
ar
X

iv
:2

50
5.

15
10

1v
1

 [
cs

.L
G

]
 2

1
M

ay
 2

02
5

COST-AWARE LLM-BASED ONLINE DATASET ANNOTATION

Eray Can Elumar
Dept. of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA

eelumar@andrew.cmu.edu

Cem Tekin
Dept. of Electrical Engineering

Bilkent University
Ankara, Turkey

cemtekin@ee.bilkent.edu.tr

Osman Yağan
Dept. of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA

oyagan@andrew.cmu.edu

ABSTRACT

Recent advances in large language models (LLMs) have enabled automated dataset labeling with
minimal human supervision. While majority voting across multiple LLMs can improve label reliability
by mitigating individual model biases, it incurs high computational costs due to repeated querying. In
this work, we propose a novel online framework, Cost-aware Majority Voting (CaMVo), for efficient
and accurate LLM-based dataset annotation. CaMVo adaptively selects a subset of LLMs for each
data instance based on contextual embeddings, balancing confidence and cost without requiring
pre-training or ground-truth labels. Leveraging a LinUCB-based selection mechanism and a Bayesian
estimator over confidence scores, CaMVo estimates a lower bound on labeling accuracy for each
LLM and aggregates responses through weighted majority voting. Our empirical evaluation on the
MMLU and IMDB Movie Review datasets demonstrates that CaMVo achieves comparable or superior
accuracy to full majority voting while significantly reducing labeling costs. This establishes CaMVo
as a practical and robust solution for cost-efficient annotation in dynamic labeling environments.

Keywords large language models (LLMs) · dataset annotation · optimization · multi-armed bandits

1 Introduction

The rapid proliferation of data across domains has created an urgent need for accurate, large-scale annotation pipelines.
While human experts and crowd workers have been the gold standard for dataset labeling, manual annotation is
notoriously slow, expensive, and prone to inter-annotator inconsistency Petrović et al. [2020]. As machine learning
models become increasingly sophisticated, their demand for high-quality, richly labeled datasets only intensifies,
exacerbating this bottleneck.

Recent advances in large language models (LLMs) offer a promising remedy: by leveraging transformer-based
architectures such as GPT, it is now possible to automate much of the labeling workload. LLMs excel at natural-
language understanding, reasoning, and contextual inference, enabling rapid generation of annotations with minimal
human effort Naveed et al. [2023].

However, relying on a single LLM introduces issues of biases inherited from its training data and stochastic variability
across repeated queries, undermining reliability and reproducibility Errica et al. [2024], Li et al. [2024a]. A common
strategy to bolster label quality is ensembling: querying multiple LLMs, or multiple samples from the same model, and
aggregating their outputs via majority voting. This reduces hallucinations and offsets the bias of individual models but
substantially increases cost, as each additional model increases latency and compute expenditure Yang et al. [2023]. In
practice, querying every available LLM for each instance is often wasteful and unnecessary.

https://arxiv.org/abs/2505.15101v1

In this paper, we address this trade-off by adaptively selecting a subset of LLMs for majority voting on each input,
achieving comparable accuracy to full-ensemble voting while dramatically cutting cost. Unlike prior work on LLM
weight optimization or query routing—which presumes access to ground-truth labels or a pre-trained routing model
Chen et al. [2024], Nguyen et al. [2024], Ding et al. [2024]—our method operates online, without any held-out training
set or ground truth.

Our contributions are as follows:

1. Online formulation. To the best of our knowledge, this is the first work on LLM-based dataset labeling in
which both vote weights and the queried subset of LLMs are adapted in real time, i.e. without relying on a
pre-trained model or a dedicated training set.

2. Cost-aware Majority Voting (CaMVo). We propose CaMVo, an algorithm that combines a LinUCB-style
contextual bandit with a Bayesian Beta-mixture confidence estimator. For each candidate LLM, CaMVo
computes a lower confidence bound on its correctness probability given the input’s embedding, then selects
the smallest-cost subset whose aggregated confidence exceeds a user-specified threshold δ.

3. Empirical validation. Through experiments on the MMLU benchmark and the IMDB Movie Review dataset,
we show that CaMVo matches or exceeds the accuracy of full majority voting (majority voting with all available
LLMs) while significantly reducing the cost: on MMLU, CaMVo achieves higher accuracy with around 40%
lower cost; on IMDB, it attains only 0.17% drop in accuracy while halving query expenditure.

1.1 Related Work

Ensembling and Majority Voting with LLMs. Aggregating outputs from multiple LLMs (or repeated queries to
a single LLM) via majority voting has become a popular strategy to boost annotation reliability. Chen et al. [2024]
analyze the effect of repeated queries to a single model and observe a non-monotonic accuracy curve: performance
improves initially but degrades beyond an optimal number of calls due to task heterogeneity. While additional LM
calls enhance accuracy on easier queries, they may introduce noise or inconsistency that degrades performance on
more challenging ones. To address this, the authors propose a scaling model that predicts the optimal number of LM
calls required to maximize aggregate performance. Trad and Chehab [2024] compare re-querying and multi-model
ensembles, showing that ensemble strategies are most effective when individual models or prompts exhibit comparable
performance levels, and ensemble gains may diminish when individual model accuracies diverge.

Yang et al. [2023] propose a weighted majority-voting ensemble for medical QA, combining dynamic weight adjustment
with clustering-based model selection. However, their approach relies on offline training data and focuses solely on
improving accuracy, without accounting for the cost of querying. In contrast, our approach selects a cost-effective
subset of heterogeneous LLMs online, without any pre-training.

LLM Query Routing. Query routing addresses the problem of selecting a single LLM per query to optimize cost
or latency under performance constraints. Nguyen et al. [2024] cast LLM selection as a contextual bandit problem,
training offline on labeled data to learn a routing policy that maps query embeddings to a single optimal LLM under a
total budget constraint of b. Ding et al. [2024] train a router to distinguish “easy” versus “hard” queries, sending easy
tasks to local LLMs and hard ones to cloud APIs. Unlike these methods, our method operates in a fully online setting
without access to labeled training data, updating the model dynamically during the labeling process. Moreover, rather
than routing to a single LLM, we select a cost-efficient subset for majority voting.

Confidence Estimation in LLM Outputs. Estimating model confidence can guide automatic label selection. Ka-
davath et al. [2022] explore how a language model’s own uncertainty estimates can serve as predictors of answer
correctness, and find that the cumulative log-probability the model assigns to its generated token sequence correlates
strongly with factual accuracy across diverse benchmarks. Li et al. [2024a] generate code multiple times and use output
similarity as a proxy for confidence, choosing the most consistent result. While these works focus on self-consistency
of a single model, we estimate a probabilistic lower bound on each LLM’s correctness via a Bayesian Beta-mixture
model, incorporating both past performance and context.

Weighted Majority Voting. Beyond simple voting, weighted schemes assign each annotator or model a reliability
score such as the accuracy of the annotator, or the label confidence reported by the annotator. One notable approach is
the GLAD model by Whitehill et al. [2009], which formulates weighted majority voting as a probabilistic inference
problem over annotator expertise and task difficulty. GLAD jointly estimates per-annotator reliability and per-item
ambiguity via a generative model, using an EM algorithm to infer the latent variables. Li and Yu [2014] introduce
Iterative Weighted Majority Voting (IWMV) to aggregate noisy crowd labels by iteratively estimating worker reliability,
and show it approaches the oracle Maximum A Posteriori (MAP) solution.

