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Abstract

Wireless sensor networks could be deployed in hostile environments where eavesdropping
and node capture attacks are possible, inducing the need for cryptographic protection. In this
paper, we investigate the secure connectivity of wireless sensor networks utilizing the heteroge-
neous random key predistribution scheme, where each sensor node is classified as class-i with
probability p; for ¢ = 1,...,r with g; > 0 and >.._, y; = 1. Before deployment, a class-i
sensor is given K; cryptographic keys selected uniformly at random from a key pool of size
P. After deployment, two sensor nodes can communicate securely over an available wireless
channel if they share at least one cryptographic key. In addition to the shared-key connectivity
of the network as governed by the heterogeneous random key predistribution scheme, we con-
sider the wireless connectivity of the network using a heterogeneous on-off channel model, where
the channel between a class-i node and a class-j node is on (respectively, off) with probability
a; (respectively, 1 — «j) for ¢, = 1,...,r inducing a channel probability matrix o = [a;].
Collectively, two sensor nodes are adjacent if they i) share a cryptographic key and ii) have a
wireless channel in between that is on. We model the overall network using a composite random
graph obtained by the intersection of inhomogeneous random key graphs K(n;u, K, P) with
inhomogeneous Erdés-Rényi graphs G(n;p,a). The former graph is naturally induced by the
heterogeneous random key predistribution scheme, while the latter is induced by the heteroge-
neous on-off channel model. More specifically, two nodes are adjacent in the composite graph
K(n;u, K, P) N G(n; p, @) if they are i) adjacent in K(n;u, K, P), i.e., share a cryptographic
key and ii) adjacent in G(n;u,a), i.e., have an available wireless channel. Hence, edges in
K(n; u, K, P)NG(n; p, o) represent pairs of sensors which share a key and also have an available
wireless channel in between. We investigate the connectivity of the composite random graph
K(n; p, K, P) NG(n; p, ) and present conditions (in the form of zero-one laws) on how to scale
its parameters so that it i) has no secure node which is isolated and ii) is securely connected,
both with high probability when the number of nodes gets large. We also present numerical
results to support these zero-one laws in the finite-node regime.
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1 Introduction

The proliferation of wireless sensor networks in multiple application domains, such as military ap-
plications, health care monitoring, among others, is attributed to their unique characteristics, such
as their versatility, small-size, low-cost, ease of use, and scalability [3-5]. These features, however,
give rise to unique security challenges that render wireless sensor networks vulnerable to a variety
of security threats such as node capture attacks, node replication attacks, and eavesdropping [6].
Indeed, power-hungry cryptosystems such as asymmetric cryptosystems (public-key) are infeasible
for securing large-scale wireless sensor networks that typically consist of battery-powered nodes
with simple computation and communication architectures [7—10]. Accordingly, symmetric cryp-
tosystems were shown to offer a faster and more energy-efficient alternative than their asymmetric
counterpart, and they are deemed as the most feasible choice for securing wireless sensor networks
[7,8].

One key question associated with the use of symmetric cryptosystems is the design of key
distribution mechanisms that facilitate the establishment of a secure communication infrastructure
upon deploying the network and throughout its operation [8,11]. These mechanisms shall i) be
fully distributed to avoid relying on any third party or a base station, ii) not assume any prior
knowledge of post-deployment configuration, and iii) obey the hardware limitations of wireless
sensor networks. Additionally, the resulting network shall be securely connected in a sense that
there exists a secure communication path (not necessarily single-hop) between any pair of sensor
nodes. The connectivity of the network is essential to its proper operation as it allows the exchange
of control and data messages between any pair of sensor nodes.

Random key predistribution schemes were proposed in the seminal work of Eschenauer and
Gligor [7] to provide a feasible solution for key distribution in large-scale wireless sensor networks
utilizing symmetric cryptosystems. In Eschenauer-Gligor scheme, each sensor node is assigned
(before deployment) K cryptographic keys selected uniformly at random from a large key pool of
size P. After deployment, two sensor nodes can communicate securely over an existing wireless
channel if they share at least one key. The scheme does not require any prior knowledge of post
deployment configuration and the communication infrastructure could be bootstrapped in a fully
distributed manner. The connectivity of wireless sensor networks secured by Eschenauer and Gligor
scheme was investigated in [12,13], where scaling conditions for K and P were given to ensure that
the resulting network is connected with high probability in the limit of large network size.

One inherent assumption with Eschenauer-Gligor scheme is that all sensor nodes are homo-
geneous, hence each node is given the same number K of cryptographic keys from the key pool.
However, emerging wireless sensor networks are essentially complex and heterogeneous with dif-
ferent nodes performing different roles or equipped with different hardware capabilities [14-17].
Hence, different nodes could be assigned different number of keys depending on their roles or de-
mands. For instance, a particular class of nodes may act as cluster heads which connect several
clusters of nodes together. These cluster heads need to communicate with a large number of nodes
in their vicinity and they are also expected to be more powerful than regular nodes. Thus, more
keys should be given to the cluster heads to ensure high levels of connectivity and security.

To accommodate the emerging heterogeneity of wireless sensor networks, Yagan proposed the



heterogeneous random key predistribution scheme [18] as a generalization of Eschenauer-Gligor
scheme to account for the cases when the network comprises sensor nodes with varying level of
resources and connectivity requirements. The scheme is characterized by r different classes, where
each node is classified as class-i with probability p; with p; > 0 for i =1,...,r and y ;_; u; = 1.
A class-i node is given K; cryptographic keys selected uniformly at random (without replacement)
from a large key pool of size P. Without loss of generality, it is assumed that K1 < Ko < ... < K.
After deployment, two nodes can communicate securely over an existing channel if they share
at least one key. The heterogeneous scheme gives rise to a class of random graphs known as
inhomogeneous random key graphs K(n; u, K, P) [18], where each of the n vertices is classified as
class-i with probability y; > 0 for ¢ = 1,...,r such that >". ; u; = 1. A class-i vertex v, is given a
set 3, of K; objects, selected uniformly at random (without replacement) from an object pool of
size P. Two vertices v, and v, are adjacent if they share at least one object, i.e., if 3, N3, # 0.
In [18], Yagan derived scaling conditions for p = {p1,...,pur}, K, and P such that K(n;u, K, P)
is connected with high probability in the limit of large network size. Essentially, the results given
in [18] provide guidelines on how to dimension the parameters of the heterogeneous random key
predistribution scheme, i.e., g, K, and P, (with respect to the network size m) such that the
resulting network is securely connected.

Note that edges in K(n; u, K, P) represent pairs of sensors that share at least one cryptographic
key, hence the model only encodes shared-key connectivity. In other words, it is assumed that all
wireless channels are available and reliable, hence the only condition for two nodes to communicate
securely is to share a cryptographic key. In practice, the wireless channel is often unreliable and
sensor nodes typically have limited communication ranges, hence, two sensor nodes which share
a key may not eventually be adjacent due to the unavailability of their corresponding wireless
channel. Accordingly, the secure connectivity of the network would not only be governed by the
shared-key connectivity discussed above, but also by the wireless connectivity. As a result, the
scaling conditions given in [18] would be too optimistic for real-world deployments characterized
by unreliable wireless media.

In this paper, we investigate the connectivity of wireless sensor networks secured by the hetero-
geneous random key predistribution scheme under a heterogeneous on-off channel model. In this
channel model, the wireless channel between a class-i node and a class-j node is on with probability
a;; and off with probability 1 — «;;, independently. This gives rise to a 7 x r channel probability
matrix a where the element at the ith row and jth column is given by «;;. The heterogeneous
on-off channel model accounts for the fact that different nodes could have different radio capabili-
ties, or could be deployed in locations with different channel characteristics. In addition, it offers
the flexibility of modeling several interesting scenarios, such as when nodes of the same type are
more (or less) likely to be adjacent with one another than with nodes belonging to other classes.
The heterogeneous on-off channel model gives rise to inhomogeneous Erdés-Rényi graphs [19, 20],
denoted hereafter by G(n,pu,a). In these graphs, each of the n vertices is classified as class-i with
probability p; > 0 such that Y, , pu; = 1. Two vertices v, and vy, which belong to class-i and
class-j, respectively, are adjacent if B(«;j) = 1, where B(«;;) denotes a Bernoulli random variable
with success probability ;.

Edges in inhomogeneous random keys graphs encode shared-key relationships, while edges in
inhomogeneous Erdos-Rényi graphs encode the availability of wireless channels. Hence, the overall
network can be modeled by a composite random graph model formed by the intersection of an
inhomogeneous random key graph with an inhomogeneous Erdés-Rényi graph. We denote the



intersection graph K(n; u, K, P) NG(n; p,a) by H(n; p, K, P,a). An edge exists in H(n; u, K, P, a)
only if it exists in K(n;u, K, P), i.e., both nodes share a key, and G(n; s, @), i.e., both nodes share
a wireless channel. Hence, edges in H(n;u, K, P, a) represent pairs of sensors that both i) share a
key and ii) have a wireless channel in between that is on.

We investigate the connectivity of the composite random graph H(n;u, K, P,a) and present
conditions (in the form of zero-one laws) on how to scale its parameters, i.e., u, K, P, and e,
so that it i) has no secure node which is isolated and ii) is securely connected, both with high
probability when the number of nodes gets large. Essentially, our results provide design guidelines
on how to choose the parameters of the heterogeneous random key predistribution scheme such that
the resulting wireless sensor network is securely connected under a heterogeneous on-off channel
model. Our results are supported by a simulation study demonstrating that despite their asymptotic
nature, our results can in fact be useful in designing finite-node wireless sensor network so that
they achieve secure connectivity with high probability.

