8],
[15] of the population. For example, Tian et al. [15] investigated
a SIR model with population heterogeneity that manifest from
different types of masks that the individuals in the population
might be wearing. More broadly, population heterogeneity can
also arise from factors such as age, gender, socio-economic sta-
tus, and access to healthcare and other resources [16], [17], [18]
in the population. In the context of information diffusion, popu-
lation heterogeneity becomes relevant as individuals may exhibit
different tendencies in accepting and transmitting information
based on their personalities and fact-checking behaviors [1],
[19]. Allard et al. [6] also studied the SIR model with population
heterogeneity and showed that their steady-state can be analyzed
through a semi-directed bond percolation model.

This paper is motivated by the fact that most studies on
spreading processes with population heterogeneity consider
single-layer networks. However, most real-world spreading pro-
cesses take place over multi-layer networks. In viral spreading,
different layers might represent viral spreading paths in different
environments, e.g., community, school, workplace, etc, each
with a different rate of viral transmissibility [20]. Similarly,
(mis)information tends to spread over multiple social media
platforms, each with different rates and dynamics of propa-
gation. To the best of our knowledge, there have only been a
few prior efforts [6], [21] on studying the SIR model while
incorporating both population heterogeneity and the multi-layer
nature of the contact network. Bongiorno and Zino [21] proposed
a model that incorporates both population heterogeneity and a
multi-layer contact network, but they do not provide mathemat-
ical analysis for the three epidemic quantities and instead rely
on simulation results. The work by Allard et al. [6] considers
multi-type networks with arbitrary joint degree distribution.
However, their work does not provide a detailed analysis of
the impact of multi-layer network structures and the associ-
ated multi-layer transmission dynamics on the final spreading
results. Our preliminary work [22] studied the multi-layer mask
model, which takes into account both population heterogeneity
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and multi-layer contact network. However, it only considers
layer-independent population heterogeneity and thus lacks the
capability to investigate mitigation strategies that target specific
layers, e.g., in some regions, masks are mandated at school but
not communities during pandemics [23].

Inspired by these, our main contribution is to provide a
thorough analysis of the spreading process in a class of
multi-layer networks considering layer-dependent population
heterogeneity. For illustrative purposes, we suppose popula-
tion heterogeneity results from different types of masks (with
different efficiencies) that individuals are wearing in the viral
spreading context; we also reserve one mask-type to represent
individuals who do not wear any mask. We present the analytical
solution of the multi-layer mask model for three key epidemi-
ological quantities: probability of emergence (PE), epidemic
threshold, and expected epidemic size (ES). Epidemics refer to
large-scale spreading events such as viral pandemics or informa-
tion memes. The emergence of epidemics represents situations
where the spreading process leads to a positive fraction of the
population being infected in the limit of the number of nodes
going to infinity. Our analytical solutions disentangle the impact
of multiple factors, including the multi-layer network structure,
transmission dynamics, and layer-dependent population hetero-
geneity distribution, on these three quantities of interest.

Utilizing the analytical results, we first compare the dynamics
of multi-layer networks and their monoplex (single-layer) pro-
jections. There has been recent interest [14] in understanding
whether monoplex projection of a multi-layer network can still
capture the essential properties of a spreading process. We find
that projecting a multi-layer network into a single-layer network
leads to significant differences in the dynamics warranting a
separate multi-layer network structure analysis. Second, we ex-
plore layer-dependent population heterogeneity by investigating
layer-oriented mitigation control policies. A comparison metric
quantifying the expected cost of mask allocation is proposed and
has been shown useful in characterizing different layer-oriented
mitigation policies. We identify the transmission power of each
layer in the multi-layer contact network, and the participation
rate of nodes in the secondary layer as two crucial factors
in developing effective and economical mitigation strategies.
We believe these results provide fundamental insights into the
spreading process over multi-layer complex networks when
taking into account population heterogeneity. Thus, they might
help develop mitigation and control strategies for disease spread
and information diffusion.

The structure of this paper is as follows. In Section II, we
formally describe the multi-layer contact network model and
the layer-dependent population heterogeneity model. Section III
contains our theoretical analysis, where we derive expressions
for the probability of emergence, the epidemic threshold, and
the expected size of the epidemic. Our theoretical results are
verified in Section IV, where our analytical results show a near-
perfect match with the simulation results. Section V compares
the single-layer and multi-layer networks. Section VI explores
layer-dependent population heterogeneity by investigating sev-
eral layer-oriented mitigation control strategies. Finally, we
conclude and discuss future avenues of research in Section VII.

II. MODEL

A. Contact Network Model

Next, we introduce the multi-layer contact network model.
For simplicity, we present a two-layer network model that can
generalize to networks with more than two layers. We consider a
two-layer contact network generated as follows. Consider a pop-
ulation of sizenwith individuals labeled asN = {1, . . . , n}. An
edge exists between two nodes if there is a chance to transmit the
spreading item (e.g., a piece of news, a virus) between them once
in contact. The pattern of these potential transmission-causing
contacts forms a network. Let C represent the first contact layer
defined on the node set N . Let S represent the second contact
layer with the assumption that each node in N is a member of
S with probability α ∈ (0, 1]. Formally, we let

P [i ∈ NS ] = α, i = 1, . . . , n (1)

where NS denotes the set of individuals who also participate the
school layer. Edges belonging to network C (resp., S) are noted
as type-c (resp. type-s) edges.

With this assumption, from law of large numbers, it is clear
that the node set NS satisfies

|NS |
n

a.s.−→ α.

Therefore α can be considered as the relative size of the network
layer S.

We generate network C and S independently via the config-
uration model in line with prior work on stochastic epidemic
models [24], [25]. In other words, the network topology is
generated randomly from the given degree distribution. The
degree distributions for C and S are given as {pck} and {psk},
where k = 0, 1, . . .. pck (resp. psk) denotes the probability that
an arbitrary node on network C (resp. S) has degree k, i.e., it is
connected tok other nodes via an undirected type-c (resp. type-s)
edge. We assume the degree distributions are well-behaved, i.e.,
their moments of arbitrary order are finite [25] (e.g., Poisson
degree distributions, power law degree distributions with expo-
nential cut-off, etc.).

We describe the procedure of generating layer C given its
degree distribution {pck} using the configuration model. Gen-
eration of layer S is similar. First, we draw a set of random
numbers of size n from the degree distribution {pck}, denoted as
{kic}, i = 1, . . ., n. Stubs of type-c edges emerging from node
i is given as kic. Then we randomly choose pairs of these stubs
and place edges on the graph joining them up. This requires the
sum

∑n
i=1 k

i
c to be even because each edge added to the graph

must have two ends. We draw a new set if the set {kic} sum to
an odd number.

After generating layerC and layer S independently, the multi-
layer network H is formed by taking the disjoint union of C

and S, i.e., H = C
∐

S. In this setting, an arbitrary node i in
N will have a colored degree represented by an integer vector
di = [kic, k

i
s], where kic (resp., kis) stands for its number of type-c

edges (resp. type-s). The colored degree distribution for node i
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is thus given by:

pdi =
(
αpski

s
+ (1− α)1

[
kis = 0

]) · pcki
c
, di =

(
kic, k

i
s

)
.

(2)
where the term (1− α)1[kis = 0] accounts for the case where
node i is not a member of layer S, and its number of type-s edges
is automatically zero. Following, we denote random graphs C

and S as C(n, {pck}) and S(n;α, {psk}), respectively.