2

Crowdsourcing. Rangi and Franceschetti [2018] utilize the bandits-with-knapsacks framework to dynamically
estimate worker accuracy and allocate tasks in real time to maximize overall labeling quality within a budget. Another
influential model is by Raykar et al. [2010], which jointly infers true labels and annotator reliabilities by modeling each
worker’s confusion matrix. Through an expectation–maximization procedure, the method down-weights inconsistent
annotators and yields more accurate aggregated labels without prior knowledge of worker quality. Our method parallels
this online estimation but differs in that it leverages contextual embeddings and targets LLM ensembles rather than
human annotators.

The comparison of our work with prior work is summarized in Table 1

Method Ensemble Type Pretrained Online Contextual
Ours (CaMVo) Subset voting No Yes Yes
Yang et al. [2023] Weighted voting Yes No Yes
Nguyen et al. [2024] Single-model routing Yes No Yes
Ding et al. [2024] Single-model routing Yes No Yes
Chen et al. [2024] Re-querying No No No
Li et al. [2024a] Re-querying No No Yes
Li and Yu [2014] Crowd aggregation No Yes No
Rangi and Franceschetti [2018] Crowd assignment No Yes No
Raykar et al. [2010] Crowd aggregation No Yes No

Table 1: Comparison of our work with prior ensemble and routing approaches.

2 Problem Statement

In this section, we formally define the problem setting, introduce the baseline algorithm, and provide some results that
will be used by our proposed algorithm, which will be introduced in §3.

Consider an unlabeled dataset D = {x1, x2, . . . , xT }, where each xt denotes a data instance (e.g., a text sample). Let
there be a set [K] of K distinct large language models (LLMs), where each LLM li is associated with a known cost
per token ρi and can be represented as a function li : Q → R, mapping a query q ∈ Q to a response r ∈ R. We
denote the total number of possible labels for the dataset D as M . The objective in this setting is to assign a predicted
label ŷt ∈ [M] to each data instance xt by querying a subset of the available LLMs and aggregating their outputs.
Labeling is performed sequentially, where each data instance xt is processed in round t. In each round, LLMs are
queried independently of other LLMs and without memory of prior interactions (i.e., no context is preserved between
rounds). Furthermore, all queries are made in a zero-shot setting, meaning that no task-specific fine-tuning or additional
training data is used.

To serve as a baseline, we introduce the following weighted majority voting scheme. In this scheme, the predicted label
yt for instance xt is determined by aggregating the votes of all K LLMs using:

yt = arg max
m∈[M]

K∑
i=1

ωdef,i(t) · 1 {yi,t = m},

where 1 {·} is the indicator function that returns 1 if the condition is true and 0 otherwise, and yi,t denotes the label
outputted by LLM li for instance xt. Since the true label is not available in our setting, we use the empirical accuracy of
model li as the voting weight. Hence, ωdef,i(t) = (

∑t−1
s=1 I(yi,s = ys))/Ni,t, where Ni,t denotes the number of times

LLM li has been queried up to round t, and ys is the predicted label for round s. The pseudocode for this scheme,
which we refer to as the baseline method, is provided in Algorithm 2 in Appendix C.

The goal is to label the dataset D in a cost-efficient manner by dynamically selecting a subset of LLMs for each data
instance xt. To facilitate this selection, we assume access to a model Emb(·) that generates a d-dimensional embedding
et = Emb(xt) for xt in round t. This embedding serves as a representation of the instance and plays an analogous role
to the context in a contextual bandit framework. Using this embedding, our approach, which will be introduced in § 3,
estimates a lower bound on the probability that a given LLM li will produce the correct label for xt, and utilizes this
bound to determine the subset of LLMs. The details for estimating this lower bound is given in § 3.

Naturally, selecting only a subset of LLMs rather than querying all available models may result in reduced labeling
accuracy. To manage this trade-off, we introduce a user-defined parameter δ ∈ [0, 1] that specifies the desired minimum
relative confidence of the selected subset compared to the full majority vote using all K LLMs. Let Li,t denote the

3

lower confidence bound on the estimated probability that LLM li correctly labels instance xt at round t. Our algorithm
identifies the cost-minimizing subset of LLMs whose aggregated confidence, relative to that of the baseline method,
satisfies the accuracy constraint imposed by δ.

We will leverage the following result to estimate the confidence of the majority vote label based on the Li,t and ωi(t)
values when majority voting is performed over a subset A of LLMs.
Lemma 2.1. Let ωi denote the weight and Li the lower confidence bound on the correctness of the output from LLM
li. Suppose the outputs of LLMs are conditionally independent given the data instance. Then, for a subset of LLMs
A ⊆ [K], the lower bound on the probability that majority voting over the subset yields the correct label is given by

δA(L,ω) =
∑
S⊆A∑

r∈S ωr>
WA
2

∏
i∈S

Li

∏
j∈A\S

(1− Lj),

where WA =
∑

i∈A ωi. Proof of this result is provided in Appendix A.

Finally, we introduce a user-specified parameter kmin, which enforces a floor on the number of LLMs queried per
instance. By requiring at least kmin votes in every round, this constraint further safeguards label quality—ensuring that
no annotation is based on fewer than kmin model predictions.

The proposed Cost-aware Majority Voting (CaMVo) algorithm, which incorporates these results and user-defined
parameters, is presented in §3.

3 The CaMVo Algorithm

We propose a novel algorithm, Cost-aware Majority Voting (CaMVo), for efficient dataset labeling with large language
models (LLMs). CaMVo aims to select a cost-effective subset of LLMs for each input instance by leveraging contextual
embeddings to estimate a lower confidence bound on the probability that each model will produce a correct label. These
bounds are computed using a LinUCB-based framework [Li et al., 2010]. Based on this information, CaMVo identifies
a subset of LLMs such that the confidence of their weighted majority vote exceeds a user-specified threshold δ. If no
such subset exists, the algorithm defaults to querying all available models. The pseudo-code of CaMVo is provided in
Algorithm 1, and consists of six main steps described below.

