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Abstract-We consider the random graph induced by the
random key predistribution scheme of Eschenauer and
Gligor under the assumption of full visibility. We report on
recent results concerning a conjectured zero-one law for
graph connectivity, and provide simple proofs for small
key pools.
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I. INTRODUCTION

to
K~ logn + an
Pn n

for some sequence a : No ---+ lR, then

lim JID [OC(n; ttc; Pn ) ) is connected]
n~oo

{

0 if limn~ooan = -00

1 if limn~ooan = +00.

(1)

(2)

Security is expected to be a key challenge for wireless
sensor networks (WSNs) deployed in hostile environments.
With this in mind Eschenauer and Gligor [5] have recently
proposed the following random key predistribution scheme:
Before network deployment, each sensor is independently
assigned K distinct (cryptographic) keys which are selected at
random from a pool of P keys. These K keys constitute the
key ring of the node and are inserted into its memory. Once
deployed, two sensor nodes can then establish a secure link
between them if they are within (wireless) transmission range
of each other and if their key rings share at least one key; see
[5] for implementation details.

Under the assumption of full visibility, namely that nodes
are all within communication range of each other, a secure
link can be established between two nodes whenever their
key rings have at least one key in common. This notion of
adjacency defines the random key graph OC(n; (K, P)) on the
vertex set {I, ... , n} where n is the number of sensor nodes;
see Section II for precise definitions. For sure, the assumption
of full visibility does away with the wireless nature of the
communication infrastructure supporting WSNs. In return, this
simplification allows one to focus on how randomizing the key
selections affects the establishment of a secure network. It is
this aspect of the distribution scheme that we study here, as
we seek conditions on n, K and P under which OC(n; (K, P))
is a connected graph with high probability - Such conditions
would provide helpful guidelines for dimensioning the scheme
of Eschenauer and Gligor.

As explained in [14] there are good reasons to conjecture the
following zero-one law for graph connectivity in random key
graphs: If we scale the parameters K and P with n according
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This conjecture appeared independently in [1, 10]. The zero­
law in (2) automatically holds as a consequence ofthe identical
zero-law for the absence of isolated nodes in random key
graphs [1, 10]. Progress has recently been made with respect
to the one-law in (2) under additional assumptions relating
the size of the key pool to the number of nodes, e.g., see
[1, 3, 11, 14]. Rybarczyk [9] has just established the conjecture
without such assumptions. See Section III for a brief survey
of these contributions.

In the aforementioned papers [1, 3, 9, 11, 14], the proofs are
rather long and technically involved. Here instead we discuss a
number of situations for which the conjectured one-law can be
easily recovered when the key pool Pn is "small" compared to
n. The basic idea behind these shorter proofs is the following
simple observation: The key graph is automatically connected
if all possible key rings have been distributed to the nodes.

The arguments which we develop on the basis of this fact
clearly indicate the interplay that exists in random key graphs
between the size of the key pool and the number of nodes;
this is reflected in the additional assumptions under which the
results were given in the papers [1, 3, 11, 14]. For classical
Erdos-Renyi graphs no such interplay exists between the edge
assignment probability and the number of nodes [2].

The rest of the paper is organized as follows: In Section II
we formally introduce the class of random key graphs. Section
III is devoted to a brief review of recent results, and in Section
IV we provide a key observation which lead to the main results
of the paper. In Section VI we report on the case when K and
P are fixed. The case lim sUPn~oo Pn < 00 is considered in
Section VII. We close in Section VIII with a direct proof of
the case where Pn = n8 for some 0 < 8 < ~.



with

(7)

(9)

(8)

(12)

(11)

n = 1,2, ...

forall n = 1,2, ... sufficientlylarge, we have

lim P(n; en) = 1 if liminf ~;-1n > 1.
n---+oo n---+oo r:n og n

III. RECENT RESULTS

To fix the terminology, any pair of functions P, K : No ---+

No is said to define a scaling provided the natural conditions

are satisfied. With this scaling we can always associate a
sequence a : No ---+ lR through the relation

K; logn + an
Pn n

Just set

Underthe additional assumption

K 2

a n := n P: -logn, n = 1,2, ...