B. Layer-Dependent Population Heterogeneity

In their seminal work [8], Newman studied the SIR
(susceptible-infectious-recovered) model over a contact network
generated by the configuration model through bond percolation
theory. Newman’s model captures complex viral transmission
mechanisms via the average transmissibility parameter T. Many
works have since incorporated various node-level heterogeneity
based on Newman’s model [15], [17], [22], among which Tian
and Yağan [22] studied a SIR model with layer-independent pop-
ulation heterogeneity over multi-layer networks. Specifically,
they study a two-layer contact network, where each layer is de-
noted as layer-C and layer-S, respectively. They assume separate
baseline transmissibilities Tc and Ts for layer-C and layer-S.
In other words, Tc and Ts are the probability of transmission
(i.e., transmissibility) over type-c and type-s edges, respectively.
Population heterogeneity is modeled via the inward and outward
efficiency of different types of masks that individuals might
wear. Assuming that there are M types of masks, the mask
distribution is given by p = {p1, . . ., pM} where pi represents
the fraction of individuals who wear masks of type-i. Let εout,i
(resp. εin,i) denote the outward (resp. inward) efficiency of
mask type-i, where 0 ≤ εout,i ≤ 1 and 0 ≤ εin,i ≤ 1 for all
1 ≤ i ≤ M . Two transmissibility matrices Tc and Ts, each of
size M ×M , represent all possible transmissibilities over layer
C and S, respectively. More specifically,

Tc[i, j] = (1− εout,i) (1− εin,j)Tc, 1 ≤ i, j ≤ M (3)

Ts[i, j] = (1− εout,i) (1− εin,j)Ts, 1 ≤ i, j ≤ M (4)

where Tc[i, j] (resp. Ts[i, j]) gives the probability that,
an infected node wearing a type-i mask transmits the
virus/information to a susceptible node wearing a type-j mask
given that they are connected by a type-c (resp. type-s) link.

Assumptions are made regarding population heterogeneity
and the corresponding transmission dynamics in Ref. [22]. Mask
distribution is assumed to be independent of the network struc-
ture and the spreading process. Each node keeps a consistent
mask choice across layers. However, in real life, population
heterogeneity can be correlated with the network structure. For
example, there were times and regions where surgical masks
were mandated in schools but not in communities during the
COVID-19 pandemic [23]. Similarly, in information spreading,
some people are more willing to speak out (or be silent) online
than in real life, or vice versa [26]. Modeling layer-dependent
population heterogeneity will thus provide a better understand-
ing of the role of the multi-layer network structure in the spread-
ing processes, and assist in developing layer-specific control
strategies in mitigating a spreading process.

In this work, we incorporate layer-dependent population het-
erogeneity by associating node type with the node’s layer-
dependent mask-wearing behavior. In other words, nodes can
exhibit different mask-wearing behaviors in different layers of
contact networks. In particular, given M ≥ 1 different types of
masks, an arbitrary node v in the population N is type-ij if it
wears a type-i mask in layer-C and a type-j mask in layer-S.
This will lead to M2 node types in total, with the node type dis-
tribution given as m = {mij}, 1 ≤ i, j ≤ M . Individual node
type is independently drawn from this distribution. We assume
the node type is pre-assigned before the spreading process starts.
We also assume that node type is independent of the multi-layer
network structure and does not depend on whether the node
participates in layer-S. We shall see that pi =

∑M
j=1 mij .

For integers 1 ≤ i, j, r, t ≤ M , the transmissibility from a
type-ij infected node to a type-rt susceptible node is thus
given by: (1− εout,i)(1− εin, r)Tc if the transmission occurs via
a type-c edge, and (1− εout,j)(1− εin, t)Ts if the transmission
occurs via a type-s edge.

Even though there are M2 node types, M ×M (rather than
M2 ×M2) possible transmissibilities exist on each layer. This
is because the transmissibility for an infectious-susceptible node
pair only depends on the corresponding mask types and the
baseline transmissibility given the edge type that connects them.
Therefore, we continue using the same Tc and Ts in (3) and (4)
to represent all possible transmissibilities for each layer, but with
extended semantics in usage. Specifically, for a type-ij infected
node, it transmits the spreading item to a type-rt susceptible
node with probability Tc[i, r] if the transmission occurs over
a type-c edge, as with probability Ts[j, t] if the transmission
occurs over a type-s edge, where

Tc[i, r] = (1− εout,i) (1− εin,r)Tc, 1 ≤ i, r ≤ M (5)

Ts[j, t] = (1− εout,j) (1− εin,t)Ts, 1 ≤ j, t ≤ M (6)

III. ANALYTICAL RESULTS

This section presents the derivation of the probability of
emergence (PE), the epidemic threshold, and the expected epi-
demic size (ES). Emergence is defined as the event where the
spreading process leads to a positive fraction of the infected
population in the limit of the number of nodes n going to
infinity. Epidemics refer to large-scale spreading events such
as viral pandemics or information memes. Formally, with S(n)
denoting the final fraction of infected nodes in the popula-
tion size of n, the probability of emergence with a random
initiator is given by PE = limn→∞ P[S > 0]. Further, we are
also interested in the epidemic threshold that separates the
parameter space where limn→∞ P[S > 0] = 0 from those that
yield limn→∞ P[S > 0] > 0. Finally, we compute the expected
epidemic size when they take place, i.e., limn→∞ E[S|S > 0].

A. Probability of Emergence and Epidemic Threshold

Consider random graphs C(n, {pck}) and S(n;α, {psk}) as in-
troduced in Section II-A. In order to study the viral transmission
in the multi-layer network H = C

∐
S, we consider a branch-

ing process that starts by giving the pathogen to an arbitrary
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node and then recursively identify the set of nodes that are
reached and infected by exploring its neighbors. As mentioned
in Section II-B, a type-ij infected node transmits the pathogen
to a type-rt susceptible neighbor with probability Tc[i, r] =
Tc(1− εi,out)(1− εr,in) if the link connecting them is type-c
(or, with probability Ts[j, t] = Ts(1− εj,out)(1− εt,in if the
link between them is type-s), independently from all other
neighbors.

The survival probability of the aforementioned branching
process is derived through a mean-field approach utilizing the
method of generating functions [8], [25]. For integers 1 ≤
i, j, r, t ≤ M , let hc,ij(x) (resp. hs,ij(x)) denote the generating
function for “the finite number of nodes reached and infected
by following a randomly selected type-c (resp. type-s) edge
coming from a type-ij infected node.” Put differently, we have
hc,ij(x) =

∑∞
m=0 vmxm where vm denotes the “probability

that an arbitrary type-c edge coming from a type-ij infected
node leads to a component of size m.” Similarly, let Hij(x)
denote the generating function for “the finite number of nodes
reached and infected by following a randomly selected type-ij
node.”

Now we derive hc,ij(x) and hs,ij(x). For integers 1 ≤
i, j, r, t ≤ M , we find that the following 2M2 self-consistency
equations hold:1

hc,ij(x) =

M∑
r=1

M∑
t=1

mrt

(
1−Tc[i, r] (7)

+Tc[i, r]x
∑
d

pdkc
〈kc〉 hc,rt(x)

kc−1hs,rt(x)
ks

)

hs,ij(x) =

M∑
r=1

M∑
t=1

mrt

(
1−Ts[j, t]

+Ts[j, t]x
∑
d

pdks
〈ks〉 hc,rt(x)

kchs,rt(x)
ks−1

)
(8)

We now explain each term in (7). Consider an infected type-ij
node, say node v, and consider a type-c edge incident on it.
We condition on the type of the node on the other end of this
edge, say node u. Since the node type assignment is completed
before the spreading process and is drawn independently for
all the nodes, the direct neighbor node u is of type-rt with
probability mrt. Conditioning on node u being type-rt, it will
become infected through the type-c edge fromv, with probability
Tc[i, r]. If the transmission fails with probability 1−Tc[i, r],
then node vwill have zero offspring through this edge tou, which
explains the first part of (7). If the transmission is successful with
probability Tc[i, r], the number of nodes reached and infected
by node v increases by one (i.e., node u). This is captured by the
multiplicative term x in the second half of (7). Additionally, the
total size of this branch will also include all subsequent nodes
that are reached and infected by u, which leads to the following

1If we consider L ≥ 2 layers in the multi-layer network, the number of
self-consistency equations becomes LML. In contrast, when population het-
erogeneity is defined independently from network layers as considered in [22],
the number equations needed is only LM .

term: ∑
d

pdkc
〈kc〉 hc,rt(x)

kc−1hs,rt(x)
ks .

This term is explained as follows. First, we condition on the
colored degree of node u, i.e., number of edges in both network
layers. The term pdkc/〈kc〉 gives the probability that the colored
degree of u is d [8]. It is the normalized probability that a
type-c edge is attached to a node at the other end with colored
degree d = (kc, ks). Therefore, following the type-c edge from
v that reaches u, u can infect other nodes with the remaining
kc − 1 edges of type-c and ks edges of type-s. Recall that the
number of nodes reached and infected by a type-rt node by
following a type-c (resp. type-s) edge attached is generated by
hc,rt (resp. hs,rt). Collecting all the sub-branches, we obtain
the term hc,rt(x)

kc−1hs,rt(x)
ks utilizing the powers property

of generating functions [25]. The validity of (8) can be seen in
a very similar way and is omitted here for brevity.