Algorithm 1 Cost-aware Majority Voting (CaMVo) Algorithm

1: Input: Set of LLMs [K], cost per token ρi for each
LLM i, embedding model Emb(·), confidence thresh-
old δ, LinUCB regularization parameter λL, explo-
ration parameter α, regularization parameter λR

2: Initialize: Ai ← λLId, bi ← 0d, ∀i ∈ [K]
3: for each round t = 1, 2, . . . , T do
4: Get context vector: et ← Emb(xt)
5: for each LLM i = 1, 2, . . . ,K do
6: qi,t(et)← e⊤t A

−1
i,t−1bi,t−1

7: θi,t(et) = qi,t(et)− α
√
e⊤t A

−1
i,t−1et

8: L̄i,t ← Esti(θi,t(et))
9: Li,t ← L̄i,t·Ni,t+λR·log(t+1)/2

Ni,t+λR·log(t+1)

10: ωi,t ← µi,t−1 · qi,t(et)

11: end for
12: At ← Oracle(Lt,ωt, δ, kmin)
13: Query LLMs: yi,t = li(xt), i ∈ At

14: yt ← argmaxm
∑

i∈At,yi,t=m ωi(t)

15: if |At| > 1 then
16: for each LLM i ∈ At do
17: ri,t ← 1 {yi,t = yt}
18: Update: Ai,t ← Ai,t−1 + ete

⊤
t

19: Update: bi,t ← bi,t−1 + ri,tet

20: Update: µi,t ←
∑t

s=1 1{yi,s=ys}
Ni,t

21: Update the parameters of Esti
22: end for
23: end if
24: end for

LinUCB-Based Confidence Estimation. For each LLM li, CaMVo maintains a matrix Ai ∈ Rd×d and vector
bi ∈ Rd, initialized as Ai = λLId, bi = 0, where λL > 0 is a user-defined parameter. Given et = Emb(xt), the
estimated confidence, and its confidence bound is computed as:

qi,t(et) = e⊤t A
−1
i,t−1bi,t−1, Ci,t(et) = α

√
e⊤t A

−1
i,t−1et,

From these, the lower confidence bound (LCB) of LLM confidence can be found as:

θi,t(et) = qi,t(et)− Ci,t(et).

4

Bayesian Estimation of Label Correctness. Given the inherent probabilistic nature of LLM outputs, the estimated
confidence score may not reliably indicate the correctness of a label. To address this, we introduce a Bayesian estimator
Esti(·) that models the posterior probability that li’s prediction is correct, conditioned on this confidence. First, we
define a latent variable hi,t = 1{yi,t = yt}, where yt is the assigned label. Note that ideally, the true label should
be used instead of yt, but since we do not have access to the true label, we instead use yt. We model the conditional
likelihood of qi,t(et), given the latent variable hi,t, as a Beta-distributed random variable:

qi,t(et) | hi,t = 1 ∼ Beta(αi,1, βi,1), qi,t(et) | hi,t = 0 ∼ Beta(αi,0, βi,0).

Further, to model P(hi,t = 1), we use the empirical historical accuracy of li, µi,t−1, which captures the accuracy of
LLM li relative to the predicted labels up to round t− 1. Similarly, P(hi,t = 0) = 1− µi,t−1. Applying Bayes’ rule
with these models, the posterior probability is modeled as:

Esti(q) = P(hi,t = 1 | q) = µi,t−1 · Betai(q;αi,1, βi,1)

µi,t−1 · Betai(q;αi,1, βi,1) + (1− µi,t−1) · Betai(q;αi,0, βi,0)
,

We apply this estimator to θi,t(et), the LCB of the estimated LLM confidence as L̄i,t = Esti(θi,t(et)) to encourage
exploration under the UCB principle. Note that unlike traditional UCB-based methods that promote exploration via
upper bounds, we use the LCB as it expands the size of the set of LLMs likely to satisfy the confidence threshold δ.

Regularization. In the absence of ground-truth labels, empirical accuracy estimates in majority voting can overfit,
resulting in overconfident weights and biased aggregation. To address this issue, we regularize the LCB of the estimated
confidence of LLM li using Laplace smoothing:

Li,t =
L̄i,t ·Ni,t + λR · log(t+ 1)/2

Ni,t + λR · log(t+ 1)

where λR > 0 is a user-defined regularization parameter that controls the strength of smoothing.

Subset Selection with Oracle. We define the weight of LLM li for majority voting as ωi,t := µi,t−1 · qi,t(et). This
way the weights of LLMs reflect both their past performance, and also their expected performance for the current data
instance. An Oracle is used to find the lowest cost subset whose label confidence is above the threshold δ using the
computed Li,t and ωi,t values of LLMs. Using Lemma 2.1, this can be expressed as

At = Oracle(Lt,ωt, δ, kmin) := argmin
A

cA(t) : δA(Lt,ωt) ≥ δ, |A| ≥ kmin

where cA(t) =
∑

i∈A ρi · Hi(xt), and Hi(xt) is the token count of the query to the LLM li for data instance xt
under the tokenization method of LLM li. Since we expect only one token as output (which will be the label for the
data instance xt), we ignore the output tokens. Note that as in Lemma 2.1, we assume that the outputs of LLMs are
conditionally independent given the data instance. Also note that if no such A exists, CaMVo defaults to querying all
LLMs.

Label Assignment. We query the LLMs in At and receive their responses. The label for xt can be assigned via
weighted majority vote using yt = argmaxm∈[M]

∑
i∈At

ωi(t) · 1 {yi,t = m}.

Parameter Updates. If |Ai,t| > 1, for each li ∈ At, CaMVo updates Ai,t, bi,t, and µi,t, which is the empirical mean
accuracy, as:

Ai,t ← Ai,t−1 + ete
⊤
t , bi,t ← bi,t−1 + ri,tet, µi,t ←

∑t
s=1 1{yi,s = ys}

Ni,t

where ri,t = 1{yi,t = yt}. Note that parameters are not updated when |Ai,t| = 1 as the reward will always be 1
in that case. The Beta distribution parameters (αi,h, βi,h) can be updated via maximum likelihood estimation or a
method-of-moments approximation based on the mean and variance of past confidence scores. These approaches are
discussed in Appendix B.

4 Experiments

4.1 Experiments on the MMLU Dataset

We first evaluate CaMVo on the MMLU dataset Hendrycks et al. [2021a,b], a challenging multiple-choice benchmark
spanning 57 diverse subjects including mathematics, U.S. history, law, and computer science. MMLU is well-suited to
our setting, as it demands broad world knowledge and strong reasoning capabilities—conditions under which majority
voting is particularly effective. To reduce computational cost, we restrict our evaluation to the test split, which contains
14,042 instances.

5

Models and setup. We use the following LLMs: Claude 3 Sonnet and Haiku from Anthropic Anthropic [2024],
GPT-4o, o3-mini, and o1-mini from OpenAI OpenAI [2024], and LLaMA-3.3 and LLaMA-3.1 from Meta Meta [2024].
All models are queried using temperature 0.35 and top-p = 1, where applicable. To extract contextual embeddings for
CaMVo, we use the 384-dimensional sentence transformer all-MiniLM-L6-v2 Wang et al. [2020]. For computational
efficiency, we approximate the confidence δA(L,ω) using the cumulative distribution function of a Beta distribution.
Further implementation details and experimental setup are provided in Appendix D.

Results. Table 2 (Left) reports the accuracy and cost of individual LLMs, as well as two baselines: Majority
Vote, which aggregates all LLMs using weights proportional to their true accuracy, and the Baseline Method, which
corresponds to Algorithm 2. Cost corresponds to the average input token cost when labeling the dataset and is reported
in dollars per million input tokens. Accuracy reflects the percentage of data instances correctly labeled. CaMVo’s
performance under varying confidence thresholds δ and minimum vote counts kmin ∈ {1, 3} is shown in Table 3. Note
that we include kmin = 3 in our experiments as model parameters do not get updated when only a single LLM is
queried, a scenario that can occur under kmin = 1. As a result, users may prefer to avoid setting kmin = 1. Moreover,
for kmin = 2, the selected pair of LLMs will always yield a majority vote in favor of the LLM with the higher weight,
limiting the informativeness of the voting outcome. The algorithm is configured with α = 0.25, λR = 1, and λL = 1.
The Target Accuracy column reflects the minimum accuracy CaMVo must exceed to satisfy the threshold δ, and is
computed as δ × (Majority Vote Accuracy) = δ × 88.18%.