We close with a word on notation and conventions in use. All limiting statements, including
asymptotic equivalence are considered with the number of sensor nodes n going to infinity. The
random variables (rvs) under consideration are all defined on the same probability triple (2, F,P).
Probabilistic statements are made with respect to this probability measure P, and we denote the
corresponding expectation by E. The indicator function of an event E is denoted by 1[E]. We
say that an event holds with high probability (whp) if it holds with probability 1 as n — oco. For
any discrete set S, we write |S| for its cardinality. In comparing the asymptotic behaviors of the
sequences {a,},{bn}, we use a, = o(by), an = w(by), an = O(by), an = Q(by), and a,, = O(by,),
with their meaning in the standard Landau notation. We also use a,, ~ b,, to denote the asymptotic
equivalence lim, o an /b, = 1.

2 The Model

2.1 Shared-key connectivity: Inhomogeneous random key graphs K(n;u, K, P)

Consider n sensor nodes labeled as v, vs, ..., v,, where each node is classified into one of r classes
with a probability distribution g = {1, po, ..., pur} with gy >0fori=1,...,rand >, pu; =1. A
class-i node is assigned K cryptographic keys selected uniformly at random (without replacement)
from a key pool of size P. It follows that the key ring ¥, of node x is a Pk, -valued random variable

(rv) where P, denotes the collection of all subsets of {1,..., P} with exactly K;, elements and
t, denotes the class of node v,. The rvs 3q,Xo,..., %, are then i.i.d. with
(P
P2, =85ty =1 = , S €Pg,.
K;

Let K = {K;1,Ky,...,K,} and assume without loss of generality that K1 < Ky < ... < K,.
Consider a random graph K induced on the vertex set V = {v1,...,v,} such that a pair of distinct
nodes v, and v, are adjacent in K, denoted by v, ~ vy, if they have at least one key in common,
i.e.,

vy ~E Uy i XN Xy, # 0. (1)

The adjacency condition (1) defines inhomogeneous random key graphs denoted by K(n; u, K, P)
[18]. This model is also known in the literature as the general random intersection graph; e.g., see



[21-23]. The probability p;; that a class-i node and a class-j node are adjacent is given by
P—K;

(k")

— =
(k)

as long as K; + K; < P; otherwise if K; + K; > P, we have p;; = 1. Let \; denote the mean
probability that a class-i node is connected to another node in K(n;u, K, P). We have

pij =1— (2)

A= pipij. 3)
j=1

2.2 Wireless connectivity: Inhomogeneous Erd&s-Rényi graphs G(n;pu, a)

In practical deployments of wireless sensor networks, nodes typically have limited communication
ranges and the channel between two nodes may not be available, e.g., due to excessive interference.
In other words, two sensor nodes which share a key may not eventually be adjacent due to the
unavailability of their corresponding wireless channel. Hence, the secure connectivity of the network
would not only be governed by the shared-key connectivity discussed above, but also by the wireless
connectivity.

In modeling the wireless connectivity of the network, we utilize a heterogeneous on-off channel
model, where the wireless channel between a class-i node and a class-j node is on (respectively, off)
with probability a;; (respectively, 1 — ;) for 4,5 = 1,...,7. Note that the heterogeneous on-off
channel model accounts for the fact that different nodes could have different radio capabilities, or
could be deployed in locations with different channel characteristics. This is indeed a generalization
of the uniform on-off channel model, where the channel between any two nodes is on (respectively,
off) with probability « (respectively, 1 — «) regardless of the corresponding classes. Hence, the
heterogeneous on-off channel model offers the flexibility of modeling several interesting scenarios,
such as when nodes of the same type are more (or less) likely to be adjacent with one another than
with nodes belonging to other classes.

Consider a random graph G induced on the vertex set V = {v1,...,v,} such that each node is
classified into one of the r classes with a probability distribution g = {u1, 2, ..., gy} with g; >0
fori =1,...,r and ) ._; ;i = 1. Then, a distinct class-i node v, and a distinct class-j node

vy are adjacent in G, denoted by v, ~g vy, if Byy(i;) = 1 where By, () denotes a Bernoulli
rv with success probability «;;. This gives rise to an r x r edge probability matrix a where o;
denotes the element of row i and column j of . The aforementioned adjacency conditions induces
the inhomogeneous Erdés-Rényi graph G(n;u,a) on the vertex set V, which has received interest
recently [19,20].

Although the on-off channel model may be considered too simple, it allows a comprehensive
analysis of the properties of interest and is often a good approximation of more realistic chan-
nel models, e.g., the disk model [24]. In fact, the simulations results in [25] suggest that the
k-connectivity behavior of wireless sensor networks secured by the heterogeneous random key pre-
distribution scheme under the uniform on-off channel model (where a;; = a for i,j = 1,...,7) is
asymptotically equivalent to that under the more-realistic disk model.



2.3 The composite random graph H(n;u, K, P,a) := K(n; u, K, P) N G(n; u, c)

Each of the above two random graph models captures a particular notion of connectivity, namely
shared-key connectivity and wireless connectivity, respectively. In what follows, we construct a
random graph model that jointly considers both notions, hence, it accurately describes practical
deployments of wireless sensor networks, where two nodes are adjacent if they both share a key
and have an available wireless channel in between.

We consider a composite random graph obtained by the intersection of inhomogeneous random
key graphs K(n; p, K, P) with inhomogeneous Erdds-Rényi graphs G(n; g, ). We denote the inter-
section graph by H(n;u, K, P,a), i.e., H(n;p, K, P,a) := K(n; u, K, P) N G(n; p, ). Hence, edges
in the intersection graph H(n; p, K, P, a) represent pairs of sensor which i) share a key and ii) have
a wireless channel in between that is on. In particular, a distinct class-i node v, is adjacent to a
distinct class-j node v, in H if and only if they are adjacent in both K and G.

To simplify the notation, we let § = (K, P), and © = (,a). By independence, we see that
the probability of edge assignment between a class-i node v, and a class-j node v, in H(n; p, ©) is
given by

Plog ~ vy [ te =ity = j] = aijpij
Similar to (3), we denote the mean edge probability for a class-i node in H(n;u,0) as A;. It is
clear that

T
Ai:Z,Ujaijpija t=1,...,m (4)
j=1

We write A,, to denote the minimum mean edge probability in H(n;u,0), i.e.,
m = arg miin A;. (5)
We further let amin := min; j{a;;} and omax := max; j{c;;}. Finally, we define d and s as follows
d := arg mjax{amj}, (6)
s 1= arg mjax{amjpmj}. (7)

Throughout, we assume that the number of classes r is fixed and does not scale with n, and so
are the probabilities p1, ..., t,. All of the remaining parameters are assumed to be scaled with n.

3 Main Results and Discussion

We refer to a mapping Ki,...,K,, P : Ng — NS'H as a scaling (for inhomogeneous random key
graphs) if

1§K17nSK2,nS~--SKr,nSPn/2 (8)
hold for all n = 2,3,.... Similarly any mapping e = {a;;} : Ng — (0,1)"*" defines a scaling for

inhomogeneous Erdés-Rényi graphs. A mapping © : Ny — N6+1 x (0,1)"*" defines a scaling for the
intersection graph H(n;u,0) given that condition (8) holds. We remark that under (8), the edge
probabilities p;; will be given by (2).



3.1 Results

We first present a zero-one law for the absence of isolated nodes in H(n;u, ©,,).

Theorem 3.1. Consider a probability distribution p = {p1, ft2, ...,y } with pu; >0 fori=1,...,r,
a scaling K1,...,K,, P :Ny— Ng“, and a scaling a = {a;;} : Ng — (0,1)"*" such that

logn
A (n) ~c & (9)
n
holds for some ¢ > 0.
i) If
lim ay,q(n)logn =0 or lim oy (n)logn = a* € (0, o0
n—o0 n— o0

holds, then we have

lim P [H(n;p,O,) has no isolated nodes] = 0 ife<1

n—oo

ii) We have
lim P[H(n;p,O,) has no isolated nodes| = 1 ife>1

n—oo

Next, we present an analogous result for connectivity.

Theorem 3.2. Consider a probability distribution p = {p1, fto, ...,y } with pu; >0 fori=1,...,r,
a scaling K1,...,K,,P: Ny — N, and a scaling @ = {;;} : Ng — (0,1)"*" such that (9) holds
for some ¢ > 0.

i) If

lim a,q(n)logn =0 or lim am(n)logn = a* € (0, 0]

holds, then we have
lim P[H(n;p,O,) is connected] =0 ifec <1

n—oo

ii) If

for some o > 0, and

K’r‘,n .
Qmax(n) o oo n)”
Qmxl) _ 0 (log )" 1)

for any finite 7 > 0. Then, we have
lim P[H(n;p,O,) is connected] =1 ifec>1
n—oo

The scaling condition (9) will often be used in the form

1
A (n) :cn%, n=23,... (14)
with limy, o0 ¢, = ¢ > 0. Also, condition (11) will often be used in the form
1
Qmin(N)p1r(n) > p%, forp>0andn=2,3,... (15)



3.2 Discussion

Theorems 3.1 and 3.2 state that H(n;u,©,) has no isolated node (and is connected) with high
probability if the minimum mean degree, i.e., nA,,, is scaled as (1 + €)logn for some € > 0. On
the other hand, if this minimum mean degree scales as (1 — €) log n for some € > 0, then with high
probability H(n; p,0,,) has an isolated node, and hence is not connected. The resemblance of the
results presented in Theorem 3.1 and Theorem 3.2 indicates that absence of isolated nodes and
connectivity are asymptotically equivalent properties for H(n;u,©,). Similar observations were
made for other well-known random graph models as well; e.g., inhomogeneous random key graphs
[18], Erdds-Rényi graphs [26], and (homogeneous) random key graphs [12].