Utilizing (7) and (8), we now derive the generating function
Hij(x) for the entire size of the branching process. For 1 ≤
i, j ≤ M , we have

Hij(x) = x
∑
d

pdhc,ij(x)
kchs,ij(x)

ks (9)

Here, the factor x corresponds to the initial node selected ar-
bitrarily and infected. The selected node has colored degree
d = (kc, ks)with probability pd. The number of nodes it reaches
and infects by each of its kc (resp. ks) links of type-c (resp.
type-s) is generated through hc,ij(x) (resp. hs,ij(x)). Summing
over all the possible colored degrees, we obtain (9).

With (7)–(9) in hand, the generating function Hij(x) can be
computed in the following manner. Given any x, we can solve
for the recursive relations (7)-(8) to obtain hc,ij(x) and hs,ij(x)
for integers 1 ≤ i, j ≤ M , which in turn will yield Hij(x) for
integers 1 ≤ i, j ≤ M in light of (9).

We are interested in cases where the number of nodes reached
and infected by the initial node is infinite, representing cases
where a randomly chosen infected node triggers an epidemic.
The conservation of probability property of generating func-
tions indicates that there exists a trivial fixed point hc,ij(1) =
hs,ij(1) = 1 (yielding Hij(1) = 1) when the number of nodes
reached and infected is always finite. In other words, the un-
derlying branching process is in the sub-critical regime, and
all infected components have finite size. However, the fixed
point hc,ij(1) = hs,ij(1) = 1 may not be a stable solution to
the recursion (7) to (9).

We can check the stability of this fixed point by the lineariza-
tion of recursion (7) to (9) around hc,ij(1) = hs,ij(1) = 1, 1 ≤
i, j, r, t ≤ M . This yields the Jacobian matrix J with the form

J = [
Jcc Jcs

Jsc Jss
]2M2×2M2 in which

Jcc(a, b) =
∂hc,ij(1)

∂hc,rt(1)
; Jcs(a, b) =

∂hc,ij(1)

∂hs,rt(1)

Jss(a, b) =
∂hs,ij(1)

∂hs,rt(1)
; Jsc(a, b) =

∂hs,ij(1)

∂hc,rt(1)
(10)
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where a = M2D(i, j), b = M2D(r, t), 1 ≤ i, j, r, t ≤ M . M2D
is anM -base to 10-base converter to map the tuple ij, 1 ≤ i, j ≤
M to an integer ranging from 1 to M2 for the ease of matrix
indexing. The four sub-matrices in (10), i.e., Jcc to Jss are
each of the shape M2 ×M2. For example, when we consider
taking the derivative of hc,ij(x) in (7) with respect to one of

its inputs hc,rt(x) when x = 1 (denoted by ∂hc,ij(1)
∂hc,rt(1)

), the result
corresponds to an element in the matrix Jcc with coordinates
(a, b), where a = M2D(i, j) and b = M2D(r, t) are integers
within 1 ≤ a, b ≤ M2. Without loss of generality, we place the
order of the four sub-matricesJcc toJss as above. Swapping the
locations of the sub-matrices will not change the spectral radius
of J because two of the sub-matrices can always commute and
thus share the same polynomial characteristics based on [27,
Thm 3]. We will use this property again to show PE and ES
share the same transition points later in Appendix-A.

If all eigenvalues of J are less than one in absolute value,
i.e., if the spectral radius ρ(J) of J satisfies ρ(J) ≤ 1, then
the solution hc,ij(1) = hs,rt(1) = 1 is stable and Hij(1) = 1
becomes the physical solution for all 1 ≤ i, j ≤ M . In this case,
the fraction of infected nodes will tend to zero as the number of
nodes n goes to infinity. In contrast, if ρ(J) > 1, the trivial fixed
point is not stable, which indicates that the branching process
is in the supercritical regime; i.e., there is a positive probability
that the branching process will lead to an infinite component. In
this case, the fraction of nodes that are infected will be strictly
greater than zero as as the number of nodes n goes to infinity.

When ρ(J) > 1, a nontrivial fixed point exists and becomes
the attractor of the recursions (7) to (9), leading to a solution with
hc,ij(1), hs,ij(1) < 1 which in turn yields Hij(1) < 1. In that
case, 1−Hij(1) gives the probability that the spreading process
initiated by a seed node of type-ij yields an epidemic. Recall that
S denotes the final fraction of infected nodes. The probability
of epidemic emergence PE (with a random initiator) is thus
given by PE = limn→∞ P[S > 0] =

∑M
i,j=1 mij(1−Hij(1)).

Finally, we conclude that the epidemic threshold, i.e., the bound-
ary that separates the parameter regions where limn→∞ P[S >
0] = 0 from those that yield limn→∞ P[S > 0] > 0 is given by
ρ(J) = 1.

To further look into the implications of (10), utilizing (7) to
(8), we have

Jcc = [λcc ·T′
c ·m] ; Jcs = [λcs ·T′

c ·m]

Jsc = [λsc ·T′
s ·m] ; Jss = [λss ·T′

s ·m]

λcc =

〈
k2c
〉− 〈kc〉
〈kc〉 , λcs =

〈kcks〉
〈kc〉

λss =

〈
k2s
〉− 〈ks〉
〈ks〉 , λsc =

〈kcks〉
〈ks〉 (11)

where Tc
′[a, b] = Tc[i, r], Ts

′[a, b] = Tc[j, t],m =
diag(m),where m[a, a] = m[i, j], a = M2D(i, j), b =
M2D(r, t), 1 ≤ i, j, r, t ≤ M . Here m is a diagonal matrix
of the node type distribution m = {mij}. In matrix Tc

′

(resp. Ts
′), each element in Tc (resp. Ts) will be at least

duplicated for M2 times. T′
c and T′

s are functions of the
mask efficiencies and baseline transmissibilities, encoding
all possible transmission scenarios when taking into account
layer-dependent population heterogeneity over layer-C and S,
respectively. We have included the derivation of (11) from (10)
in Appendix-B. Note T′

c and T′
s are not symmetric unless Tc

and Ts are symmetric, which only holds on when 1 − εout and
1 − εin are colinear.

Observe that the four sub-matrices of J in (11) follow the
same pattern, i.e., they are composed of three parts from left
to right: i) a parameter that attributes the multi-layer network
structure; ii) a heterogeneous edge-type and node-type depen-
dent transmissibility term; and iii) a node type distribution term.
This result disentangles the impact of multiple factors on the final
state of the spreading process: the degree distribution of different
layers of the contact network as a whole, viral transmission
dynamics, and layer-dependent population heterogeneity.

In the special case where population heterogeneity is layer-
independent, Tc and Ts are rank-1 and can be decomposed
into Tc · εout · εin
 and Ts · εout · εin
, respectively. In other
words, the node type here is not correlated with the network
structure, and εout · εin
 is a property of each type of masks.
The Jacobian matrix for the layer-independent population het-
erogeneity can be further simplified as follows:[[

Tc

Ts

]
·
[
λcc λcs

λsc λss

]]
⊗ ((1 − εout) · (1 − εin


) · p)
(12)

where p = diag(p) (recall p is mask type distribution), and ⊗
is the Kronecker product sign. The spectral radius ρ(J) is thus

ρ

([
Tc

Ts

]
·
[
λcc λcs

λsc λss

])
· ρ ((1− εout) · (1− εin


) · p)
(13)

The expression (13) further disentangles the network-related and
mask-related factors and shows the trade-off between them upon
the critical behavior of the spreading process. From (13), it is
straightforward to derive the spectral radius for the single layer
network that has degree distribution {pk} with mean degree 〈k〉
and baseline transmissibility T with population heterogeneity
by the same set of masks. Namely, (14). This expression was
obtained in [17] for single-layer contact networks.