From Table 2, we observe that among individual models, o3-mini achieves the highest accuracy at 85.92%, while
Majority Vote attains 88.18% at a substantially higher cost of $9.14 per million tokens. The Baseline Method also
matches this accuracy and cost. Table 3 shows that CaMVo consistently meets or exceeds the desired accuracy levels
specified by δ, across all settings of kmin. From Table 3, it can be observed that CaMVo consistently satisfies all
target accuracy levels defined by the confidence parameter δ. Moreover, the accuracy and cost of CaMVo exhibit a
predictable trade-off: as δ decreases, the cost of labeling decreases accordingly, while accuracy also declines in a
controlled manner. This behavior highlights the flexibility of CaMVo in adapting to a wide range of practical scenarios
with varying accuracy and budget constraints. Further, at δ = 0.97 and kmin = 1, CaMVo achieves 88.33% accuracy at
a cost of only $7.18, outperforming both baselines in cost-efficiency. This improvement stems from CaMVo’s ability to
dynamically select LLM subsets based on both global accuracy estimates and instance-specific contextual confidence.

We also observe that when kmin = 3, lowering δ below 0.85 has negligible effect on cost or accuracy. This occurs
because CaMVo settles on the lowest-cost trio: LLaMA-3.3, LLaMA-3.1, and Claude-3.5; whose combined cost ($1.44)
represents a lower bound given the constraint on kmin.

LLM / Method Accuracy (%) Cost
o3-mini 85.92 1.10
claude-3-7-sonnet 85.65 3.00
o1-mini 84.82 1.10
gpt-4o 83.58 2.50
llama-3.3-70b 81.70 0.59
llama-3.1-8b 68.01 0.05
claude-3-5-haiku 64.09 0.80

Majority Vote 88.18 9.14
Baseline Method 88.18 9.14

LLM / Method Accuracy (%) Cost
gpt-4o 95.68 2.50
o3-mini 95.40 1.10
claude-3-5-haiku 95.05 0.80
gpt-4o-mini 94.60 0.15
o1-mini 94.52 1.10
llama-3.1-8b 94.06 0.05
llama-3.3-70b 92.23 0.59

Majority Vote 95.62 6.29
Baseline Method 95.61 6.29

Table 2: Accuracy and cost of individual LLMs and baseline ensemble methods on the MMLU dataset (Left), and the
IMDB Movie Reviews Dataset (Right).

Figure 1 (Left) illustrates the cost–accuracy trade-off of All Subsets versus CaMVo. Each gray point represents one
of the 2K−1 possible LLM subsets voted via ground-truth accuracies, while the yellow curve depicts those that are
Pareto-optimal. CaMVo’s results appear as blue markers for kmin = 1 and green markers for kmin = 3. The red
marker denotes the Baseline Method. Remarkably, even without any a priori knowledge of LLM performance, or
any pre-training, CaMVo consistently tracks, and sometimes surpasses the Pareto frontier, demonstrating its ability to
approximate optimal cost–accuracy trade-offs in an online manner.

Figure 1 (Right) shows CaMVo’s cumulative average accuracy (blue) and cost (red) for δ = 0.96, kmin = 1; the
green horizontal line indicates the target accuracy. In early rounds, CaMVo explores larger, more expensive subsets,
yielding both high cost and high accuracy. As the LCB estimates converge, the algorithm rapidly shifts to smaller,
cheaper subsets that still satisfy the accuracy threshold. Cost declines steeply while accuracy stabilizes just above the

6

CaMVo δ Target
Acc. (%)

Acc. (%)
kmin = 1

Cost
kmin = 1

Acc. (%)
kmin = 3

Cost
kmin = 3

0.99 87.30 88.47 9.14 88.47 9.14
0.98 86.42 88.59 8.57 88.59 8.57
0.975 85.98 88.49 7.80 88.49 7.80
0.97 85.53 88.35 6.67 88.33 6.67
0.965 85.09 88.27 5.66 88.27 5.66
0.96 84.65 87.98 4.74 88.03 4.74
0.955 84.21 87.40 3.38 87.01 3.36
0.95 83.77 86.82 2.76 87.01 2.96
0.90 79.36 84.88 1.19 84.80 1.81
0.85 74.95 84.41 1.03 82.14 1.58
0.80 70.54 82.12 0.70 81.32 1.51
0.75 66.14 68.80 0.16 81.24 1.50
0.70 61.73 68.38 0.14 81.22 1.50

Table 3: Accuracy and cost of CaMVo on the MMLU dataset under varying confidence thresholds δ and kmin ∈ {1, 3}.
For reference, the cost of the baseline method is $9.14 per million tokens.

Figure 1: (Left) Cost–accuracy trade-off for MMLU dataset: gray dots show every LLM subset via weighted majority
voting, yellow dots trace their Pareto-optimal frontier, blue markers are CaMVo at kmin = 1, green markers at kmin = 3,
and the red marker denotes the Baseline Method. (Right) Cumulative average accuracy and cost of CaMVo with
δ = 0.96, kmin = 1 over rounds.

target, illustrating CaMVo’s ability to quickly identify and exploit the most cost-effective ensembles without sacrificing
labeling quality. Additional plots with different parameters are provided in Appendix D.

4.2 Experiments on the IMDB Movie Reviews Dataset

We next test CaMVo on the IMDB Movie Reviews dataset Maas et al. [2011], a balanced binary-sentiment benchmark
of 50,000 movie reviews. As before, we compare CaMVo against each individual LLM, a full-ensemble Majority Vote,
and the Baseline Method (Algorithm 2).

Models and setup. We employ Anthropic’s Claude 3-5 Haiku Anthropic [2024]; OpenAI’s GPT-4o, o3-mini, GPT-4o-
mini, and o1-mini OpenAI [2024]; and Meta’s LLaMA-3.3 and LLaMA-3.1 Meta [2024]. All queries use temperature
= 0.25 and top-p = 1, where applicable. We extract 384-dimensional contextual embeddings with all-MiniLM-L6-v2
Wang et al. [2020] and approximate the confidence bound δA(L,ω) via the Beta-CDF, as in §4.1.

Results. Table 2 (Right) reports the accuracy and cost (in dollars per million input tokens) of each LLM and the two
baselines. The baseline underperforms the best individual model (95.68% vs. 95.61%) despite incurring a significantly
higher cost. This is partly due to the relative ease of the IMDB Movie Reviews dataset, where individual LLMs already
achieve high accuracy, limiting the marginal benefit of ensembling. As noted by Li et al. [2024b], ensemble gains are

7

most pronounced on harder tasks. Additionally, Trad and Chehab [2024] highlight that large performance gaps among
models can reduce ensemble effectiveness, making smaller, selective subsets preferable in such cases.