Note that if the matrix a is designed in such a way that a; = max;{w;;}, i.e., two nodes of
the same type are more likely to be adjacent in G(n;p,a), then we have g = amm and the
condition of the zero-law of Theorems 3.1 and 3.2 would collapse to i) lim, o0 Qmm(n)logn =0
or ii) limy, e amm(n)logn € (0,00]. At this point, the zero-law follows even when the sequence
amm logn does not have a limit by virtue of the subsubsequence principle [27, p. 12] (see also
[25, Section 7.3]). In other words, if ayng = Qumm, then the zero-law of Theorems 3.1 and 3.2 follows
without any conditions on the sequence a;,m,(n)logn.

We now comment on the additional technical conditions needed for the one-law of Theorem 3.2.
Condition (10) is likely to be needed in practical deployments of wireless sensor networks in order
to ensure the resilience of the network against node capture attacks; e.g., see [7,13]. To see this,
assume that an adversary captures a number of sensors, compromising all the keys that belong to
the captured nodes. If P, = o(n), contrary to (10), then it would be possible for the adversary
to compromise Q(P,) keys by capturing only o(n) sensors (whose type does not matter). In this
case, the wireless sensor network would fail to exhibit the unassailability property [28,29] and
would be deemed as vulnerable against adversarial attacks. We remark that (10) was required in
[18,25,30,31] in similar settings to ours.

Condition (11) provides a non-trivial lower bound on the edge probability amin(n)p1-(n) and is
enforced mainly for technical reasons for the proof of the one-law of Theorem 3.2 to work. Note
that it is easy to show that amin(n)pir(n) = O (logn/n) from (14) (see Lemma 5.3 for a proof),
however, the scaling condition given by (14) does not provide any non-trivial lower-bound on the
product amin(n)p1-(n). Observe that, even with condition (11), our results do not require each
edge probability to scale as logn/n, in contrast to the results given in [19] on the connectivity of
inhomogeneous Erdés-Rényi graphs. In particular, the probability of an edge between a class-i node
and a class-j node was set to & (i,7)logn/n in [19], where x (i, j) returns a positive real number
for each pair (i, j); i.e., each individual edge was scaled as ©(logn/n).

Condition (12) is also enforced mainly for technical reasons and it takes away from the flexibility
of assigning very small key key rings to a certain fraction of sensors when connectivity is considered.
An equivalent condition was also needed in [18] for establishing the one-law for connectivity in inho-
mogeneous random key graphs. We refer the reader to [18, Section 3.2] for an extended discussion
on the feasibility of (12) for real-world implementations of wireless sensor networks. Condition
(13) also limits the flexibility of assigning very small values for amuin, but it is much milder than
condition (12) in a sense that it requires aumax(n)/amin(n) to be O ((logn)™) for some finite 7 > 0,
i.e., one can still afford to have a large deviation between amin(n) and amax(n) as compared to the
case if apax(n)/amin(n) had to be scaled as o(logn), similar to the case in (12).

We close by providing a concrete example that demonstrates how all the conditions required by
Theorem 3.2 can be met in a real-world implementation. Consider a sensor network consisting of



two classes, i.e., r = 2. Pick any probability distribution g = {u1, o} with p; > 0 for all ¢ = 1,2.
Set P, = [nlogn] as well as

1/2+4¢ 3/2—¢
Kip = (logn) and Ky, — (1+¢)(logn)
O'min (n) H2 amin(n)

with any 0 < & < 0.5. Observe that the above selection satisfies (10) as well as (12). Next, set

e (log )2 1
)1+26

a = amin(n) [ " 1 1“72 (logn
+e€

Note that the above selection satisfies (13) with 7 = 14-2e. For simplicity, assume that A;(n) = o(1)
Kralin for j =1,2

which implies that pij(n) = o(1) for j = 1,2. In this case, we have py;(n) ~
(see [18, Lemma 4.2]). With this parameter selection, we have
KinKoy, 1+elogn

Qmin(n)p12(n) ~ amin(n) iz = P
n

which satisfies (11).

Finally, observe that with the above parameter selection, both Aj(n) and As(n) are strictly
larger than logn/n. Hence, in view of Theorem 3.2, the resulting network will be connected with
high probability. Of course, there are many other parameter scalings that one can choose.

3.3 Comparison with related work

The connectivity (respectively, k-connectivity) of wireless sensor networks secured by the classical
Eschenauer-Gligor scheme under a uniform on/off channel model was investigated in [32] (respec-
tively, [31]). The network was modeled by a composite random graph formed by the intersection
of random key graphs K(n; K, P) (induced by Eschenauer-Gligor scheme) with Erds-Rényi graphs
G(n; o) (induced by the uniform on-off channel model). Our paper generalizes this model to het-
erogeneous setting where different nodes could be given different number of keys depending on their
respective classes and the availability of a wireless channel between two nodes depends on their
respective classes. Hence, our model highly resembles emerging wireless sensor networks which are
essentially complex and heterogeneous.

In [18], Yagan considered the connectivity of wireless sensor networks secured by the hetero-
geneous random key predistribution scheme under the full visibility assumption, i.e., all wireless
channels are available and reliable, hence the only condition for two nodes to be adjacent is to
share a key. It is clear that the full visibility assumption is not likely to hold in most practical
deployments of wireless sensor networks as the wireless medium is typically unreliable. Our paper
extends the results given in [18] to more practical scenarios where the wireless connectivity is taken
into account through the heterogeneous on-off channel model. In fact, by setting a;;(n) = 1 for
i,j=1,...,7and each n = 1,2,... (i.e., by assuming that all wireless channels are on), our results
reduce to those given in [18].

In comparison with the existing literature on similar models, our result can be seen to extend
the work by Eletreby and Yagan in [30] (respectively, [25]). Therein, the authors established a
zero-one law for the 1-connectivity (respectively, k-connectivity) of K(n;u, K, P)NG(n;«), i.e., for
a wireless sensor network under the heterogeneous key predistribution scheme and a uniform on-off



channel model. Although these results form a crucial starting point towards the analysis of the
heterogeneous key predistribution scheme under a wireless connectivity model, they are limited to
uniform on-off channel model where all channels are on (respectively, off) with the same probability
a (respectively, 1 — «). The heterogeneous on-off channel model accounts for the fact that different
nodes could have different radio capabilities, or could be deployed in locations with different channel
characteristics. In addition, it offers the flexibility of modeling several interesting scenarios, such
as when nodes of the same type are more (or less) likely to be adjacent with one another than
with nodes belonging to other classes. Indeed, by setting a;;(n) = « for 4,5 = 1,...,r and each
n=1,2,..., our results reduce to those given in [30].

4 Numerical Results

In this section, we present a simulation study to validate our results in the finite-node regime. In
all experiments, we fix the number of nodes at n = 500, the size of the key pool at P = 10*, and
the number of experiments to 400.

In Figure 1, we set the channel matrix to

0.3 12
= |:0512 03:|
and consider three different values for the parameter ajs, namely, a2 = 0.2, ajo = 0.4, and
a2 = 0.6. We also vary K (i.e., the smallest key ring size) from 5 to 25. The number of classes is
fixed to 2, with u = {0.5,0.5}. For each value of K, we set Ko = K; + 5. For each parameter pair
(K, a), we generate 400 independent samples of the graph H(n; g, ©) and count the number of times
(out of a possible 400) that the obtained graphs i) have no isolated nodes and ii) are connected.
Dividing the counts by 400, we obtain the (empirical) probabilities for the events of interest. In all
cases considered here, we observe that H(n;u,©) is connected whenever it has no isolated nodes
yielding the same empirical probability for both events. This confirms the asymptotic equivalence
of the connectivity and absence of isolated nodes properties in H(n;u,0,) as is illustrated in
Theorems 3.1 and 3.2.
For each value of ajs, we show the critical threshold of connectivity given by Theorem 3.2 in
the form of highlighted symbols. More specifically, highlighted symbols stand for the minimum
integer value of K7 that satisfies

(o )\ C10gn
Am(n) = pjam; [ 1— 555 | > ——. (16)
j=1

(k,0) n

upon noting that Ky = K;1+5. We see from Figure 1 that the probability of connectivity transitions
from zero to one within relatively small variations of K7. Moreover, the critical values of Kj
obtained by (16) lie within this transition interval and correspond to high probability of connectivity.
Note that for each parameter pair (K, ) in Figure 1, we have A,, = A; by construction.
Next, we set the channel matrix to
o — [au 0.2]
0.2 0.2

in Figure 2, and consider three different values for the parameter a1, namely, a1; = 0.2, a1 = 0.4,
and a;; = 0.6. We also vary K; from 10 to 25. The number of classes is fixed to 2, with

10



11 — (99 — 0.3

—_

— —

% A =
x
2
£ 08f |
&
=
S

0.6 B
@)
(-
o
> 0.4 F .
by
pyust
0 ——ag = a9 = 0.2
g o2 —B—ag2 = ag = 0.4
O% —k—ap = ao; = 0.6

5 1 15 20 25
K,

Figure 1: Empirical probability that H(n;u,®) is connected as a function of K for ajo = 0.2,
a1 = 0.4, and a2 = 0.6. We set aj; = age = 0.3. Highlighted symbols stand for the critical
threshold of connectivity asserted by Theorem 3.2.

u = {0.5,0.5}. For each value of K;, we set Ko = K; + 5. Similar to Figure 1, we obtain the
empirical probability that H(n;u,©) is connected versus Kj. As before, the critical threshold of
connectivity asserted by Theorem 3.2 is shown by highlighted symbols in each curve.

Note that for a7 > 0.4, fixed ag2, and fixed awgg, the probability of connectivity (along with
the critical value of K7) behave in a similar fashion regardless of the particular value of ay1. The
reason behind this is intuitive. When o117 = 0.2, we have A,,, = A1, while for o117 > 0.4, we have
A, = Ay, Consequently, the value of aq; (which only appears in Aj) becomes irrelevant to the
scaling condition given by (16).