ρ(Jsingle-layer)=
〈k2〉 − 〈k〉

〈k〉 · T · ρ ((1− εout)· (1− εin

)· p)

(14)
Moreover, we conduct analysis to show how graph properties

such as mean degree impact the final results of the spreading
process: spectral radius of J , PE and ES. For simplicity, layer
C and S are generated according to configuration model with
degree distributions Poisson(λc) and Poisson(λs), respectively.
Fig. 1 shows the boundary in the (λc − λs)-plane that corre-
sponds to the epidemic threshold ρ(J) = 1 with varying values
ofα. In other words, for eachα, the curves separate the parameter
region where epidemics can take place (north-east of the curves)
from the region where they can not (south-west of the curves).
Fig. 1(a)–(c) show the results when Tc is much larger than, equal
to, and much smaller than Ts, respectively. It is observed that
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Fig. 1. Epidemic boundary on the parameter plane defined by λc (i.e., mean
degree of layer-C), and λs (i.e., mean degree of layer-S), with varying values
of α when (a) Tc = 10Ts, (b) Tc = Ts and (c) 10Tc = Ts. Suppose there are
two types of masks: surgical mask (type-1) and a cloth mask (type-2) and nodes
have layer-independent population heterogeneity. The vector m = [m1,m2]
represents the node type distribution in the population, with m1 and m2

denoting fractions of type-1 and type-2 individuals, respectively. We have
m = [0.4, 0.6]. The inward efficiencies of the two types of masks are rep-
resented by the vector εin = [εin,1, εin,2], and outward efficiencies are given
by εout = [εout,1, εout,2]. We have εout = [0.8, 0.5] and εin = [0.7, 0.5].
Epidemic boundary separates the region of the parameter plane that results in
ρ(J) ≤ 1 (i.e., epidemics are not possible) from the region that gives ρ(J) > 1
(i.e., epidemics are possible). The north and east of each curve specify the region
for which epidemics are possible, while the south and west parts of each curve
stand for the region where epidemics can not occur.

Fig. 2. Probability of the emergence (left), the expected epidemic size given
emergence (right). We set α = 0.6.

across differentα values, when λc increases, lower value of λs is
required in order to reach the epidemic boundary and vice versa.
In other words, the spectral radius increases monotonically as λc

and λs increase. Moreover, we show how λc and λs impact PE
and ES in Fig. 2. Similarly, we see that both PE and ES increase
monotonically when λc and λs increase while other parameters
remain constant.

B. Expected Epidemic Size

In this section, we compute the expected size of epidemics
when they take place, i.e., limn→∞ E[S |S > 0]. We will also
compute the fraction of infected nodes in each type. Our ap-
proach is similar to that used in [3], [4], [17], [22], [28], [29].
Since the multi-layer network H is locally tree-like as the net-
work size approaches infinity [30], we can consider it as a tree-
structure, where there is a single node of type-ij at the top level
(referred to as the root). We label the levels of the tree from � = 0
at the bottom to � = ∞ at the top. Without loss of generality, we
assume that the spreading event starts at the bottom of the tree
and proceeds toward the top. In other words, we assume that a
node at level �+ 1 can only be infected by one of its neighbors
in level �. Let qijc,� (respectively, qijs,�) denote the probability of a
type-ij node at level �who is connected to its parent at level � + 1
through a type-c (respectively, type-s) edge is not infected. Our
goal is to compute qij∞ which represents the probability that the
root node, which is of type-ij, is not infected. Given that the root
node is arbitrary, qij∞ also gives the expected fraction of type-ij
nodes that will not be infected during the spreading process. Put
differently, we have limn→∞ E[Sij |S > 0] = 1− qij∞ with Sij

denoting the fraction of nodes of type-ij that are infected in the
spreading process; we also have E[S] =

∑M
i,j=1 mijE[Sij ].

Now we derive qijc,� and qijs,� in a recursive manner. For each
i, j = 1, . . . ,M , we find that

qijc,�+1 =
∑

d=(kc,ks)

pdkc
〈kc〉 fij(qc,�, qs,�, kc − 1, ks) (15)

qijs,�+1 =
∑

d=(kc,ks)

pdks
〈ks〉 fij(qc,�, qs,�, kc, ks − 1) (16)

where qc,� = [q11c,�, q
12
c,�, . . ., q

MM
c,� ], and

fij(qc,�, qs,�, kc, ks)

=

(
M∑
r=1

M∑
t=1

mrt(1−Tc[r, i] + qrtc,�Tc[r, i])

)kc

·

(
M∑
r=1

M∑
t=1

mrt(1−Ts[t, j] + qrts,�Ts[t, j])

)ks

(17)

In order to see why (15) holds, let u be a type-ij node at
level �+ 1 who is connected to its unique parent at level �+ 2
with an edge of type-c. As already mentioned, qijc,�+1 gives the
probability that u is not infected. As before, we first condition on
the colored degree ofu beingd = (kc, ks)which has probability
pdkc

〈kc〉 . Under the assumption that nodes can only be infected by
neighbors in the layers below, node u can be infected through
either one of kc − 1 edges of type-c and ks edges of type-s in
layer � (given that one of its type-c edges is used to connect it to
the parent node in layer �+ 2). We establish (15) by noting that
fij(qc,�, qs,�, kc, ks) represents the probability that a type-ij
node with kc edges of type-c and ks edges of type-s with nodes
in layer � is not infected. The expression (16) can be seen to hold
similarly.
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We now explain why (17) holds. For a node with kc
edges of type-c and ks edges of type-s in layer � to be
not infected, it should not receive the pathogen from any
of these neighbors. Given the independence of infection
events, we see that fij(qc,�, qs,�, kc, ks) should be of the form
fij(qc,�)

kcfij(qs,�)
ks with fij(qc,�) (respectively, fij(qs,�))

defined as the probability that a type-ij node with only one
edge of type-c (respectively, type-s) with nodes in layer � is
not infected. In order to compute fij(qc,�), we condition on the
type of the node that is connected in layer �, which is type-rt
with probability mrt. Then, we note that a type-ij node in layer
�+ 1 will be infected by a type-rt neighbor in layer � that it is
connected via a type-c link if both of the following events hold:
the node in layer � is infected, which happens with probability
(1− qrtc,�), and the pathogen is transmitted from the node in layer
� to its parent in layer �+ 1, which happens with probability
Tc[r, i]. Collecting, we see that the probability of a type-ij node
in layer �+ 1 to be not infected by a type-rt neighbor in layer �
that it is connected via a type-c is given by

1− (1− qrtc,�)Tc[r, i] = 1−Tc[r, i] + qrtc,�Tc[r, i]

Proceeding similarly for fij(qs,�), we establish (17).
We are now able to compute qij∞ for each i, j = 1, . . . ,M .

First, solving (15)–(16) in the limit of � → ∞ we compute qc,∞
and qs,∞. Using these, we then get

qij∞ =
∑

d=(kc,ks)

pdfij(qc,∞, qs,∞, kc, ks) (18)

by conditioning on the colored degree of the root node. Fi-
nally, we have limn→∞ E[Sij |S > 0] = 1− qij∞ and the ex-
pected epidemic size is given by ES = limn→∞ E[S |S > 0] =∑M

i,j=1 mij(1− qij∞).
Note the convergence to the fixed point qc,∞ and qs,∞ is guar-

anteed. Moreover, ES and PE share the same phase transition
point defined by ρ(J) = 1. More discussion on the convergence
guarantee and phase transition can be found in Appendix-A.

IV. NUMERICAL RESULTS

In this section, we present simulation results in the finite node
regime with an eye toward validating our analytical results. Note
that the analytical results are exact in the limit of the number
of nodes n going to infinity. Throughout, we fix the number
of nodes as n = 106. We run 10,000 independent experiments
for each parameter setting and report the average of these
independent trials. The network C and S are generated based
on configuration model using degree distributions with finite
moments. We validate our results using two types of degree
distributions: Poisson and power law with exponential cutoff.
Poisson distribution is chosen for its simplicity and the fact
that it is one of the most widely-used and analyzed degree
distributions in spreading processes. We choose power law with
exponential cutoff distribution, too, because they are applied
to a wide range of real-world networks [4], [31], and they are
well-behaved, i.e., have finite moments. We have also conducted
experiments over real-world network datasets, which can be
found in Appendix-C. The results show a good match between

Fig. 3. Probability of emergence (left) and expected epidemic size given
emergence (right) show opposite trends as moutward-good increases. εout =
[0.7, 0.4, 0], and εin = [0.4, 0.7, 0]. mno-mask = 0.1. Tc = 0.6, Ts = 0.5.
{pck} ∼ Poisson(6), {pck} ∼ Poisson(8). Node set size n = 1, 000, 000, and
each data point of the simulation result is averaged over 10,000 trials. Analytical
results (marked th) show a near-perfect match with the simulation results
(marked sim).

analytical and simulation results, demonstrating the utility of
our analytical results in realistic settings.