Table 4 presents CaMVo’s accuracy–cost trade-off across various thresholds δ and kmin ∈ {1, 3}. CaMVo’s hyperpa-
rameters are α = 0.7, λR = 5, and λL = 1; and the Target Accuracy is computed similarly as δ × 95.62%. Across all
configurations, CaMVo meets or exceeds its target accuracy. Further, CaMVo achieves less than half the cost (when
δ = 0.997 and kmin = 1) at a slightly lower accuracy of 95.45% compared to the baseline, confirming its practicality
for large-scale sentiment annotation without any pre-training or ground-truth labels.

CaMVo δ Target
Acc. (%)

Acc. (%)
kmin = 1

Cost
kmin = 1

Acc. (%)
kmin = 3

Cost
kmin = 3

0.999 95.52 95.59 6.15 95.59 6.15
0.998 95.43 95.43 4.03 95.43 4.03
0.997 95.33 95.45 2.83 95.45 2.83
0.995 95.14 95.25 2.06 95.25 2.06
0.99 94.66 95.10 1.09 95.12 0.99
0.985 94.20 94.69 0.34 95.06 0.84
0.98 93.71 94.69 0.31 95.07 0.83
0.97 92.75 94.56 0.22 95.07 0.82
0.96 91.80 94.21 0.13 95.06 0.81
0.95 90.84 94.28 0.14 95.07 0.81
0.9 86.06 94.24 0.10 95.06 0.81

Table 4: Accuracy and cost of CaMVo on the IMDB dataset under varying confidence thresholds δ and kmin ∈ {1, 3}.
For reference, the cost of the baseline method is $6.29 per million tokens.

Figure 2: (Left) Cost–accuracy trade-off for IMDB dataset: gray dots show every LLM subset via weighted majority
voting, yellow dots trace their Pareto-optimal frontier, blue markers are CaMVo at kmin = 1, green markers at kmin = 3,
and the red marker denotes the Baseline Method. (Right) Empirical average accuracy and cost of CaMVo with
δ = 0.995, kmin = 1 over rounds.

Figure 2 (Left) presents the analogous comparison of Figure 1 (Left) on the IMDB sentiment task. As before, gray
points and the yellow Pareto-frontier points show all possible subset combinations, while blue and green markers plot
CaMVo at kmin = 1 and 3, respectively. The red marker denotes the Baseline Method. CaMVo closely matches the
Pareto front in the low-cost regime (cost < 1), but lags behind in higher-cost regions. This exposes a key limitation:
when majority voting with additional LLMs is ineffective, CaMVo’s reliance on the independence assumption, which
suggests that aggregating more LLMs improves accuracy; can lead to suboptimal performance.

Figure 2 (Right) plots CaMVo’s cumulative average accuracy (blue) and cost (red) on IMDB with δ = 0.995 and
kmin = 1; the green line marks the target accuracy. As before, early rounds involve querying larger, costlier ensembles
to robustly explore each model’s performance. Once the lower-confidence bounds stabilize, CaMVo swiftly transitions
to minimal-cost subsets that still meet the accuracy requirement. This demonstrates CaMVo’s rapid convergence to
cost-effective model combinations without compromising annotation quality. Additional results for other parameter
settings appear in Appendix E.

8

5 Limitations

Our work relies on the assumption that the outputs of LLMs are independent of each other. Under this assumption,
aggregating any subset of models with individual accuracy above 50% strictly improves majority-vote performance.
In practice; i.e., on the IMDB sentiment task (§4.2), LLM outputs can be highly correlated, and majority voting
may underperform the best single model. Consequently, CaMVo inherits these failures and can yield lower ensemble
accuracy when independence is violated. Nevertheless, even in such regimes CaMVo still achieves the user-specified
accuracy threshold while reducing cost relative to the full-ensemble baseline. This is mostly due to the fact that
our results are relative to the full-ensemble baseline which also suffers from the same issue. Extending CaMVo by
accounting for inter-model correlations (e.g., via joint confidence estimation or diversity-aware selection) to better find
the optimal subset is a promising and challenging direction for future work.

6 Conclusions

We have introduced Cost-aware Majority Voting (CaMVo), the first fully online framework for LLM-based dataset
labeling that jointly adapts both vote weights and the subset of models queried on a per-instance basis. By combining a
LinUCB-style contextual bandit with a Bayesian Beta-mixture confidence estimator, CaMVo estimates a lower bound on
each LLM’s correctness probability for the given input and selects the minimal-cost ensemble that meets a user-specified
accuracy threshold.

Empirical results on the MMLU and IMDB benchmarks demonstrate that CaMVo matches or exceeds full-ensemble
majority-vote accuracy while reducing labeling cost. On MMLU, CaMVo even surpasses the true Pareto frontier of
all possible weighted subsets—despite having no prior knowledge of individual model performance. These findings
establish CaMVo as a practical solution for cost-efficient, automated annotation in dynamic labeling environments
without any ground-truth labels or offline training.

Our analysis assumes independence among LLM outputs, which can be violated in practice and may degrade ensemble
gains. Nonetheless, CaMVo still enforces the user’s accuracy target and delivers significant cost savings even under
these conditions. Future work will explore diversity-aware selection and joint confidence models to mitigate correlated
errors. We will also extend CaMVo to support iterative relabeling, allowing previously annotated instances to be
revisited and refined as additional contextual information becomes available.

Acknowledgments

This work was supported in part by the National Science Foundation through Grant CCF-2007834, by the Office of
Naval Research through Grant #N00014-23-1-2275, and by the CyLab Enterprise Security Initiative. The work of C.
Tekin was supported by TUBITAK 2024 Incentive Award and TUBA-GEBIP 2023 Award.

References
Anthropic. Claude 3 technical overview. https://www.anthropic.com/index/claude-3, 2024. Accessed:

2025-04-24.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei A Zaharia, and James Y Zou. Are
more llm calls all you need? towards the scaling properties of compound ai systems. Advances in Neural Information
Processing Systems, 37:45767–45790, 2024.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle, Laks VS Lakshmanan,
and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query routing. arXiv preprint
arXiv:2404.14618, 2024.

Federico Errica, Giuseppe Siracusano, Davide Sanvito, and Roberto Bifulco. What did i do wrong? quantifying llms’
sensitivity and consistency to prompt engineering. arXiv preprint arXiv:2406.12334, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob Steinhardt. Aligning ai
with shared human values. Proceedings of the International Conference on Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring
massive multitask language understanding. Proceedings of the International Conference on Learning Representations
(ICLR), 2021b.

9

https://www.anthropic.com/index/claude-3

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas Schiefer, Zac
Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly) know what they know. arXiv
preprint arXiv:2207.05221, 2022.

Hongwei Li and Bin Yu. Error rate bounds and iterative weighted majority voting for crowdsourcing. arXiv preprint
arXiv:1411.4086, 2014.

Jia Li, Yuqi Zhu, Yongmin Li, Ge Li, and Zhi Jin. Showing llm-generated code selectively based on confidence of llms.
arXiv preprint arXiv:2410.03234, 2024a.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need. arXiv preprint
arXiv:2402.05120, 2024b.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th international conference on World wide web, pages 661–670, 2010.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning word
vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon, USA, June 2011. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/P11-1015.