Finally, we set the channel matrix to

o [a 0.2}
0.2 «
and consider four different values for the parameter K7, namely, K1 = 20, K1 = 25, K7 = 30,
and K = 35 while varying the parameter a from 0 to 1. The number of classes is fixed to 2 with
© = {0.5,0.5} and we set K9 = Kj + 5 for each value of Kj. We plot the empirical probability
that H(n;u,0) is connected versus o and highlight the critical threshold of connectivity asserted
by Theorem 3.2. Note that H(n;p,0) has a positive probability to be connected with aja > 0
even when « = 0. In this case, the connected instances of H(n;u,©) represent connected bipartite
graphs, where one set of the bipartite graph represents class-1 nodes and the other represents
class-2 nodes. The results given by Figure 3 reveal the importance of cross-type edge probability
in establishing a connected graph. In particular, when a1 = ag9 = 0, the graph could still be
connected owing to cross-type edges. Indeed, the graph cannot be connected when cross-type edges

have zero probability, even when same-type edges have positive probability since the graph would
consist of at least two isolated components, as captured by Figure 4.

11
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Figure 2: Empirical probability that H(n;u,®) is connected as a function of K for ay; = 0.2,
a1 = 0.4, and a1 = 0.6. We set ajo = age = 0.2. Highlighted symbols stand for the critical
threshold of connectivity asserted by Theorem 3.2.

5 Preliminaries

Several technical results are collected here for convenience. The first result follows easily from the
scaling condition (8).

Proposition 5.1 ([18, Proposition 4.1]). For any scaling K1, Ko, ..., K,, P : Ny — NS'H, we have
A1(n) < Xg(n) < ... <A\ (n) (17)
for eachm =2,3,....

Proposition 5.2 ([18, Proposition 4.4]). For any set of positive integers Ky,...,K,, P and any

scalar a > 1, we have
P—”aK[I P—K,L a
Cx )§<( a )> L hj=1.r (18)

P P
() ()
Lemma 5.3. Consider a scaling K1, Ko, ..., K., P : Ny — NEH and a scaling o = {aj} : Ng —
(0,1)™" such that (11) and (14) hold. We have
logn
min () = © (57 (19

Proof. We note from (14) that

A (n ¢y logn
oy (M) () < 2o2(?) _ EnloB T
Hr Hr N
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Figure 3: Empirical probability that H(n;u,0) is connected as a function of « for K; = 20,
Ky =25, K1 = 30, and K; = 35. We set ajo = 0.2. Highlighted symbols stand for the critical
threshold of connectivity asserted by Theorem 3.2.

Next, we show that under (8), the quantity p;;(n) is increasing in both ¢ and j. Fix n = 2,3, ...
and recall that under (8), K; increases as ¢ increases. For any i,j such that K; + K; > P, we
see from (2) that p;j(n) = 1; otherwise if K; + K; < P, we have p;j(n) < 1. Given that K; + K;
increases with both 4 and j, it will be sufficient to show that p;;(n) increases with both ¢ and j on
the range where K; + K; < P. On that range, we have

T ()

K; =0

Hence, (P I}f(z) /( I];j ) decreases with both K; and K, hence with i and j. From (2), it follows that

pij(n) increases with ¢ and j. As a consequence, we have pi, < pp, and it follows that

¢ logn
amin(n)plr(n) < amr(n)pmr(n) < n 08 . (20)
Hr N
Combining (11) and (20) we readily obtain (19). [ |
Lemma 5.4. Consider a scaling K1,Ks,...,K,, P : Ny — Nngl and a scaling o = {a;} : Ng —

(0, 1) " such that (9) holds. From (11), (12), (13), and (20), we have

T+2
amax(n)prr(n) =0 (Omgn)) (21)

n
and

() = (1) (22)

n
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Ky = 25, K1 = 30, and K7 = 35. We set a11 = agse = 0.2. Highlighted symbols stand for the
critical threshold of connectivity asserted by Theorem 3.2.

Proof. From (13) and (20), we have

« n ogn) T
S (m”) Comin (M)p1r (m) = O ((“g)) (23)

n

It is now immediate that Lemma 5.4 is established once we show that

Prr(n) =o(logn
pur() — 21ET) 2y

leading to

ogn)™t?
Omax(n)prr(n) = (Prr(n)> Omax(N)p1r(n) = o ((1g)>

Pir (n) n

We proceed by establishing (24). The proof is similar with [30, Lemma 5.4], but we give it below
for completeness.
In particular, we will show that

1
prr(n) < max (2, ogn) pir(n), n=23,... (25)
n
for some sequence w,, such that lim, . w, = co. Fix n = 2,3,.... We have either p;,(n) > %, or
p1r(n) < % In the former case, it automatically holds that
prr(n) < 2p1(n) (26)

14



by virtue of the fact that p,.(n) < 1.
Assume now that pi,(n) < 3. We know from [12, Lemmas 7.1-7.2] that

KjnKrn Kj,nKr,n

1—e Pn < p; < —— 45=1,... 27
€ _p]r(n)_Pn_ija J ) T ( )
and it follows that
Kanrn ( 1 >
2Lt og [ ) < log2 < 1. 28
P e\ T g (28)

Using the fact that 1 —e™® > § with 2 in (0,1), we then get

Ky, K,
pro(n) > Kk, (29)
n
In addition, using the upper bound in (27) with j = r gives
K? K?
< r,mn <9 rn
prr(n) o Pn_Kr,n o Pn
as we invoke (8). Combining the last two bounds we obtain
prr(n) < 4Kr,n o 4logn (30)

plr(n) - Kl,n B W,

by virtue of (12) for some sequence wy, satisfying lim,,_, ., w, = oo. Combining (26) and (30), we
readily obtain (25). This establishes (21).
Next, Combining (11), and the fact that p1,(n)/p11(n) = o(logn) (see (25)), we get

Qmin (n)p11(n) = (p”(“)) Oimin ()17 (n) = w <1>

p1r(n) n

which readily establishes (22). [ ]

Lemma 5.5. Under (22), we have

()
— =w , 31
P, NQmin ( )
and
Ky, = w(l). (32)
2
Proof. It is a simple matter to check that p11(n) < Pnliligl,n? see [12, Proposition 7.1-7.2] for a
2
proof. In view of (8) this gives p11(n) < 215_},;". Thus, we have
K3, 1
= =Q(pu(n) =w ( ) :
23 (p11(n)) E—

15



From (10), (31), and amin < 1, we readily obtain (32). [ ]

Other useful bound that will be used throughout is

(1+z)<e®, 2€(0,1) (33)
Z)g(ez)e (=1,....n, n=12,... (34)
15]

(Z) < on (35)

Finally, we find it useful to write

(=2

log(l—2)=—x—9(zx), ze€(0,1) (36)
where ¥(z) = [ 147 dt. From L’Hépital’s Rule, we have

lim U(z) _ —z— log(1 — x) _ 1 (37)

-0 12 2 2

6 Proof of Theorem 3.1

The proof of Theorem 3.1 relies on the method of first and second moments applied to the num-
ber of isolated nodes in H(n;u,©,). Let I,(u,0,) denote the total number of isolated nodes in
H(’I’L, n, en)7 namely,

I,(1,0,) = Z 1[v is isolated in H(n; u, ©,,)] (38)
=1

The method of first moment [27, Eqn. (3.1), p. 54] gives

1- E[In(ﬂaen)] < P[In(/-l’ven) = 0]

6.1 Establishing the one-law

It is clear that in order to establish the one-law, namely that lim, o, P [[,(,0,) = 0] = 1, we
need to show that
lim E[I,(s,0,)] = 0.

n—o0

Recalling (38), we have

E[I,(p,0,)] =n Z wilP [y is isolated in H(n;p,©,,) | t1 = 1] (39)
i=1

T
= nZuiIF’ [NF_g[vj e 0] | t1 = i]
i=1

=nY pi(Plog vy [t =i])" (40)
=1

16



where (39) follows by the exchangeability of the indicator functions appearing at (38) and (40)
follows by the conditional independence of the rvs {v; ~ v1 }}1:1 given t;. By conditioning on the
class of vo, we find

T T
Plog vy [ty =] =Y piPlog vy [t =ity = j] = (1 — apij) =1 - Ai(n). (41)
j=1 j=1

Using (41) in (40), and recalling (5), (33) we obtain

EL(1,00)] = n ) i (1= Ay(n))"™!
=1

<n(l=Apm)"™

( logn>n_1
=n|(l-c,
n

< elogn(lfcn%)

Taking the limit as n goes to infinity, we immediately get

lim E[I, (s, On)] = 0.

n—oo

since lim,, 00 (1 — ¢, 1) = 1 — ¢ < 0 under the enforced assumptions (with ¢ > 1) and the one-law

is established. "

6.2 Establishing the zero-law

Our approach in establishing the zero-law relies on the method of second moment applied to a
variable that counts the number of nodes that are class-m and isolated. Clearly if we can show that
whp there exists at least one class-m node that is isolated under the enforced assumptions (with
¢ < 1) then the zero-law would immediately follow.

Let Y,,(1,0,,) denote the number of nodes that are class-m and isolated in H(n;u,0,,), and let

Tn,i(i, ©y) = 1[t; = m Nv; is isolated in H(n; p, ©,)],

then we have Y, (p,0,) = > | 2ni(p,0,). By applying the method of second moments [27,
Remark 3.1, p. 54] on Y, (1, 0,,), we get

2
PIY, (1.6,) = 0] < 1 - CrrlBul) 42)
where
E[Yn(p,On)] = nE[zn,1 (s, 0r)] (43)
and
E[Yn(ﬂ»en)2] =nE[rn1(1,0r)] + n(n — 1)E[xy1 (1, 0n)20,2(1,01)] (44)

17



by exchangeability and the binary nature of the rvs {z, ;(p,©0,)}!_;. Using (43) and (44), we get

E[Ya(g,00)Y] _ 1 L 1= LE[zna (8, O0)zn2(n, ©0))
(EYn(,0,))  nElzn1(n,0n)]  n (Efan,1 (1, 05)))?