In what follows, the fraction of nodes participating in network
layer S is denoted by α. The baseline transmissibilities are
denoted by Tc and Ts for networks C and S, respectively.

A. Opposite Trends Between PE and ES

In this experiment, we report an interesting trend that a
higher probability of emergence may not correspond to a larger
expected epidemic size given when the epidemic happens. We
assume there are three types of masks: inward-good, outward-
good, and no-mask. When the inward efficiency of a mask is
better than its outward efficiency, we call them inward-good
masks. Similarly, we call masks with higher outward efficiency
as outward-good masks. In the viral spread context, inward-good
masks are more effective for self-protection when the subject is
immersed in the environment of virus particles than blocking the
virus emitted from the infected person’s respiratory system [32].
Similarly, outward-good masks are better at source control than
the protection of the wearer [33]. We use vectors εin and εout
to represent the inward and outward efficiencies for all types
of masks. For simplicity, we only consider layer-independent
population heterogeneity.

We assume there are three types of individuals in the popula-
tion: inward-good mask wearers, outward-good mask wearers,
and people who don’t wear masks, represented as type-1, type-2,
and type-3 nodes, respectively. We have the proportion vector
of three types asm = [moutward-good, minward-good, mno-mask]. We
fix the proportion of no-mask-wearers at 0.1, and vary the pro-
portion of outward-good-mask-wearers moutward-good from 0.1 to
0.9. Based on (13), to compare inward-good and outward-good
masks fairly, the parameter choice for the inward-good mask
and outward-good mask should follow that (1− εout,o)(1−
εin,o) = (1− εout,i)(1− εin,i), where εout,o and εin,o (εout,i and
εin,i resp.) represent the outward and inward efficiencies for the
outward-good mask (inward-good mask resp.). The efficiency
parameters of the masks are selected as εout = [0.7, 0.4, 0], and
εin = [0.4, 0.7, 0].

Fig. 3 shows that as moutward-good increases, PE decreases, and
ES increases, with different α values. This implies that a source-
control-oriented strategy is crucial to prevent the epidemic from
emerging over a multi-layer network at the early stages of
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Fig. 4. Probability of emergence (left) and epidemic size given emer-
gence (right) varying m21 for different m12 values. We set m11 = 0.1 and
m22 = 0.9−m21 −m12. {pck} ∼ Poisson(6), {psk} ∼ Poisson(8) and α =
0.6. Tc = 0.6, Ts = 0.5, εout = [0.8, 0.5], and εin = [0.7, 0.5]. Node set size
n = 1, 000, 000, and each data point of the simulation result is averaged over
10,000 trials. Analytical results (marked th) show a near-perfect match with the
simulation results (marked sim).

the virus spreading, i.e., when the infection fraction has not
reached a significant percentage. However, if an epidemic has
already occurred and a significant fraction of the population has
already been infected, it becomes most effective to implement
a self-protection-oriented strategy to reduce the final fraction of
the infected nodes. This also demonstrates that it is necessary
to consider two different phases when considering mitigation
strategies for spreading processes. This trend is first reported in
Ref. [15] over single-layer networks. Here we validate it over
multi-layer networks under different second-layer participation
rates.

B. Impact of the Node-Type Distribution

In this experiment, we show how the node-type distribution
affects the spreading process, e.g., in terms of probability and
expected size of epidemics. We assume there are two types of
masks: surgical mask (type-1) and cloth mask (type-2). The out-
ward and inward efficiencies are denoted by εout = [εout,1, εout,2],
and εin = [εin,1, εin,2]. The entire population is thus split into four
non-overlapping categories: type-1 onC and type-1 on S, type-2
onC and type-1 on on S, type-1 onC and type-2 on S, and type-2
onC and type-2 on S. We letm = [m11,m21,m12,m22] denote
the proportion of the 4 types of nodes. Here we fix m11 = 0.1,
and vary m21 and m12, and we set m22 = 0.9−m21 −m12.

In Fig. 4, we investigate how the probability of emergence
(PE) and expected epidemic size given emergence (ES) change
as we vary m21 and m12 when the degree distributions are
Poisson. We see that the simulation results match the analytical
solutions with near-perfect accuracy, confirming our analytical
results’ usefulness in the finite node regime. Moreover, the
results are also helpful in understanding the impact of node-type
distributions. It is seen that with fixed m11 and m12, as m21 in-
creases (m22 decreases), PE and ES decrease. Namely, while the
fraction of nodes wearing cloth masks on layer-C and surgical
masks on layer-S increases, PE and ES decrease. This shows
that masks with better efficiencies on layer-S help in reducing
the risk and size (if it already exists) of an epidemic. On the other
hand, with fixedm11 andm21, increasingm12 (decreasingm22)

Fig. 5. Probability of emergence (left) and epidemic size given emergence
(right) varying m21 for different m12 values. We set m11 = 0.1 and m22 =
0.9−m21 −m12. {pck} and {psk} follow power law with exponential cutoff
where the power exponent equals 2.5, and the cutoff equals 10. The mean
degree is 1.028. We set α = 0.6. Tc = 0.4, Ts = 0.7, εout = [0.5, 0], and
εin = [0.4, 0]. Node set size n = 1, 000, 000, and each data point of the
simulation result is averaged over 10,000 trials. Analytical results (marked th)
show a near-perfect match with the simulation results (marked sim).

decreases PE and ES. Similarly, this indicates that better masks
on layer-C are also helpful. In Section VI, we further investigate
the interplay between the node-type distribution and multi-layer
network structure.

Fig. 5 reports the results when the underlying networks have
their degree distribution following power law with exponential
cutoff. There as well, we see a near-perfect match with a different
type of degree distribution.

V. COMPARISON BETWEEN MULTI-LAYER AND SINGLE-LAYER

NETWORKS

This section compares the dynamics of spreading processes
over a single-layer network with that over a multi-layer network.
In other words, we consider whether projecting a multi-layer
network into a single-layer network leads to any significant
differences in the dynamics that warrant a separate analysis of
the multi-layer network structure. For simplicity, we assume the
degree distribution of the contact network is Poisson.

As mentioned in Section II-A, we generate layer-S and layer-
C separately based on the configuration model, with respective
degree distributions {psk} and {pck}. This results in the colored
degree distribution as shown in (2). One approach to project
the multi-layer network degree distribution to a single-layer
network degree distribution is to ignore the color (i.e., edge
type) of the edges and match all stubs randomly with each other.
For example, if layer-C has degree distribution Poisson(λc) and
baseline transmissibility Tc, and layer-S has degree distribution
Poisson(λs) and baseline transmissibility Ts, the corresponding
single-layer projection will have a degree distribution given by

pdSL =

{
Poisson(λcTc) + Poisson(λsTs) w.p. α

Poisson(λcTc) w.p. 1− α.

Here, w.p. is short for with probability and α denotes the prob-
ability that a node belongs to both layers.2

2Here, we use Poisson(λcTc) to represent the degree distribution of layer-C
after bond percolation with occupation probabilityTc since Binomial(n; p)with
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Fig. 6. Comparison of PE and ES for the multi-layer network model (ab-
brev. ML) and the single-layer projection (abbrev. SL) by degree projection.
λc = 7, Tc = 0.6 and Ts = 0.5. Suppose there are only two types of masks
with εout = [0.8, 0.5], εin = [0.7, 0.5]. For the purpose of projection, we con-
sider layer-independent population heterogeneity with mask type distribution
mML = mSL = [0.4, 0.6].