We refer to this sequence a : No ---+ lRas the deviationfunction
associated with the scaling P, K : No ---+ No. A scaling P, K :
No ---+ No is said to be admissible if

for all n = 1, 2, ... sufficiently large.
Blackburn and Gerke [1, Thm. 5] recently obtained the

following zero-one law which generalizes earlier results of Di
Pietro et al. [3, Thm. 4.6].

Theorem 3.1: Consider anadmissible scalingK, P : No ---+

No. Then, we alwayshave

lim P(n; en) = 0 if lim sup ~; -1n < 1. (10)
n---+oo n---+oo r:n og n

(3)

(5)

(4)

This paper was originally accepted for inclusion in the
program of the International Conference on Information and
Communication Systems (ICICS 2009) to take place in Am­
man (Jordan) during December 2009 [13]. However, the paper
was withdrawn due to the fact that neither author could attend
the conference, and therefore will not appear in the published
proceedings.1

for all i = 1, ... , n. This corresponds to selecting keys
randomly and without replacement from the key pool.

Distinct nodes i, j = 1, ... , n are said to be adjacent if they
share at least one key in their key rings, namely

in which case an undirected link is assigned between nodes i
and j. This notion of adjacency defines the random key graph
on the vertex set {I, ... ,n}, hereafter denoted by OC(n; B).

For distinct i, j = 1, ... , n, it is a simple matter to check
that

II. RANDOM KEY GRAPHS

The model is parametrized by the number n of nodes, the
size P of the key pool and the size K of each key ring with
K ::; P. To lighten the notation we group the integers P and
K into the ordered pair B=(K, P).

For each node i = 1, ... , n, let Ki(B) denote the random
set of K distinct keys assigned to node i. We can think of
Ki(B) as an PK-valued rv where PK denotes the collection
of all subsets of {I, ... , P} which contain exactly K elements
- Obviously, we have IPKI = (~). The rvs K1(B), ... ,Kn(B)
are assumed to be i.i.d. rvs, each of which is uniformly
distributed over PK with

(P)-lJID[Ki(B) = S] = K ' S E PK

(6)

Theorem 3.2 requires no constraints on the size of the key
pool. For each n = 2, 3, ..., a simple coupling argument yields

(15)

(13)

(14)

(16)

n = 1,2, ...
n

logn + an

K n = 2, n = 1,2, ...

P(n; (2, P)) < P(n; (K, P))

lim P(n; (2, Pn ) ) = { 0
n---+oo 1

Pn

Then, we have

In the process of establishing this result, they also showed
[1, Thm. 3] that the conjectured zero-one law (1)-(2) indeed
holds in a special case.

Theorem 3.2: Consider anadmissible scalingP, K : No ---+

No with

so thatits deviation function a : No ---+ lR (determined through
(8))now satisfies

4

{

0 if P < 2K

q(B) = (P-KK)
(f) if 2K::; P.

The case P < 2K is clearly not interesting: It corresponds to
an edge existing between every pair of nodes, so that OC(n; B)
coincides with the complete graph J(n.

Random key graphs form a subclass in the family of ran­
dom intersection graphs, and are also called uniform random
intersection graphs by some authors [1, 6, 7, 9]. They have
been discussed recently in several application contexts, e.g.,
security of wireless sensor networks [1, 3], clustering analysis
[6, 7], recommender systems using global filtering [8], and
small world models [12].

With n = 2,3, ... and positive integers K and P such that
K ::; P, let P(n; B) denote the probability that the random
key graph OC(n; B) is connected, namely

P(n; B) := JID [OC(n; B) is connected] , B= (K, P).

1The program of ICICS 2009 is available online at
http://www.icies.info/eonfprog.php.



On the otherhand, ifthereexists some (J > 0 such that

foralln = 1,2, ... sufficientlylarge, then we have

lim P(n; On) = 1 if limn~ooan = 00. (20)
n~oo

(24)

(23)

K~ logn
-rvc·--r; n

{

I if P < 2K
Diam[OC(n; 0)] =

2 if P 2: 2K.

On An(O) the random key graph OC(n; 0) is connected and
its diameter is therefore well defined. In fact, as should be
clear from the proof of Lemma 4.1, on the event An(O) we
have

Along these lines, under the condition

The next observation provides an easy condition for graph
connectivity in random key graphs.