Meta. Llama-3 models. https://www.llama.com/models/llama-3/, 2024. Accessed: 2025-04-24.
Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman, Naveed Akhtar, Nick

Barnes, and Ajmal Mian. A comprehensive overview of large language models. arXiv preprint arXiv:2307.06435,
2023.

Quang H Nguyen, Duy C Hoang, Juliette Decugis, Saurav Manchanda, Nitesh V Chawla, and Khoa D Doan. Metallm:
A high-performant and cost-efficient dynamic framework for wrapping llms. arXiv preprint arXiv:2407.10834, 2024.

OpenAI. Openai models. https://platform.openai.com/docs/models, 2024. Accessed: 2025-04-24.
Nataša Petrović, Gabriel Moyà-Alcover, Javier Varona, and Antoni Jaume-i Capó. Crowdsourcing human-based

computation for medical image analysis: A systematic literature review. Health informatics journal, 26(4):2446–
2469, 2020.

Anshuka Rangi and Massimo Franceschetti. Multi-armed bandit algorithms for crowdsourcing systems with online
estimation of workers’ ability. In AAMAS, pages 1345–1352, 2018.

Vikas C. Raykar, Shipeng Yu, Liangliang Zhao, Gilbert H. Valadez, Christopher Florin, Luca Bogoni, and Lawrence
Moy. Learning from crowds. Journal of Machine Learning Research, 11(Apr):1297–1322, 2010.

Fouad Trad and Ali Chehab. To ensemble or not: Assessing majority voting strategies for phishing detection with
large language models. In International Conference on Intelligent Systems and Pattern Recognition, pages 158–173.
Springer, 2024.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-attention distillation
for task-agnostic compression of pre-trained transformers, 2020.

Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier Movellan, and Paul Ruvolo. Whose vote should count more:
Optimal integration of labels from labelers of unknown expertise. Advances in neural information processing systems,
22, 2009.

Han Yang, Mingchen Li, Huixue Zhou, Yongkang Xiao, Qian Fang, and Rui Zhang. One llm is not enough: Harnessing
the power of ensemble learning for medical question answering. medRxiv, 2023.

10

http://www.aclweb.org/anthology/P11-1015
https://www.llama.com/models/llama-3/
https://platform.openai.com/docs/models

A Proof of Lemma 2.1

Proof. Assume that each LLM li ∈ A produces a correct label with probability at least Li, independently of other
models. Define the random variable Zi ∼ Bernoulli(Li) to represent whether model li correctly labels the data instance,
where E[Zi] ≥ Li. The total weight of LLMs that output the correct label is given by:

WC,A :=
∑
i∈A

ωi · Zi,

and the total weight of all LLMs in A is:

WA :=
∑
i∈A

ωi.

Majority voting yields the correct label if the cumulative weight of correctly labeling LLMs exceeds half of the total
weight, i.e. when

WC,A >
WA

2
.

Hence, δA(L,ω) can be expressed as

δA(L,ω) = P
(
WC,A >

WA

2

)
.

To compute this probability, we consider all possible label correctness outcomes for the subset A. Let S ⊆ A denote
the subset of LLMs that produce correct labels, while A \ S corresponds to those that produce incorrect labels. The
probability of this joint outcome under the independence assumption is

PS(L,ω) =
∏
i∈S

Li

∏
j∈A\S

(1− Lj).

Summing over all subsets S ⊆ A for which the total weight of correctly labeling models exceeds half the total weight
gives the desired result:

δA(L,ω) =
∑
S⊆A∑

r∈S ωr>
WA
2

∏
i∈S

Li

∏
j∈A\S

(1− Lj).

B Estimating the Shape Parameters of the Beta Distribution

In this section, we present two methods for estimating the shape parameters of the Beta distributions used in CaMVo.
The first is a maximum-likelihood estimation (MLE) approach that yields a closed-form system of equations, while the
second is an efficient approximation based on the method of moments. Due to its computational practicality, the second
method is used in our experiments.

Maximum-likelihood Estimation. αi,1 and βi,1 for the Beta distribution Betai(αi,1, βi,1) corresponding to LLM li
can be estimated by maximizing the log-likelihood:

ℓi(αi,1, βi,1) = (αi,1 − 1)

t∑
s=1

ln qi(es, s) + (βi,1 − 1)

t∑
s=1

ln(1− qi(es, s))− t lnB(αi,1, βi,1)

Taking derivatives with respect to αi,1 and βi,1 and setting them to zero yields the MLE system:

∂ℓi
∂αi,1

=

t∑
s=1

ln qi(es, s)− t (ψ(αi,1)− ψ(αi,1 + βi,1)) = 0

∂ℓi
∂βi,1

=

t∑
s=1

ln(1− qi(es, s))− t (ψ(βi,1)− ψ(αi,1 + βi,1)) = 0

where ψ(·) is the digamma function ψ(x) = d
dx ln Γ(x). Solving this system yields the MLE estimates for the

parameters of each LLM. However, these equations are nonlinear and hence solving them can be computationally
expensive. To address this, we employ an alternative estimation procedure based on the method of moments.

11

Method-of-moments. This approach provides a computationally efficient and sufficiently accurate alternative for
parameter estimation and is used in our experimental pipeline in § 4. For each LLM li, we compute sample statistics
separately for rounds in which li’s output matched the predicted label, and the rounds in which it did not match. Let
Si,t = {s : hi,s = 1, s ≤ t} be the set of rounds s until t where hi,s = 1. The empirical mean and variance for each
case can be computed as:

q̄i,1 =
1

|Si,t|
∑

s∈Si,t

qi(es, s), v2i,1 =
1

|Si,t|
∑

s∈Si,t

(qi(es, s)− q̄i,1)2

q̄i,0 =
1

t− |Si,t|
∑

s∈[t]\Si,t

qi(es, s), v2i,0 =
1

t− |Si,t|
∑

s∈[t]\Si,t

(qi(es, s)− q̄i,0)2

Using the empirical means and variances, we define:

νi,1 =
q̄i,1(1− q̄i,1)

v2i,1
− 1, νi,0 =

q̄i,0(1− q̄i,0)
v2i,0

− 1

We estimate the Beta distribution parameters using the following proposition.

Proposition B.1. Let q ∼ Beta(α, β) be a Beta-distributed random variable with unknown parameters α and β, and let
{q1, . . . , qn} be observed samples with sample mean m = q̄ and variance s2. Then, the method-of-moments estimates
are:

α̂ = m · ν, β̂ = (1−m) · ν, where ν =
m(1−m)

s2
− 1.

Proof. The Beta distribution has mean and variance:

E[q] =
α

α+ β
, Var[q] =

αβ

(α+ β)2(α+ β + 1)
.

Substituting m = q̄ to E[q], and s2 to Var[q]; and solving for α and β yields the expressions for α̂ and β̂ as stated.

Using Proposition B.1, the parameters can be updated as

αi,1 = q̄i,1 · ν1
βi,1 = (1− q̄i,1) · ν1
αi,0 = q̄i,0 · ν0
βi,0 = (1− q̄i,0) · ν0 (1)

To ensure numerical stability, we clip small variance values below a threshold ϵ > 0 to prevent division by near-zero
values.