Assuming there are two types of masks in the population for
convenience, we consider layer-independent population hetero-
geneity for the multi-layer network model for the single-layer
projection. Given the same mask efficiencies and distribution, we
compare PE and ES for multi-layer (abbrev. ML) and projected
single-layer (abbrev. SL) models. Fig. 6 shows the results when
λs = 7 and 10 with fixed λc = 7 while varying α. We see
that PE-SL and ES-SL do not match the corresponding ML
results. First, the SL results are not able to accurately predict
the epidemic threshold. Second, there is a discrepancy between
ML and SL results. It is observed that when both PE-ML and
PE-SL (ES-ML and ES-SL follow the same trend) are non-zero,
increasing α decreases this discrepancy.

We now explain why there exists a discrepancy between ML
and SL. The key difference between the ML and SL network
models is the correlation between the degrees of the neighboring
nodes. When α is small, for example, α = 0.1, only 10% of the
nodes have type-c edges, and they can only be randomly matched
with other type-c edges in the ML case. In this case, a small
fraction of the population will have statistically higher degrees
than the rest, and the additional links they have only connect
nodes with high degrees together. This results in a positive
correlation, i.e., assortativity, between the degrees of pairs of
connected nodes. High-degree nodes provide a higher probabil-
ity of transmitting the spreading item to the rest compared to the
low-degree nodes, and higher assortativity will amplify such an
effect. This is also the reason that transition points of SL come
later than ML as α increases, and the ML predictions for PE and
ES are above the SL ones.

We further consider the case where the single-layer and
multi-layer models match the spectral radius values ρ(J)3 given
by (13) and (14), because the degree projection method above

np = λ converges in distribution to Poisson(λ) as n → ∞; and, if the original
degree distribution is Binomial(n; p), after bond percolation with occupation
probability Tc, it becomes Binomial(n; pT ).

3In the special case where M = 1, it is also known as the basic reproduction
number, R0, defined as the secondary infections in a naive population. It is
known that if R0 is greater than one then the PE is positive, i.e., epidemics can
take place. When R0 ≤ 1, however, the PE is zero [8]. In fact authors of [15]
defined and calculated R0 for their heterogenous bond percolation model as a
natural extension of the M = 1 case, yielding the same result shown in (14).

Fig. 7. Comparison of PE and ES for the multi-layer network model (abbrev.
ML) and the single-layer projection (abbrev. SL) by matching spectral radius
given by (13) and (14).

does not match the transition points between SL and ML. Both
(13) and (14) disentangle three impact factors on the critical
transition behavior of a spreading process: a term that attributes
the network structure, a term incorporating baseline transmis-
sibilities, and a population heterogeneity term. This provides a
direct method of projection that keeps the same spectral radius
for ML and SL: given the same the population heterogeneity
term, and letting

〈k2〉 − 〈k〉
〈k〉 · T = ρ

([
Tc

Ts

]
·
[

λcc λcs

λsc λss

])
.

Fig. 7 shows the results of the second projection method by
matching spectral radius with varying α. We can see that even
after matching spectral radius, SL can not accurately predict
PE and ES. Similar to Fig. 6, when α increases, the difference
between the predictions of SL and ML decreases in most cases.

In summary, we find that the projected single-layer network
cannot accurately predict PE and ES for the corresponding multi-
layer network when ignoring the edge type and aggregating the
layers, as well as matching spectral radius. Thus the single-layer
projection of a multi-layer network can not capture the essential
properties (e.g., PE and ES) of a spreading process.

VI. LAYER-ORIENTED SPREADING CONTROL WITH

LIMITED COST

Utilizing the layer-dependent population heterogeneity
model, we develop and discuss three layer-oriented mask al-
location strategies given certain constraints on the total cost of
masks. We name the three strategies Policy 1, Policy 2, and
Policy 3, respectively. As mentioned, the multi-layer contact
network H = C

∐
S is composed of layer C and layer S, where

nodes in the layer-C participate in layer-S with probability α. In
this section, we assume there are two types of masks: mask and
no-mask, labeled as mask type-1 and mask type-2. The outward
and inward efficiencies are denoted by εout = [εout,1, εout,2], and
εin = [εin,1, εin,2], where 0 < εout,1, εin,1 ≤ 1 and εout,2 = εin,2 =
0. Similar to Section IV, the entire population is split into four
non-overlapping categories. Policy 1 provides a baseline where

In this paper, ρ(J) is not exactly the basic reproduction number based on the
definition, but it shares the same transition behavior at ρ(J) = 1, and is able to
obtain (14).
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Fig. 8. E[cost1] (dashed line), E[cost2] (cross) and E[cost3] (plus) with
varying m1

11 when α = 0.1 (a), and α = 0.9 (b).

each node in N has consistent mask-wearing behavior across
the two layers of the contact network. Policy 2 explores a case
where nodes do not wear masks over layer-S. In contrast, Policy
3 requires masks to be mandated over layer-S. More specifically,
let mπ = [mπ

11,m
π
21,m

π
12,m

π
22] denote the proportion of the

above 4 categories for Policy π, where π = 1, 2, 3. Policy 1
hasm1 = [m1

11, 0, 0,m
1
22]wherem1

11 +m1
22 = 1; Policy 2 has

m2 = [0,m2
12, 0,m

2
22], m

2
12 +m2

22 = 1; Policy 3 has m3 =
[m3

11, 0,m
3
21, 0] and m3

11 +m3
21 = 1.

To quantify the expected total cost of policy π spending on
masks for a fair comparison among the three policies, we propose
the below formula:

E[costπ] =
M∑

i,j=1

E[costij ] ·mπ
ij (19)

where i, j = 1, . . .,M and π = 1, 2, 3. E[costij ] denotes the
expected cost for a type-ij individual, which is independent
of the spreading process and the policies. In the considered
case where M = 2, we have E[cost11] = 1 + α, E[cost12] = 1,
E[cost21] = α, and E[cost22] = 0.

With these in hand, we investigate two problems in turn: (i)
Given a budget of C for the cost of masks, i.e., let E[cost1] =
E[cost2] = E[cost3] = C, which policy yields the best mitiga-
tion effect (i.e., the lowest PE of an epidemic)? (ii) To prevent
the epidemic from happening, which policy yields the lowest
expected cost?

A. PE With the Same Expected Cost

Next, we compare the effectiveness of different policies for
mitigating the spreading which is measured by reduction in PE.
In what follows, for simplicity, we generate the networks using
Poisson degree distributions. Fig. 8 shows the results for Policy
1, 2 and 3 when their expected costs are the same, as we increase
m1

11 from 0.1 to 0.9 when α = 0.1 and α = 0.9. Given m1
11 (x-

axis), we have m1 = [m1
11, 0, 0, 1−m1

11]. C = E[cost1] can be
obtained via (19). With E[cost2] = E[cost3] = C, we can solve
for m2

12 and m3
11. We note that it is not guaranteed to have valid

solutions (i.e., in the range [0,1]) for m2
12 and m3

11 unless C has
a value within the range of [α, 1]. If the solutions have negative
values, we replace them with 0 s, and similarly, if they are larger

than 1, we replace them with 1 s. As shown in Fig. 8(a), whenα =
0.1, we can match E[cost2] = E[cost3] = C when varying m1

11

from 0.1 to 0.9. However, in Fig. 8(b), when α = 0.9, E[cost3]
can not always be made exactly C, e.g., if m1

11 < 0.5 because
it is lower-bounded by α. Similarly, when m1

11 > 0.5, E[cost2]
reaches the upper bound 1 and can not be made exactly C.

Now we compare PE1, PE2, and PE3 considering the dif-
ferent matching conditions for the expected costs as shown in
Fig. 8(a) and (b). To explore the effectiveness of layer-dependent
mask assignment policies, we further take into account the
transmission power of each layer. Inspired by (14), we roughly
estimate the transmission power of each layer by the product
of the first moment of the degree distribution that generates
the contact network layer and the baseline transmissibility of
that layer, With Poisson(λc) generating layer-C and Poisson(λs)
generating layer-S in this analysis, we consider three cases:
(i) Tcλc = Tsλs; (ii) Tcλc = 10Tsλs; (iii) 10Tcλc = Tsλs. The
results are shown in Fig. 9.