In order to establish the zero-law, we need to show that

lim nE[z, (g, 6,)] = oo,

n—oo

and

lim sup
n—oo

(E[mnyl(u,en)xnz(%en)]) <1 (45)

(Elzn,1 (1. ©)))*

Proposition 6.1. Consider a scaling K1, ..., K., P: Ny — N6+1 and a scaling o = {oy;} := Ng —
(0, 1)™" such that (9) holds with lim,,_,~ ¢, = ¢ > 0. Then, we have

lim nE[zy,1(®,0,)] =00, ifc<1

n—o0

Proof. We have

nlE [zy1(,0r)] = nE[1{t; = m N vy is isolated in H(n; u, 6©,,)]]
= np,P[vr is isolated in H(n; p,0,,) | t1 = m]
= gy P [N _o[vj o 01] | £ = m]
= npP [vg ¢ vy |t = m]"

n—1

,
= Nflm ZujIF’[vg vy |t = 1,t = j]
j=1

n—1
= i | Y i (1 = Cmjpimg) (46)
j=1
= N (1 — Am(n))n_l = Nmeﬁn (47)

where
Br, =logn + (n — 1) log(1l — Ay (n)).

Recalling (36), we get

Bn =logn — (n—1) (An(n) + ¥ (Am(n)))

1 1
=logn—(n—1) (cn BN L g <cn 0gn)>
n n

logn
-1 1 2\1](6" n )
:10gn<1—cnnn >—(n—1) <cn Og”> / (48)

18



Recalling (37), we have

N} (Cn logn) 1
lim 7712 =— (49)
n—o0 ( logn) 2
Cn—2
since cnlo% = o(1). Thus, 8, =logn (1 —c,"=1) — o(1). Using (47), (48), (49), and letting n go
to infinity, we get

lim nE[z, (8, 0y)] = oo

n—oo

whenever lim,,_yo ¢, = ¢ < 1. [ |

Proposition 6.2. Consider a scaling K1, ..., K., P: Ny — N6+1 and a scaling o = {oy;} := Ng —
(0, 1)™" such that (9) holds with lim,,_,o ¢, = ¢ > 0. Then, we have (45) if ¢ < 1.

Proof. Consider fixed ©.
E [2n1(p,0)zp2(p,0)] = E [1[v; is isolated , v is isolated Nty = m, tg = m]]
= ,u?nE [l [v1 is isolated , v9 is isolated) ‘ t1 =m,ty = m}

n

1{vy » vo] H 1[vg, = vy, v = V9]
k=3

= pmE

t1:t2:m]

Now we condition on ¥; and X5 and note that i) 31 and ¥, determine t; and to; and ii) the events
[v1 = va], {[vk » v1 NV * v2]}]_4 are mutually independent given ¥; and ¥,. Thus, we have

E 251 (1,0)2n2(p,0)] = u2,E [IP’ {vl % Vg ’ ¥, 22} X H P [vk v NV % Vg ‘ 21,22} t1 =t = m]
. (50)
Define the {0, 1}-valued rv u(@) by
w(@) :=1[%1 N Xg # (], (51)
Next, with £ =1,2,...,n — 1, define vy ;(a) by
vej(@) :={i=1,2,...,0: Bjj(a) =1} (52)

for each j = ¢+1,...,n. Namely, vy j(a) is the set of nodes in {1,...,¢} that are adjacent to node
j in G(n; p,a). With these definitions in mind, (50) gives

. (P— Uieygﬂk(a)2i>
|2k ]

Bl (1,0) 0,2 (1,0)] = 1. | (1 = )@ | = =t =m
LN
|2k ]

Conditioned on u(f) = 0 and vy, vz being class-m, we have

Uicvsm(e)Zi| = [var(@)| K.
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Also, we have
P[u(0n) =0 ‘ tl = t2 = m] =1 — Pmm-

Thus, we get

E (25,1 (1, ©)zp.2(1, ©) 1{u(f) = 0]]

[ <P |V2,k(a)Km>
|k
[

| = (\EM)
- (P - |V273(a)me> ne2
|23‘ ¢ (53)

<P> 1:t2:m
i 23]

= M%n(l _pmm)]E 1=ta=m

= M%z(l — Pmm)E

" (P - |V2,3(a)|Km) n—2
= 112,(1 = Prom) Zqu ‘21333’ t1 Ztij m
= (\zgr>
, : <P — Km> |v2,3(a)] n—2
<= ) | D B || A RS | IR
=\ (k)

where we use (18) in the last step. Note that conditioned on ¢; = t3 = m, the random variables
{lva,k(a)|}}_5 are independent and identically distributed, hence (53) follows. In particular

lva k()| | t1 = ta = m ~ Binomial (2, cu,j)  with probability p;, k=3,4,...,n

The above distributional equality could be explained as follows. We may write |vo ;(a)| =1 [v1 ~q vg]+
1[vg ~g vi|. Observe that conditioned on t; = to = m, we know that nodes v; and ve belong to
class-m in G (n; p, ar). If node vy, is class-j (an event that has probability p;), then 1 [v; ~g vy] and

1 [vg ~¢ vy] are each distributed as Bernoulli random variable with parameter cy,;.

Now, let
()
K; .
K;
Then,
n—2
vV t = t =

Efin1 (15,0 2 (1, O)1 [u(6) = 0] < 22,1 — pyom) Zu E [ 7@ ] e ]
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Note that

~ Binomial(2, o)

Hence,

2
las(@) | t1=ta=m | _ 2\ 4 2
o[ |- B (s

- 2amjpmj + (amjpmj)2 (57)

upon recalling (55). Next, let W be a rv that takes the value o, jpm; with probability ;. It follows
that

r

ty=to=m

Z“J [Zlm ‘ o= }:1QA””L*ZMJ(amJPmJ')Q:l2Am+E[W2]
j=1

Next, we recall (7) and let

k := arg mjln i Dmj

Now, in view of Popoviciu’s inequality [33, pp. 9], we see that

1
VaI’(W) < Z (Wmax - VVmin)2
1
= Z (amspms - amkpmk)2
1
< 1 (C“mspms)2 (58)
We also know from (4) that
1
OmsPms < Am (59)
From (58) and (59), we get
1
var(W) < 4/@1\3” (60)
It is now immediate that
1
E [W2] = (E[W])? + var(W) < <1 + 4#2> A2 (61)

by virtue of the fact that E [W] = A,,. Using (61) into (56), we readily obtain

n—2
Bl 5. 8) it OL1®) = 0] < 1 =) (1200 + (14 ) 2) (62)
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Next, conditioning on u(@) = 1 and t; = t3 = m, we have

0 if (v (a)|=0
|Uie,,2’k(a)2i| = Km if ’VQ&(Q)‘: 1
— ’21 N 22| if |1/27k(a)|: 2
and by a crude bounding argument, we have
Uicvs (@) Xil = Kml[vak(e)|> 0] (63)

Using (63) and recalling the analysis for E[z, 1 (g, ©)x, 2(p, ©)1[u(8) = 0]], we obtain

n—2
tl :tgzm
t3 =17

} = (1— am)? + (1 —(1- amj)2> Zj =1 = 20mjPmj + Qi ;Pmj

Efrn1 (1. 0)ms (11, 0)1[u(6) = 1]] < %,(1 — o pmm<2u1 zjIea@)>0

7=1

where

E [Z;[w,s(awm

t1:t2:m
l3 =7

and it follows that

ZMJ |:1[|V23 a)|>0]

r
=1- 2Am + Z Mja?njpmj
j=1

t1:t2:m:|
ts3=1J

.
<1—-2A + aupa Z M5 Qi Pmij

j=1
=1—(2— amg) Am (65)

upon recalling (6). From (64) and (65), we readily obtain
Elzn,1 (1, ©)25,2(1.0)1 [u(8) = 1]] < p1 (1 — i) Pmm (1 = (2 = ) Am)" ™ (66)
Combining (62) and (66), we get

Eln,1(p,0)2n,2(p,0)] = Eln1(14,0)xn,2(1,0) (1u(8) = 0] + 1[u(8) = 1])]

1 "
< Mgn(l - pmm) <1 - 2Am + (1 4M2> A72n

+ Mgn(l - amm)pmm (1 - (2 — Q) Am>n_2 (67)
It is also clear that
E[2n,1(1,0)] = ftm (1 — Ap)" ! (68)
Combining (67) and (68), we get
1
Elz,,1(0)]? - mm ( Am) ( 1 mm (1 —Am)2("_1)
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=A+1B (69)

where we use the fact that 1 — oy, < 1.
We now consider a scaling © : Ng — N1 x (0,1)™" as stated in Proposition 6.2 and bound
0
the terms A and B in turn. Our goal is to show that

limsup(A + B) < 1. (70)
n—oo
We have
1 1A, T
— Pmm m — Pmm
A=—"""2[14+ "% —— < — P

(1_Am)2 < 4#% <1_Am) > B (1—Am)2

where
<[ 2 logn 2 —o(1)
Pr = 2Uts " n — cylogn -

and

(1= Am(n))?>=1-0(1) (71)
since Ay, (n) = ¢, logn/n. Thus, we have
A< (1= prm) (1 +0(1)) M) (72)
We now consider the second term in (69). Recall (71), we have

n—2
B— Pmm . <1 + Am (amd /;m)> < Pmm 2€¢n
(1 - Am) (1 - Am) (1 - Am)

Now, recalling (14), we get

1 2
b < nAm (Cmd — Am)  cnamglogn B ci(ognn) _ CpQupglogn ~o(1)
n = 2 2 2 = 2
T (g ek (1o o)
Thus, we have
CnQima logn

. ((1 +o(1))60<1>) (73)

B < pmm. exp

logn 2
(1 —Cn—p >
We will now establish the desired result (70) by using (72) and (73). Our approach is to consider

the cases 1) limy,, o0 @mg(n)logn = 0 and ii) lim,— 0 amm(n) logn € (0, 0o] separately.