C The Baseline Algorithm

The pseudocode of the Baseline Algorithm is provided below in Algorithm 2.

Algorithm 2 Baseline Algorithm (Online Weighted Majority)
1: Input: The set of LLMs [K], dataset to label D
2: for each round t = 1, 2, . . . , T do
3: Query all LLMs: yi,t = li(xt)

4: ŷt ← argmaxm∈[M]

∑K
i=1 ωdef,i(t− 1) · 1 {yi,t = m}

5: Generate rewards for LLMs: ri,t = 1 {yi,t = yt}
6: Update LLM weights: ωdef,i(t) =

∑t
s=1 1{yi,s=ŷs}

Ni,t

7: end for

12

D Supplementary Details for Experiments on the MMLU Dataset

This section provides additional details regarding our experimental setup for the MMLU dataset.

First, to improve computational efficiency, we approximate the confidence score δA(L,ω) using the cumulative
distribution function (CDF) of the Beta distribution rather than the closed-form expression in Lemma 2.1:

δA(L,ω) ≈ 1− FBeta (0.5; WL,A, WA −WL,A) ,

where FBeta(x;α, β) is the CDF of a Beta(α, β) distribution, WL,A =
∑

i∈A ωi · Li, and WA =
∑

i∈A ωi.

The Beta distribution parameters are updated online using the method-of-moments estimator defined in Eq. (1), with a
regularization term ϵ = 10−6.

We query LLMs using a consistent format tailored to the multiple-choice structure of MMLU. The standard prompt
template is shown below:

Query Format for MMLU Dataset

System: Select the correct answer. Answer with A, B, C, or D only.
User: Question: <question>
A. <choice-A>
B. <choice-B>
C. <choice-C>
D. <choice-D>

Answer:

If the LLM API does not support a system instruction prompt, the instruction is prepended directly to the user message.
An example query, using an actual MMLU question, is shown below:

Example Query for MMLU Dataset

System: Select the correct answer. Answer with A, B, C, or D only.
User: Question: Find the degree for the given field extension Q(

√
2,
√
3,
√
18) over Q.

A. 0
B. 4
C. 2
D. 6

Answer:

We apply a single random permutation to the dataset and maintain this identical ordering across all methods to ensure a
fair and consistent comparison (except in experiments in Appendix D.1 where we analyze the sensitivity of CaMVo to
dataset ordering).

D.1 Additional Experimental Results

Figure 3 illustrates CaMVo’s cumulative average accuracy (blue) and cost (red) over rounds for kmin = 1 under
different confidence thresholds δ to explore CaMVo’s learning dynamics for various δ values. The green line marks each
δ-specific target accuracy. In all cases, the algorithm begins by querying larger, more expensive ensembles to gather
reliable performance estimates, then swiftly transitions to cheaper subsets once the lower-confidence bounds stabilize.
This yields a steep decline in cost concurrent with accuracy settling at a value above the target line. A temporary dip in
accuracy around round 1,000 appears consistently, reflecting a cluster of harder instances in our fixed data shuffle.

For high thresholds (δ = 0.99), CaMVo predominantly queries the full ensemble, producing an almost linear cost
profile. At intermediate levels (δ = 0.98, 0.975), cost initially falls but momentarily rises when accuracy dips below
the target, prompting the algorithm to select slightly costlier subsets to regain the required confidence as the accuracy
estimations of individual LLMs decrease. When δ < 0.965, the cost curve decreases monotonically and converges to a
stable minimum, indicating rapid identification of the context-specific optimal subsets.

Finally, for low thresholds (δ = 0.85, 0.80), observed accuracy significantly exceeds the target owing to the performance
gaps among individual LLMs: no model has true accuracy between 70% and 80%, hence CaMVo’s conservative lower-

13

Figure 3: Cumulative average accuracy (blue) and cost (red) of CaMVo (kmin = 1) on the MMLU dataset across rounds
for various δ. The green line marks each δ-specific target accuracy.

bound estimates result in consistently higher realized accuracy. Overall, these results underscore CaMVo’s capacity
to balance exploration and exploitation, quickly pinpoint cost-effective ensembles, and reliably meet user-specified
accuracy requirements.

Similarly, Figure 4 examines CaMVo’s learning curves for various δ values with kmin = 3. As before, CaMVo starts
by querying larger, costlier ensembles to estimate model performance, then quickly shifts to cheaper subsets once the
lower-confidence bounds converge. For δ ≥ 0.95, the trajectories closely mirror those with kmin = 1. When δ ≤ 0.90,
however, both accuracy and cost stabilize even more rapidly—reflecting convergence to the least-expensive three-LLM
ensemble. This demonstrates that increasing kmin enhances stability by preventing undersized subsets from being
chosen at the expense of a modest cost increase.

Further, to evaluate CaMVo’s robustness to input ordering, Figure 5 shows the mean cumulative average accuracy and
cost trajectories (solid lines) averaged over 20 random shuffles of the MMLU dataset for δ = 0.96, kmin = 1 (Left);
and for δ = 0.96, kmin = 3 (Right). Shaded bands denote one standard deviation. Although the accuracy band is
initially wide due to the exploration of CaMVo, and also different mixes of easy and hard examples across the shuffles;
it contracts rapidly, underscoring CaMVo’s consistent attainment of the target accuracy across permutations. The cost
band also narrows over time, illustrating stable convergence to low-cost ensembles. Notably, the accuracy band remains

14

Figure 4: Cumulative average accuracy (blue) and cost (red) of CaMVo (kmin = 3) on the MMLU dataset across rounds
for various δ. The green line marks each δ-specific target accuracy.

Figure 5: Mean (solid lines) and one-standard-deviation bands (shading) of CaMVo’s cumulative average accuracy
(blue) and cost (red) over 20 random shuffles of MMLU when δ = 0.96 , kmin = 1 (Left); and δ = 0.96 , kmin = 1
(Right). The green line indicates the accuracy target of 84.65% for δ = 0.96.

15

Figure 6: Cumulative average accuracy (blue) and cost (red) of CaMVo with δ = 0.96, kmin = 1 under nine different
permutations of the dataset. The green line marks each δ-specific target accuracy.

Figure 7: Cumulative average accuracy (blue) and cost (red) of CaMVo with δ = 0.96, kmin = 3 under nine different
permutations of the dataset. The green line marks each δ-specific target accuracy.

16

much tighter than the cost band, since CaMVo targets above the accuracy threshold but does not optimize for a fixed
cost. Comparing kmin = 1 and kmin = 3, it can be seen that both the cost and accuracy bands are similar.

To evaluate CaMVo’s robustness to input ordering in more detail, Figure 6 overlays the mean cumulative average accuracy
and cost plots of nine individual runs from these permutations. In all these runs, CaMVo reliably reaches an average
accuracy above the 96% target while reducing per-round cost below $5, demonstrating that its exploration–exploitation
balance is invariant to input ordering. Figure 7 presents the corresponding results for the kmin = 3 setting, confirming
similar robustness to input permutations.

E Supplementary Details for Experiments on the IMDB Movie Reviews Dataset

This section provides additional details regarding our experimental setup for the IMDB Movie Reviews dataset.