In Fig. 9, we can see that the transmission power is a sig-
nificant factor in determining the best control policy. It is more
effective for a layer-oriented policy to direct more masks to the
layer that has higher transmission power. When the transmission
power of layer-C is larger than layer-S, as shown in Fig. 9(c)
and 9(d), Policy 2 that directs as many masks as possible has the
lowest PE for most cases. Only at m1

11 = 0.9 when α = 0.9,
PE1 < PE2 due to E[cost2] reaching the upper bound of 1.
When 0.5 < m1

11 < 0.9 in Fig. 9(d), even with a lower expected
cost than Policy 1 and 3, Policy 2 yields the lowest PE among
all. Similarly, in Fig. 9(e) and (f), when layer-S has a higher
transmission power, Policy 3 that mandates masks on layer-S is
the best mitigation policy. When layer-C and layer-S share the
same transmission power, as shown in Fig. 9(a) and (b), there
is no single policy that outperforms others as α increases. In
the specific case of Fig. 9(a), Policy 2 shows slightly lower
PE than the other two policies, potentially due to the small
participation rate of layer-S and equal transmission power of
the two layers. Therefore the contribution to the spreading
process of layer-S is not as significant as layer-C, which can
also be seen from the comparison with Fig. 9(e). However, in
Fig. 9(b) where α = 0.9, when the two layers are more coupled,
due to the same transmission power of the two layers, the
baseline Policy 1, which favors neither layer, yields the lowest
PE. Moreover, Fig. 9 shows that, when the transmission power
of layers are different, increasing α increases the discrepancy
of PE between the best policy and others. This indicates that
with a cost, when layer-S has a higher participation rate, it
is particularly important to consider layer-oriented spreading
control policies based on the transmission power of different
layers.

B. The Impact of Expected Cost on Epidemic Boundaries

Next, we discuss a different problem from that in
Section VI-A, where we aim to find the optimal resource al-
location strategy with a given budget. Here, our primary goal
is to find a policy that prevents the epidemic from happening
at the lowest cost. In particular, we need to find the expected
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Fig. 9. PE1 (dashed line), PE2 (cross) and PE3 (plus) with varying m1
11.

Throughout Tc = Ts = 0.5, and εout = εin = [0.8, 0]. For (a) and (b), λc =
λs = 20. For (c) and (d), λc = 20, λs = 2. For (e) and (f), λc = 2, λs = 20.

costs for each policy at the corresponding epidemic boundary,
i.e., the region in the parameter space identified by the epidemic
threshold ρ(J) = 1. Fig. 10 shows the boundary ofm− α plane
for Policy 1, 2 and 3 when the transmission power of layer-C is
equal to, greater than, and less than that of layer-S.

On the LHS of each panel in Fig. 10, for each policy π, π =
1, 2, 3, the curves separate the areas where epidemics can take
place (north-east of the curves) from the areas where they can
not (south-west of the curves). Here we explore the trade-off
between α and mπ

ij on the epidemic boundary where ρ(J) = 1
while fixing other parameters. For clarity, we are only showing
α−m1

22 plane for Policy 1,α−m2
22 plane for Policy 2, andα−

m3
21 plane for Policy 3. For example, in the α−m1

22 plane in
Fig. 10(a), for Policy 1, consider two types of nodes type-11 and
type-22 where m1

11 +m1
22 = 1, and E[cost11] = 0,E[cost22] =

1 + α. As α increases, the maximum fraction of nodes that can

Fig. 10. Epidemic boundaries of α−mp
ij planes (LHS) and the correspond-

ing E[costp] (RHS) on the epidemic boundaries. Policy 1, 2 and 3 correspond
to dashed lines, cross and plus, respectively. Each curve in α−mp

ij planes is
the epidemic boundary identified by ρ(J) = 1 for a policy when considering
the trade-off between α and the fraction of the nodes whose node types have
less cost for that policy. The north and east of each curve in α−mp

ij planes
specify the region for which epidemics are possible, while the south and west
parts of each curve stand for the region where epidemics can not occur. Each
policy’s corresponding expected costs on the epidemic boundary are provided
on its RHS. Throughout εout = εin = [0.8, 0]. For (a), Tc = 0.2, Ts = 1,
λc = 4, λs = 0.8. For (b), Tc = 0.05, Ts = 0.5, λc = 22, λs = 0.22. For
(c), Tc = 0.2, Ts = 1, λc = 0.7, λs = 1.4.

wear no mask on both layers such that epidemics are not possible
decreases. In fact, in all α−mπ

ij planes in Fig. 10, regardless
of the transmission power of the layers, increasing α decreases
the maximum fraction of less-cost node types for a policy that
is needed for epidemics to not happen.

In Fig. 10(c), when the transmission power of the secondary
layer S is higher, it is also more economical (i.e., lower ex-
pected cost) to control layer-S. However, in Fig. 10(b), when
the transmission power of layer-C is higher, controlling layer-S
takes the least cost. These two trends echo our conclusions in
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Section VI-A that given a total cost, it is more effective to assign
more masks to the layer that has higher transmission power.
Most interestingly, in Fig. 10(a), when the transmission power
of the two layers is the same, it is most economical to prioritize
controlling the spreading on the layer-S to prevent the epidemic,
as shown by results of Policy 3. First, on the LHS, Policy 3
allows more fractions of less-cost node types in the population.
Meanwhile, on the RHS, Policy 3 also spends the least expected
costs compared to other policies. This is likely due to the fact
that the second layer provides extra transmission pathways and
thus increases the connectivity of the contact network, which
makes it critical to block the transmission over the second layer
to prevent the epidemic from happening.

VII. CONCLUSION

In this work, we provide a comprehensive analysis of the
spreading process in multi-layer networks with layer-dependent
population heterogeneity. We present analytical solutions for
three key epidemiological measures: probability of emergence
(PE), epidemic threshold, and expected epidemic size (ES).
Our solutions disentangle the impact of multi-layer network
structure, transmission dynamics, and population heterogeneity
distribution on the final state of the spreading process. We
validate our analytical results with extensive simulations. Com-
paring multi-layer networks to their single-layer projections,
we find significant differences in the dynamics, emphasizing
the need for separate analysis of multi-layer structures. We also
explore the impact of layer-dependent population heterogeneity
by studying three layer-oriented mitigation control policies. We
propose a metric to quantify the expected cost of mask allo-
cation, which helps characterize different policies. We identify
the transmission power of each layer and the participation rate
of nodes in the secondary layer as crucial factors for devel-
oping effective and economical mitigation strategies. Our find-
ings provide insights into the spreading process in multi-layer
complex networks with population heterogeneity and can help
develop mitigation strategies for viral spread and information
diffusion.

APPENDIX

A. Convergence and Phase Transition of ES

We remark that the convergence to the fixed point qc,∞ and
qs,∞ is guaranteed. Namely, taking the limit � → ∞ in (15) -
(18) is a well-defined operation since the multi-type branching
process corresponding to (15) and (16) is positive regular and
non-singular under the assumption that mij > 0, Tc[i, j] > 0,
Ts[i, j] > 0 for all integers1 ≤ i, j ≤ M . Then the convergence
to the fixed point qc,∞ and qs,∞ is guaranteed as long as the
initial condition qc,0 and qs,0 have positive entries [34, Theorem
V.3.2], which hold under the condition the epidemic emerges.

Just as in the PE, there is a phase transition between ES being
zero (qc,∞ = 1, qs,∞ = 1) and ES being positive (qc,∞ < 1,
qs,∞ < 1). Similar to (8) and (16). Let J ′ denote the Jacobian
matrix of relations (15) and (16), we show the threshold for the

ES is given by ρ(J ′) = 1 where J ′ =
[
J ′

cc J ′
cs

J ′
sc J ′

ss

]
2M2×2M2

with

J ′
cc(a, b) =

∂qijc,∞(1)

∂qrtc,∞(1)
; J ′

cs(a, b) =
∂qijc,∞(1)

∂qrts,∞(1)

J ′
ss(a, b) =

∂qijs,∞(1)

∂qrts,∞(1)
; J ′

sc(a, b) =
∂qijs,∞(1)

∂qrtc,∞(1)
(20)

where a = M2D(i, j), b = M2D(r, t); 1 ≤ i, j, r, t ≤ M . More
specifically,

J ′
cc =

[
λcc ·T′


c ·m] ; J ′
cs =

[
λcs ·T′


c ·m]
J ′

sc =
[
λsc ·T′


s ·m] ; J ′
ss =

[
λss ·T′


s ·m] (21)

When ρ(J ′) is less than or equal to 1, qc,∞ = 1, qs,∞ = 1.
When ρ(J ′) is greater than 1, qijc,∞, qijs,∞ < 1 for all 1 ≤ i, j ≤
M . It can be seen that J ′ shares the exactly same transition
points defined by ρ(J) = 1.