Assume that lim,_,o appg(n)logn =0 . From (73) we get B < (1 + 0(1))pmm and upon using
(72) we see that A+ B < (1+0(1)) establishing (70) along subsequences with lim,, s @pq(n) logn =
0.
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Assume that lim,_,. amm(n)logn € (0,00] . From (4), we have

r
A, = Z/j,jamjpmj 2 mn OmmPmm,

=1
Thus,
_Cnaupglogn —l—Cn
exp ; . lozn
1 A 1 1 < | ey logn > 1 (1men™5)
< ——" exp M = —Aplogn. Gl < —cp (logn)2 n
Hom Qomm, (1 e logn> Hm Qmm logn Pm Qmm logn
non
since a;,g < 1. We note that
. Cn,
lim —1+—— s = —14¢<0
n—00 <1 _ logn)
Cn—p

for ¢ < 1. Thus, it follows that B = o(1) upon noting that lim,,~ Qmm logn = ay € (0, 00]. From
(72) and the fact that py, < 1, we have A+ B <1+ 0(1), and (70) follows.

Note that if the matrix o is designed in such a way that c;; = max;{a;;}, i.e., two nodes of the
same type are more likely to be adjacent in G(n;p, @), then we have a,,q = @mm and the above
two cases collapse to i) limy 00 @mm(n)logn = 0 or ii) lim, 00 Amm(n)logn € (0,00]. At this
point, the zero-law follows even when the sequence ,m, logn does not have a limit by virtue of
the subsubsequence principle [27, p. 12] (see also [25, Section 7.3]). In other words, if amg = amm,
then the zero-law follows without any conditions on the sequence qum,(n)logn. |

7 Proof of Theorem 3.2

Let C,(p,0,,) denote the event that the graph H(n,u,©,) is connected, and with a slight abuse
of notation, let I,,(u,©,,) denote the event that the graph H(n,u,0,,) has no isolated nodes. It is
clear that if a random graph is connected then it does not have any isolated node, hence

Cn(1,05) C In(p, 05)

and we get

P[Cr (i, On)] < PlIn(1s,0n)] (74)

and
PlCn (1, 00) ] = Pln (1, 07) ] + P{Cr (11, 00)° N [ (12, 01)]. (75)
In view of (74), we obtain the zero-law for connectivity, i.e., that
nh_)rglo P[H(n; 1, O,,) is connected] =0 if c¢<1,

immediately from the zero-law part of Theorem 3.1, i.e., from that lim, . P[L,(,0,)] = 0 if
¢ < 1 under the enforced assumptions. It remains to establish the one-law for connectivity. In the

24



remainder of this section, we assume that (9) holds for some ¢ > 1. From Theorem 3.1 and (75),
we see that the one-law for connectivity, i.e., that

lim P[H(n;u,O,) is connected] =1 if ¢ > 1,

n—oo

will follow if we show that

lim ]P)[Cn(/“?en)c N In(/"aen)] =0. (76)

n—oo

Our approach will be to find a suitable upper bound for (76) and prove that it goes to zero as n
goes to infinity with ¢ > 1.

We now work towards deriving an upper bound for (76); then in Section 8 we will show that
the bound goes to zero as n gets large. Define the event E,(u,0,X) via

En(1,0,X) == Uscarysi>1 [|UiesZil < Xig]

where N ={1,...,n} and X = [X; --- X,,] is an n-dimensional array of integers. Let

L, = min (U;J | [ZJ) (77)

|BCKy| ¢=1,...,L,
Xy =
|vP| ¢=L,+1,....n

and

(78)

for some 3 and v in (0, %) that will be specified later. In words, E,(u,8,X) denotes the event that
there exists £ = 1,...,n such that the number of unique keys stored by at least one subset of ¢
sensors is less than |8¢Kq|1[¢ < L,] + |yP]1[¢ > L,]. Using a crude bound, we get

PlCrn(p,00) N L (1, ©0)] < PIE, (1,00, X7)] + PCr (1, 00)° N L (1, 05) N En(p, 00, X)) (79)

Thus, (76) will be established by showing that

li_>m PE,(1,0,,,X,)] =0, (80)
and
lim P[Cy, (1, 0,)° N I, (2,0,) N E,(p,0,,X,)] =0 (81)

n—oo

The next proposition establishes (80).

Proposition 7.1. Consider scalings K1,...,K,, P: Ny — NS'H such that (9) holds for some ¢ > 1,
(22) , and (10) hold. Then, we have (80) where X, is as specified in (78), B € (0,3) and~y € (0,3)
are selected such that

e2\ 1-28
max | 260, <J) <1 (82)

s ((2) ) ()

25



Proof. The proof is similar to [18, Proposition 7.2]. Results only require the conditions (10) and
(32) to hold. The latter condition is clearly established in Lemma 5.5. [

The rest of the paper is devoted to establishing (81) under the enforced assumptions on the
scalings and with X, as specified in (78), 8 € (0, %) selected small enough such that (82) holds, and
v € (0,1) selected small enough such that (83) holds. We denote by H(n,,0,)(S) a subgraph of
H(n,p, ©,) whose vertices are restricted to the set S. Define the events

Cn(p, 0y, S) = [H(n,n,0,)(S) is connected]
B, (p,0,,95) := [H(n, p,60,)(S) is isolated]
ATL()U')GﬂJ S) = Cn(y'u en7 S) m Bn(y’u en7 S)

In other words, A, (i, 0,,S) encodes the event that H(n, u,0,)(S) is a component, i.e., a connected
subgraph that is isolated from the rest of the graph. The key observation is that a graph is not
connected if and only if it has a component on vertices S with 1 < |S|< L%J, note that if vertices
S form a component then so do vertices N'— S. The event I,(u,0,,) eliminates the possibility of

H(n, 1, 0,)(S) containing a component of size one (i.e., an isolated node), whence we have
Cn(;u') en)c N In()u') en) g USGNZQS‘S‘S L%J An(/l'7 GTL) S)
and the conclusion

P[Cr(p,05,)° N In(p,0r)] < Z P[A, (1,05, 5)]
SeN:2<|8|<| % |

follows.
By exchangeability, we get

,_
V|3
[

P[Cr (1, 05)° N In(1,00) N Ey (1,0, X 1,)°]

(]

D PlAL (1,00, ) N En(p, 05, X))

=2 \SEN,
3],
_ (E)P[Anmen)mEnm,on,Xn)C] (84)

~

=2

where NV,, ¢ denotes the collection of all subsets of {1, ...,n} with exactly ¢ elements, and A,, ¢(x, Oy,
denotes the event that the set {1, ..., ¢} of nodes form a component. As before we have A,, ;(,0,,) =
Co(p,0,,) N By, o(p,0y), where Co(p,0,,) denotes the event that the set {1,...,¢} of nodes is con-
nected and By, ¢(t,0,) denotes the event that the set {1,...,¢} of nodes is isolated from the rest
of the graph.

It is now clear that (81) is established once we show that

5]
lim <6>P[An7g(u,6n) N En (.00, X )¢ = 0. (85)

n—00
(=2
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We proceed by deriving bounds on the probabilities appearing in (85). Conditioning on X1,..., %,
and {B;j(a),1 <i < j </}, we get

P [An,f(ll'a ©,) N E,(1,0,,X,) ]

=FE [E |:]. [Cg (p,, Gn) N Bmg (ﬂ:, en) N En(ll'yemxn)c]

D) TN 37)
Bij(@), i,j=1,...,¢ H
- E[l [Cy (1,0,)] -P[BM (11,00) N En(t, 00, X 1)° ( Si % H (36)

since Cy(p,©y,) is fully determined by X1,...,%, and {Bjj(an),1 < i < j < ¢}, and By, o(p,0)
and E,(u,0,,X,) are independent from {B;;(a),1 <,5 < ¢}.

Next, we consider the probabilities appearing in (86). For each £ =1,...,n — 1, we have
n
Bos(,00) = () [ [Vicv =i 12k =]
k=0+1
with vy 1, (a) as defined in (52). We have
E17 ) va
P[Bni(p,0n) | £1,...,5] =E|E [1[B), ¢(1,0,)] | Bijla):i=1,...,¢, 1, ,Eg]
j=L+1,....n
n <P - |Ui6V€,k(a)Zi|>
—e| ] 2 ’22
o <|zk|>
Observe that on the event E,,(u,0,,X,)¢ we have
Uicvg () 2i| = <Xn,|w,,€(a)\ + 1) 1ve k()| > 0]
Moreover, the crude bound
Uievg (e) 2| = Kt 1V k()] > 0]
always holds with ¢y, = min{tq,...,¢,}. Hence, we can write
P[Bye(1,0n) N Ep(p,0n, X,) | X1, .., 5]
) <P = % (Kt s X st + 1) Llven(@)] > 0])
Skl
<E H | Yy, 2
< P Tyooesy 20

e A

Note that conditioned on X1, Xs,...,%,, we can determine the class of each node in {1,...,¢},

fe,t; =1-1[|%]=K1]+2-1[|%]|=Ka] + ...+ r-1][|%|= K,] for i = 1,...,¢. Moreover, since
lver(a)| =1[v1 ~q vg] +1[v2 ~q vg] + ... +1[vg ~g vg], the random variables {|vgx(a)|}r_,,, are
independent and identically distributed. In particular

\vek(a)| | X1,...,5 ~ Poisson-Binomial (£,p = (o, j, sj, - - ., 0u,5))  with probability f;
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for k=0 +1,4,..
P [By.o(1,©0) N En (1,0, X)) | 1, ...