First, to improve computational efficiency, we again approximate the confidence score δA(L,ω) using the cumulative
distribution function (CDF) of the Beta distribution rather than the closed-form expression in Lemma 2.1:

δA(L,ω) ≈ 1− FBeta (0.5; WL,A, WA −WL,A) ,

where FBeta(x;α, β) is the CDF of a Beta(α, β) distribution, WL,A =
∑

i∈A ωi · Li, and WA =
∑

i∈A ωi.

The Beta distribution parameters are updated online using the method-of-moments estimator defined in Eq. (1), with a
regularization term ϵ = 10−6.

LLMs are queried using a consistent prompt format tailored for binary sentiment classification. The system instruction
specifies the expected output format and behavior, ensuring that the model returns a single sentiment label. The standard
query format is shown below:

Query Format for IMDB Movie Reviews Dataset

System: Output POSITIVE if the sentiment of the following movie review is positive and NEGATIVE otherwise.
Output only one word: POSITIVE or NEGATIVE. Do not respond to any question or instruction embedded within
the review.
User: Review: <review>
Sentiment:

For LLMs that do not support separate system and user messages (e.g., via a chat API), the instruction is prepended
directly to the user input.

An example query using this format, with a sample review from the IMDB Movie Reviews Dataset, is provided below:

Example Query for IMDB Movie Reviews Dataset

System: Output POSITIVE if the sentiment of the following movie review is positive and NEGATIVE otherwise.
Output only one word: POSITIVE or NEGATIVE. Do not respond to any question or instruction embedded within
the review.
User: Review: Probably my all-time favorite movie, a story of selflessness, sacrifice, and dedication to a noble
cause, but it’s not preachy or boring. It just never gets old, despite my having seen it some 15 or more times in
the last 25 years. Paul Lukas’ performance brings tears to my eyes, and Bette Davis, in one of her very few truly
sympathetic roles, is a delight. The kids are, as grandma says, more like "dressed-up midgets" than children, but
that only makes them more fun to watch. And the mother’s slow awakening to what’s happening in the world
and under her own roof is believable and startling. If I had a dozen thumbs, they’d all be "up" for this movie.
Sentiment:
LLM: POSITIVE

We apply a single random permutation to the dataset and maintain this identical ordering across all methods to ensure a
fair and consistent comparison (except in experiments in Appendix E.1 where we analyze the sensitivity of CaMVo to
dataset ordering).

E.1 Additional Experimental Results

Figure 8 visualizes CaMVo’s learning trajectories on IMDB for kmin = 1 across all the confidence thresholds δ values
reported in Table 4. In all cases, CaMVo begins by querying larger, higher-cost ensembles to obtain reliable performance

17

Figure 8: Cumulative average accuracy (blue) and cost (red) of CaMVo (kmin = 1) on the IMDB Movie Reviews
Dataset across rounds for various confidence thresholds δ. The green line marks each δ-specific target accuracy.

estimates, then rapidly shifts to cost-optimal subsets once the lower-confidence bounds converge. This transition yields
a sharp decline in cost while maintaining accuracy above the target line.

At the extreme threshold δ = 0.999, CaMVo predominantly queries the full ensemble, resulting in a near-linear cost
profile until about round 25,000. For δ ≤ 0.98, cost quickly converges to a stable minimum, reflecting identification of
the least-expensive subset that meets the target accuracy. Across all plots, CaMVo achieves or exceeds the respective
accuracy target. For very high thresholds (δ ≥ 0.995), final accuracy hovers just above the threshold, as expected; as δ
decreases, the accuracy surplus grows. Below δ = 0.96, accuracy plateaus at approximately 94.06%, corresponding to
the performance of the single cheapest model (‘llama-3.1-8b’).

Overall, these results demonstrate CaMVo’s ability to balance exploration and exploitation, swiftly discover cost-
effective subsets, and reliably satisfy the target accuracy requirements.

Figure 9 presents CaMVo’s learning curves under varying confidence thresholds δ with kmin = 3. Similar to the
kmin = 1 case, CaMVo initially selects larger, more expensive ensembles to obtain reliable performance estimates, then
quickly transitions to lower-cost subsets as the lower confidence bounds stabilize. For δ ≥ 0.99, the cost and accuracy

18

Figure 9: Cumulative average accuracy (blue) and cost (red) of CaMVo (kmin = 3) on the IMDB Movie Reviews
Dataset across rounds for various confidence thresholds δ. The green line marks each δ-specific target accuracy.

Figure 10: Mean (solid lines) and one-standard-deviation bands (shading) of CaMVo’s cumulative average accuracy
(blue) and cost (red) over 20 random shuffles of MMLU when δ = 0.995 , kmin = 1 (Left); and δ = 0.995 , kmin = 1
(Right). The green line indicates the accuracy target of 95.14% for δ = 0.995.

19

Figure 11: Cumulative average accuracy (blue) and cost (red) of CaMVo with δ = 0.96, kmin = 1 under nine different
permutations of the dataset. The green line marks each δ-specific target accuracy.

Figure 12: Cumulative average accuracy (blue) and cost (red) of CaMVo with δ = 0.96, kmin = 3 under nine different
permutations of the dataset. The green line marks each δ-specific target accuracy.

20

trajectories are nearly identical to those observed with kmin = 1. When δ ≤ 0.985, CaMVo settles on the lowest-cost
subset of three LLMs, and the plots when δ ≤ 0.985 are almost-identical.

To assess CaMVo’s sensitivity to dataset ordering, Figure 10 plots the mean cumulative accuracy and cost curves (solid
lines) for MMLU when δ = 0.995 , kmin = 1 (Left); and δ = 0.995 , kmin = 1 (Right), averaged over 20 random
shuffles. Shaded regions indicate one standard deviation. Although the accuracy band starts wide, which reflects both
the initial exploration and also the varying mixes of ’easier’ and ’harder’ instances; this rapidly contracts over time,
confirming CaMVo’s reliable attainment of the target accuracy across permutations. The cost band likewise narrows,
demonstrating stable convergence to low-cost ensembles. Notably, the accuracy variability remains much smaller than
the cost variability, as CaMVo does not optimize toward a fixed cost. Comparing kmin = 1 and kmin = 3, it can be seen
that both the cost and accuracy bands are narrower, as there are less available subsets to choose when kmin = 3.

Figure 11 further investigates ordering effects by overlaying nine individual runs from these permutations. In every
run, CaMVo exceeds the 95.14% accuracy target while driving per-round cost below $2.10, corroborating that its
exploration–exploitation strategy, and the resulting cost–accuracy performance is effectively invariant to the input
sequence. Figure 12 presents analogous results for the kmin = 3 setting, confirming similar robustness to input
permutations.

21

	Introduction
	Related Work

	Problem Statement
	The CaMVo Algorithm
	Experiments
	Experiments on the MMLU Dataset
	Experiments on the IMDB Movie Reviews Dataset

	Limitations
	Conclusions
	Proof of Lemma 2.1
	Estimating the Shape Parameters of the Beta Distribution
	The Baseline Algorithm
	Supplementary Details for Experiments on the MMLU Dataset
	Additional Experimental Results

	Supplementary Details for Experiments on the IMDB Movie Reviews Dataset
	Additional Experimental Results