We show this by proving J
 and J ′ have the same
spectrum, which in turn implies that ρ(J) = ρ(J ′) because
ρ(J) = ρ(J
). Note that J
 has the following form: J� =[
J�

cc J�
sc

J�
cs J�

ss

]
where

J

cc =

[
λcc ·T′


c ·m] ; J

cs =

[
λcs ·T′


c ·m]
J


sc =
[
λsc ·T′


s ·m] ; J

ss =

[
λss ·T′


s ·m] (22)

The only difference between (22) and (21) is the anti-
diagonal blocks (left-bottom to upper-right) swapping the
positions. This can be seen through the stronger property
that the characteristic polynomials of the two matrices are
identical. Specifically, based on Theorem 3 of the determi-
nant of block matrix in Ref. [27], for block matrix (11),
where JscJss = JssJsc, we have det(J) = det(JccJss −
JcsJsc) = det(J


ssJ


cc − J


scJ


cs). Similarly, due toJ ′

ccJ
′
cs =

J ′
csJ

′
cc, det(J ′) = det(J


ssJ


cc − J


scJ


cs). Putting together the

results of this section and Section III-A, we have shown that
when ρ(J) ≤ 1, the epidemic dies out in finite time, whereas
when ρ(J) > 1, the epidemic eventually infects a positive frac-
tion of the population.

B. Derivation From (10) to (11)

We provide the details on the derivation of (11) from (10).
Take the derivation of Jcc as an example, and the derivation
processes for Jcs to Jss follow the same. Consider

Jcc(a, b) =
∂hc,ij(1)

∂hc,rt(1)

in (10), where 1 ≤ i, j, r, t ≤ M , a = M2D(i, j), and b =
M2D(r, t). We have 1 ≤ a, b ≤ M2. Consider (7) and we have

∂hc,ij(1)

∂hc,rt(1)
= mrtTc[i, r]

∑
d

pdkc
〈kc〉 (kc − 1)

= mrtTc[i, r]

〈
k2c
〉− 〈kc〉
〈kc〉 . (23)

The Jacobian matrix Jcc has the shape M2 ×M2. To rep-
resent (23) in the format of matrix multiplication, we create
T′

cM2×M2 by copying the elements from the transmissibility
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TABLE I
GIT-FB NETWORK DATASET STATISTICS

Fig. 11. Probability of emergence (left) and epidemic size given emergence (right) varying Tc and Ts values on the Git-FB network. Simulation results are
marked by sim. Analytical results are obtained using the degree distributions of the Git-FB network, marked by th. In this experiment, we assume there are two
types of masks: surgical mask (type-1) and cloth mask (type-2). The outward and inward efficiencies are denoted by εout = [εout,1, εout,2], and εin = [εin,1, εin,2].
The entire population is split into four non-overlapping categories: type-1 on C and type-1 on S, type-2 on C and type-1 on on S, type-1 on C and type-2
on S, and type-2 on C and type-2 on S. We let m = [m11,m21,m12,m22] denote the proportion of the 4 types of nodes. We set m = [0.3, 0.1, 0.2, 0.4].
εout = [0.8, 0.5], and εin = [0.7, 0.5]. Each data point is averaged over 5,000 trials. Simulation and analytical results match well.

matrix TcM×M to their corresponding locations in T′
cM2×M2 .

Note each element in Tc will be duplicated M2 times in T′
c,

because j and t does not appear in (23) except for in mrt.
Specifically, the mapping of elements from Tc to T′

c follows:

T′
c[a, b] = Tc[i, r].

By replacing tuple ij with a and rt with b, we can rewrite
(23) as:

Jcc(a, b) = mb ·T′
c[a, b] ·

〈
k2c
〉− 〈kc〉
〈kc〉 . (24)

Further, let mM2×M2 = diag({mrt}), we obtain

Jcc =

〈
k2c
〉− 〈kc〉
〈kc〉 T′

cm. (25)

C. Real-World Networks

To check the accuracy of our analytical results for general net-
works, we conducted simulation experiments using real-world
networks instead of random graph topologies. To this end, we
used two undirected real-world networks, i.e., GitHub social
network (denoted as the Git network) [35] as layer-C and Face-
book social network (denoted as the FB network) [36] as layer-S
in our multi-layer network setting. Both networks are taken
from the Stanford SNAP dataset [37] and some details about
them are provided in Table I. Notably, both networks have much
higher clustering coefficients than the random graph models we
considered in the paper. Also, both networks are connected. A
multi-layer network has been constructed from these networks
by assuming that the 4,039 nodes of the FB network coincide
(i.e., they have the same labels indicating that they are the same

“individuals”) with a randomly selected 4,039 nodes in the Git
network; thus, the parameter α used in our model equals 0.107.
The resulting multilayer network, formed by the disjoint union of
the Git network and the FB network, is referred to as the Git-FB
network. The results of the simulations are shown in Fig. 11,
where we show the probability of emergence and epidemic size
on the Git-FB network. Simulation results are obtained using
the aforementioned real-world topologies by averaging over
5000 independent simulation runs. Analytical results are ob-
tained from our derivations given in Section III using the degree
distributions of the Git network and the FB network. We see that
analytical results are in very good agreement with the simulation
results, though they do not match each other as perfectly as in
the case with random graph models. This is not very surprising
given the fact the real-world topologies considered here have
relatively small number of nodes, while our analysis is only
exact in the limit of number of nodes going to infinity (even
when the networks are generated randomly according to the
configuration model). In addition, we see that the match is nearly
perfect at small values of Tc, Ts while it gets worse as Tc and Ts

take larger values. We believe this can be attributed to the fact
that when Tc and Ts are large, the large clustering coefficient
of the two networks involved lead to a smaller PE and ES as
previously reported in the literature, and our analytical results
end up overestimating both quantities of interest.

We believe that the relatively good match between analytical
and simulation results using the real-world networks demon-
strate that our model can provide accurate predictions even
when the assumptions of the model are violated, and that our
work can still shed light on spreading processes with population
heterogeneity over real-world networks.
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[7] O. Yağan, D. Qian, J. Zhang, and D. Cochran, “Conjoining speeds up
information diffusion in overlaying social-physical networks,” IEEE J.
Sel. Areas Commun., vol. 31, no. 6, pp. 1038–1048, Jun. 2013.

[8] M. E. J. Newman, “Spread of epidemic disease on networks,” Phys. Rev.
E, vol. 66, no. 1, 2002, Art. no. 016128.

[9] P. Grassberger, “On the critical behavior of the general epidemic process
and dynamical percolation,” Math. Biosci., vol. 63, no. 2, pp. 157–172,
1983.
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[22] Y. Tian and O. Yağan, “Spreading processes with population heterogeneity
over multi-layer networks,” in Proc. IEEE GLOBECOM Glob. Commun.
Conf., 2023, pp. 3209–3214.

[23] “2022 school mask guide – CBS pittsburgh,” Feb. 2022. [Online].
Available: https://www.cbsnews.com/pittsburgh/news/2022-school-
mask-guide/

[24] M. Molloy and B. Reed, “A critical point for random graphs with a
given degree sequence,” Random Structures Algorithms, vol. 6, no. 2/3,
pp. 161–180, 1995.

[25] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with
arbitrary degree distributions and their applications,” Phys. Rev. E, vol. 64,
no. 2, 2001, Art. no. 026118.

[26] J. W. Chun and M. J. Lee, “When does individuals’ willingness to speak
out increase on social media? Perceived social support and perceived
power/control,” Comput. Hum. Behav., vol. 74, pp. 120–129, Sep. 2017.

[27] J. R. Silvester, “Determinants of block matrices,” Math. Gazette, vol. 84,
no. 501, pp. 460–467, 2000.

[28] R. Eletreby, Y. Zhuang, K. M. Carley, O. Yağan, and H. V. Poor, “The
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