<P — max (Ktmm,evXn,lw,zH
Xk

IN

E

.,n. It follows that

DY)

(e)] T 1) vz esa(a)] > O]>

D _hiE
j=1

(52)

<P — max (Ktmin’z,X

wheee) + 1) Uvees @) > 0]
K

S,

)

(x,)

by the law of total expectation. Reporting (87) into (86), we then get

P [An,f(l‘v ©,) N Ey (1,0, X,) ] <E|1[Cy(1,05)]-

\
: E L
j=1

(P ~ max (Ktmm,g, X

wlvee@) + 1) Ures (@) > 0]

K;

)

(<)

n—~¢
y 2
n—~0
IS
tey1=17J
(87)
n—_
Ela D) Ze»
tiy1 =17
(88)

The following lemma gives bounds on the terms appearing in (88). The proof is given in

Appendix A.

Lemma 7.2. Consider a probability distribution p = (u1, s, . . .
P/2, and a = {oy;} fori,j =1,...,7 with ayj € (0,1). With X,, as specified in (78), 5 € (0,

and v € (0, 3) as specified in (82) and (83) respectively, we have

and

T
E pyE
j=1

iy, integers Ki < --- < K,

P[C:(1,6)] < min {““ (I%?}X{O‘”p”}yl}

(P ~ max (Ktmm,é, X,

Wevoe) +1) e (@) > 0]
K

)5

(x)
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n—~_
S (mln {1 o Am,mln {1 — iy + Mre—aminplrﬁg, e—Oéminpll/Bf} + 6_’YK11 [Z > Ln]}> (90)

Note that as we report (90) back into (88), we get
P[Ap (1, On) N En(p, 0, X5) ]

< E [1 [CZ (/"aen)] ’

n—~¢
. (mln {1 — Am’ mln {1 _ MT + /‘Lrefaminpl'rﬁfa efaminpll,ge} + 677K11 [E > Ln]}> ]

n—~{
= P[Cy(,0)] - (min {1 — Ay, min {1 — o+ ’ure—ozmim’lhr/o’é7 e—aminpuﬁf} +e 7K1 0> Ln]}>

(91)
In addition, it holds that
ma,X{aijpij} < QmaxPrr (92)
1’7]
Our proof of (81) will be completed (see (84)) upon establishing
3],
S () P10 1 B 60X, =0 (93)

by means of (89), (90), and (91). These steps are taken in the next section.

8 Establishing (93)

We will establish (93) in several steps with each step focusing on a specific range of the summation
over £. Throughout, we consider a scalings K1,..., K, P: Ny — NS'H and a : Ny — (0,1)"" such
that (9) holds with ¢ > 1, (22), (11), (13), and (10) hold.

8.1 The case where 2 </ <R

This range considers fixed values of . Pick an integer R to be specified later at (99). Use (9), (21),
(33), (34), (89), the first bound in (90), and (92) to get

R
Z <Z>P[An,£(/~"v en) N En(“7on>Xn)c] < (ﬁ)e 55—2 (amax(n)pw(n))é_l (1 - Am(n))n_e

R
=2 =2 ¢
R o\ -1 n—~
¢ [ (logn)™ logn
<3 (o) (n 1- 0,8
R ' »
< Zn (e(logn)7+2) e—cnlognT

T
[\

(e(log n)TH)E plmen st

Il
M=

T
[\



With ¢ > 1, we have lim, o (1 — ¢;,%) =1 — ¢ < 0. Thus, for each £ = 2,3,..., R and a finite

7 > 0, we have
— n—~
(e(log n)T+2)£ Lplmen®St — o(1),

whence we get

R
. n ] —
nlgrgo;; <€>P[An,£(ﬂuen) N En(p,0n, X5)°] = 0.
8.2 The case where R+ 1 < /{ < min{L,, [&:EggnJ}
Our goal in this and the next subsection is to cover the range R+ 1 < ¢ < | ﬁcg ]:g -

|. Since the

bound given at (90) takes a different form when ¢ > L,,, we first consider the range R+ 1 < ¢ <

min{L,, | =2 |}. Using (21), (33), (34), (89), the second bound in (90), and (92) we get
{Ln, [ 1} g (21), (33), (34), (89), (90), (92) we g

Ben logn

min{Ln, | 520450 |}

Ben logn

Z (;L)P[Anl(llwen) N En(#aanaxn)c]

{=R+1

min{Ly, | 72450 |}

- —1 n—~¢
< Z (%)%572 ((10g Z) +2> . (1 — (1 _ efamin(")ﬁfpn(n)) ) (94)

{=R+1

From the upper bound in (20) and £ < 555, we have

prn cplogn 1

Omin (n) Blp1,(n) < ﬁﬁc logn pur n

Using the fact that 1 —e™® > % forall 0 <x <1, we get

1 _ ,LLT (1 _ e—amm(n)ﬁéplr(n)) S 1 _ ,UrOémin(nQ)Beplr(n) S e_ﬁeurplc%gnn (95)
using the lower bound in (15). Reporting this last bound in to (94) and noting that
n_gzg7 6227377L2J7 (96)
we get
min{Ln,{%J} min{ Ln,| zb40— |}
n ¢ _ logn n
Z <£>]P’[An7g(u,8n) NE,(p,0n, X)) < Z n (e(logn)™+2)" e~ Phure o 3
(=R+1 (=R+1
min{Ly, | -0 |} ;
<n Z (6 (log n)‘r+2 efﬂp‘ff log n)
{=R+1
oo u ¢
<n Z (e (logn)™*2 efﬁpflog") (97)

{=R+1
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Given that 3, p, ur > 0 and 7 is finite, we clearly have
e (logn) T2 e Prloen’s — (1), (98)
Thus, the geometric series in (97) is summable for n sufficiently large, and we have

min{Ln,| g2 |}

> (Z)P[An,e(u,en) N En(p,0,,X5)°] < (1+0(1)n (e (logn)T+2 ¢=Arlogn
{=R+1

Hi)R—i—l
1

_ (1 + 0(1)> nl—(R-i—l)ﬁp‘ff (e(log n)T+2)R+1
=o(1)
for any positive integer R with
8

Bous
This choice is permissible given that p, 3, p, > 0.

R >

8.3 The case where min{| 7550 | max(R, L,)} < € < | 3550 ]

Clearly, this range becomes obsolete if max(R, L,) > | ﬁcs’{g o] Thus, it suffices to consider the

subsequences for which the range max(R, Ly) +1 < £ < | g5

(21), (33), (34), (89), the second bound in (90), and (92) to get

| is non-empty. There, we use

[t
S (})Pen €00 Bl 0. X, (100)
¢=max(R,L,)+1
[ et

< en\¢ , o (logn)™ 2 o — Blamin (n)prr(n) A Kin
S (M) (e (o) )

{=max(R,Ly)+1

|3

Hrm

B ; 1 N
< Z n (e (log n)7+2> (e‘ﬁef’“r% + e—'YKl,n) 2
¢=max(R,Ln)+1

Hrn
Beyn logn®

where in the last step we used (95) in view of ¢ <
Next, we write

e~ Blon g L o~vKin _ o~ Blopr 5" (1 1 e ELn+Blomr “’5”)

l ogn
< exp {_ﬁgp'urogn + o VKL n+Blops 15 }

2n
2
Pl
logn e_'yKl,n“F 2cn
2n Blppr=5,
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where the last inequality is obtained from ¢ < 5545 Using the fact that £ > L,, = min{ L%J 51}
and (10) we have

—vK1n K 2 —vK1n 21K —7Kin 4o 7K1n
e<max{ Pl’n }2 e<max{ Lin® c }:0(1>

f— ) n )
Blpp, 1B w n)  Bppylogn Bpurologn * Bppy logn

by virtue of (32) and the facts that 8, u,, o, p > 0. Reporting this into (101), we see that for for
any € > 0, there exists a finite integer n*(e) such that

logn logn

<e—6€purﬁ + e—WKLn) < G—Mﬁwrﬁ(l—f) (102)
for all n > n*(e). Using (102) in (100), we get

prn prn
Ben logn Ben logn

Z <Z>P[An,€(”'aen) N En(ﬂ,on,Xn)C] <n Z <6 (logn>7—+2 e_ﬁplirlogin(l—e)%>
{=max(R,Ln)+1 f=max(R,Ln)+1

14

e}
og n e
<n > (ellogn)Tt e P B
¢=max(R,Ly)+1

(103)
Similar to (98), we have (e (logn)™ 2 e~ Prur RN (1-e)) o(1) so that the sum in (103) converges.
Following a similar approach to that in Section 8.2, we then see that

. n c
¢=max(R,Ln)+1

with R selected according to (99) and e < 1/2.

8.4 The case where [/~ +1< (< |vn]

We consider Lﬁc:ﬁggnj +1 < ¢ < [vn] for some v € (0, 3) to be specified later. Recall (15), (34),

n

the first bound in (89), and the second bound in (90). Noting that (ﬁ

) is monotone increasing in

¢ when 0 < ¢ < |2 and using (96) we get

[vn] n
Z <£>P[An,€(:u'7en) mEn()u':ean)c]

EZLBch:gnJ+1

lvn]
= Z (LVZJ) ' (1 — Hr + Nreiami“(n)’wplr(") + e*’YKl,n)

eztﬁcgq:gnJJ’_l

LVnJ e\vn Hrn plogn
D I O R (A

Kzl—ﬁc’,‘i?i:g nJ+1

B

|3
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n
2

vn i
<n (f) <1 — et e e*”‘lﬂ)
14

2v - %
=n ((e> (1 — fip + e+ e‘”Klvn>> (104)

14

We have 1 — p, + ure_% < 1 from gy, p,c > 0 and e "K1n = o(1) from (32). Also, it holds
that lim, o (&)

£)7 = 1. Thus, if we pick v small enough to ensure that

e K

2v _P
<7) (1 — iy + e e ) <1, (105)

v

then for any 0 < e < 1 — (e/v)* (1 — fr + ure_%> there exists a finite integer n*(e) such that

2v T
(E) (1 — o+ uTe_% + e_'YKL”) <1l—¢ Vn>n*(e).
v

Reporting this into (104), we get

Lvn]
lim > (n>IP[An,g(u, ©,) N Ep(p, 00, X)) =0

n—oo f

=] e |1

since limy, oo n(1 — e)”/2 =0.

8.5 The case where [vn] +1 < /(< |5
In this range, we use (35), the first bound in (89), the last bound in (90), and (96) to get

5] 5] .
n c n 75Zamin (n)pll (TL) 7'YK1 ,n 2
> <€>P{Aw(u,en) N (0, X)) < > <€> (e te )
l=|vn]+1 I=|vn]+1
S Bomain(n)pis (n) :
—Brnomin(n)p11(n —vKin
<1 X ()]G § o)
{=|vn|+1

n
2

S (4675Vnamin(n)p11(n) +4677K1,n)

With §,v,7 > 0 have e~ #/memin(MP1(n) — (1) from (22) and e 7K1n = o(1) from (32). The
conclusion
5]

lim <Z>P[An,g(p,en)mEn(p,on, X)) =0

n—oo

I=|vn]+1

immediately follows and the proof of one-law is completed. [ |
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A Establishing Lemma 7.2

The bounds given at Lemma 7.2 are valid irrespective of how the parameters involved scale with
n. Thus, we consider fixed © with constraints given in the statement of Lemma 7.2.

Recall that conditioned on ¥1,%s,...,%, and ty41 = j, the rv |vgpq1(a)| is distributed as a
Poisson-Binomial rv with ¢ trials and success probability vector p = {a,;,...,as,;}. With a slight
abuse of notation, let Wy ; =1 —py,_ .. ;. Using a crude bound and then (18) we get

(P — max (Ktmm,é, > SPE 1) 1|vee1(e)] > 0])
K; S1e S

E .
P bey1 =7
K;
<P = Kt Al esr(a)| > 0])
SE KJ 217"'7237
< P) tey1 =17
K;

S E |:W;-[_|VZ,Z+1(Q)|>O] 217”’72.57 :|

5J t€+1 = ]

1 l
= H (1- atkj) + (1 - H (1- atkj)) W
k=1 k=1
)4
=[] (0= auy) (1= Wey) + W
k=1
< (1= Qg es) (1= Weg) + Wy
= 1 - atmin,éjptmin,lj' (Al)
upon noting that a4, ; <1for k=1,...,fand j =1,...,r. It is now immediate that
'
ZM] (1 - atmin,ﬁjptmin,ij) = 1 - Atmin,é S 1 - Am (A2)
j=1
Next, consider range £ = 1,..., L,, where we have
(X jersioo] + 1) Ulreesa(@)] > 0] = [l (@) KT

With a slight abuse of notation, let Z; = 1 — py;. Recalling (18), we get

(P = 0% (Kt s X s o] 1) Hesr(@)] > 0

E KJ ) Zla"wzﬁv

P toy1=17J
K;

(P - [5\Ve,e+1(a)|Kﬂ>
<T KJ DI 373

- P tey1 =17
K;
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<E |:Z{J’|Ve,£+1(°‘)| ‘ 217"-7257 :| (A.3)
J ley1 =17

Recall that
Ve eg1(a)| =1[v1 ~q vegr]) + 1 [v2 ~g vegr] + ..o+ 1 v ~G veyg]

and note that conditioned on X1, ..., ¥y and that ty41 = 7, the indicator random variables 1 [v; ~g vg41]
are each distributed as a Bernoulli random variable with parameter oy,; for i« = 1,...,r, where t;
denotes the class of node v;. Let amin; = min {ay;, agj, ..., a5} It follows that

|V£7€+1 (a)‘ = ‘W,ZH (aminj) ‘

where }V47g+1(aminj)‘ denotes a binomial rv with parameters ¢ and amin;, and the operator =
denotes the usual stochastic ordering. It follows that

(P - ma‘X<Ktmin,l7 Xn, VZ,Z+1(0‘)’ + 1)1”V€75+1<a)‘ > 0])
K; Sihee, S,

P tey1 =17
K;

<E [Z]@|Ve,z+1(a)| ‘ Sy B ] 7

E

tey1=17J

<E Z@‘W,Hl@minﬂ ‘ Y1, 20,
- J tiy1=17J
N
k l—k k
k=0

l
< (1 - aminjﬁ (1 - Z]))
efamin]- (17Z])BZ

— e_aminjpljﬁé (A4)

using the fact that 1 — Zjﬁ > B(1 — Z;) with Z; < 1 and 0 < 8 < 1; a proof is available at
[32, Lemma 5.2]. On the range £ = L, + 1,..., | %], [vze41(a)| can be less than or equal to L, or
greater than L,. In the latter case, we have

max (K (@] T D1{jves1(a)| > 0] > |yP|+1

min,€? Xn,|w,e+1

Using (A.3), (A.4), and the fact that (see [34, Lemma 5.4.1] for a proof)

PoEY [P o -k
K5 Ky —
for K1 4+ K9 < P, we have

<P — max <Ktmin,l7 X”:’Vl,l+1(a)’ + 1) 1[|V€7€+1(a)| > 0])
K; IS 3/

P tey1 =17
K;
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<E [Zf?'w}[ﬂ(a)|l[|’/e er1(a)] < Ly et ]
J ’ tey1 =
K.
+E [e—ﬁ(LvPJ+1)1[]ug7g+1(a)\ > Ly) X1 ’E.Z’ }
tey1 =1
< e—aminjpljﬁe + 6—7K11[€ > Ln} (A.5)

by virtue of the fact that K; > Kj.
Finally, we note the bounds

r
Zﬂjefaminjpljﬁg S (1 _ 'u,r) + Mre—ocm‘m,rpl»,-ﬂz
j=1

S (1 _ ,LLT) + Mre_aminplrﬂf

and that

T
Z,U/je_aminjpljﬁﬁ S efaminpllﬂg (Aﬁ)
7j=1

The last step used the fact that p;; is monotone increasing in both ¢ and j and omin ; 2 Oimin-

Note that one could replace ain With amin, in condition (11) to obtain a more intuitive (and
milder) bound that only constraints the product min {ay,(n), ag,(n), ..., ar(n)} p1r(n) instead of
min; j {a;;(n)} p1r(n). In this case, it would also follow that

Omin, Plr < QmrPmr = O(Am) = 0(10g ’I’L/TL)

which is needed in establishing (93) along with amin, p1-(n) = Q(logn/n) on several ranges of ¢ (see
Section 8). However, it would still be needed to show that

r
D uje” i = o1) (A7)
j=1

so as to establish (93) on the range where [vn| +1 < £ < [§] (see Section 8.5). Observe that on
this range, we have

T T
_—Qmin;P1;5¢ _—Bvrnamin P11
i€ J < Hie J
j=1 j=1

and the desired conclusion (A.7) would follow if namin;p11 = w(1) for j =1,...,r. We have (as we
invoke (12) and the proposed modification of (11))

Omin; P11 O'min; 1 logn O'min; 1
i P D1 Gmin, Plr = logn @ n )Y\ w1
ming, T ming, min,

and the desired conclusion follows if one assumes that

Omin; ™~ Omin,, j=1...,r—1 (A8)
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i.e., if the per-row minima of the matrix a are all of the same asymptotic order'. Indeed, the
asymptotic equivalency given in (A.8) implies that amin(n) and ampin, (n) would need to be on
the same order, which essentially translates to (11). Put differently, establishing (A.7) under the
modified condition, i.e., amyin, (n)p1-(n) = Q (logn/n), requires a new set of asymptotic equivalence
conditions that, when combined with the modified condition, are essentially equivalent to (11).
Next, we establish (89). Let Hy(n;p,0) denote the subgraph of H(n;u,0) induced on the
vertices {v1,...,ve}. Hy(n;u,©) is connected if and only if it contains a spanning tree; i.e., we have

Co(p,©) = Urer, [T C Hy(n; p, )]
where Ty denotes the collection of all spanning trees on the vertices {v1,...,v,}. Thus,
T€eT,
Observe that

P[T C Hy(n 1, 0)] = E[E[L[T € Ho(n; p,0)] | T1,..., 5]
—E[P[T C Hy(n;p,0) | 1,..., 5]

/-1
< (max {Oéijpij}) (A.10)
Z?]

where the last inequality follows from the facts that i) a tree on ¢ vertices contain ¢ — 1 edges,
and ii) conditioned on X1, ..., Yy, edge assignments in Hy(n;u,©) are independent and each edge
probability is upper bounded by (max;; {c;;jpi;}). Note that as we use this upper bound, the
randomness (stemming from the random variables 31, X9, etc.) disappears and (A.10) follows. We
obtain (89) upon using (A.10) in (A.9) and noting by Cayley’s formula [35] that there are /=2 trees
on / vertices, i.e., |Tg|= €72 [ ]

!This would also give K; = w(1) since amin,p11 = w(1/n) and K7/P = Q(p11). This condition is needed on the
range [vn] +1 << (5],
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