Lemma 4.1: Foranygiven pair0 = (K,P) with 2 ::; K::;
P, it is always the case thatOC(n; 0) is connectedwheneverall
thekey ringsofsize K have been distributed, i.e.,

with c > 0, Rybarczyk [9] has recently shown that

Proof. Fix 2 ::; K ::; P and let w be a sample that belongs to
the event An (0). Pick two distinct nodes, say i, j = 1, ... ,n.
We need to show that there is path between them in
OC(n; O)(w). If the key rings Ki(O)(w) and Kj(O)(w) have a
non-empty intersection, then the two nodes are adjacent and
there is a one hop path between them. On the other hand,
if these key rings do not intersect, then it is necessarily the
case that 2K ::; P. Under these conditions it is possible to
construct an element S of PK such that S n Ki(O)(w) =1= 0
and S n Kj(O)(w) =1= 0. Note that such an argument could
not be made for the case K = 1. Since all the key rings have
been distributed in OC(n; 0)(w) it follows that there exists a
node, say f (possibly dependent on w), distinct from both i
and i, such that Kg(O)(w) = S. As a result, nodes i and j
are connected by a two-hop path passing through f. •

(21)

(19)

if limn~ooPn = 1.
lim P(n; (1, Pn ) ) = { 0
n~oo 1

The condition (19) is weaker than the growth condition (11)
used by Blackburn and Gerke [1]. It is also easy to check
that Theorem 3.3 implies the zero-one law (10)-(12). However,
Theorem 3.3 cannot hold if the condition (9) fails. This is a
simple consequence of the following fact.

Lemma 3.4: Forany mapping P : No ---+ No for which the
limit limn~oo Pn exists, we have

whenever 2 < K < P. Therefore, Theorem 3.2 implies the
conjecture (1)-(2) whenever

2 ~ «; ~ r; and r; = 0 Co;n) · (17)

The next result is due to Yagan and Makowski; it generalizes
Theorem 3.1, and complements Theorem 3.2. A complete
proof can be found in [14] (with an outline of the arguments
available in [11]).

Theorem 3.3: Consider anadmissible scalingP, K : No ---+

No with deviation function a : No ---+ lR determined through
(8). Wehave

lim P(n; On) = 0 if limn~ooan = -00. (18)
n~oo

Proof. For n = 2,3, ... and any positive integer Pn , the
graph OC(n; (1, Pn ) ) is connected if and only if all nodes
choose the same key. This event happens with probability
p;;(n-l). The conclusion is now immediate once we observe
that the condition limn~oo Pn = 1 (resp. limn~oo Pn > 1)
requires Pn = 1 (resp. Pn 2: 2) for all n = 1,2, ...
sufficiently large owing to Pn being integer. •

IV. A BASIC OBSERVATION

Assume given a pair of positive integers K and P such that
K ::; P, and pick n = 2, 3, .... We define the events

en (0) := [OC(n; 0) is connected]

and
A (0) .= [ All key rings of size K ]
n· have been distributed .

The event An(O) is always empty under the condition

. logn
dlam[K(n; On)] rv I I

og ogn

with high probability where K(n; On) is the largest connected
component of OC(n; On).

By virtue of Lemma 4.1, it is now natural to look for
conditions under which the event An(0) occurs with high
probability. For this purpose we first consider its complement
which corresponds to the event that some key ring of size K
has not been distributed, namely

(22)



By a union bound argument, we get

JID[An(O)C] < L JID[K1(O)#S, ... ,Kn(O)#S]
SEPK

S~K (gliD[Ki # S])
L JID [K 1 # S]n

SEPK

(~) (1- (IJ) n (25)

so that limn ---+oo an = 00. The conclusion of Lemma 6.1
does not follow from either Theorem 3.1 or Theorem 3.3
since conditions (11) and (19) are not satisfied with Pn =P.
The result is nevertheless a consequence of Theorem 3.2; see
comments following it as we note that condition (17) holds.

We give two proofs of Lemma 6.1, both based on the
observation captured by Lemma 4.1.
Proof 1 - There is no loss of generality in assuming that
the rvs {Ki(O), i = 1,2, ...} are all defined on the same
probability triple (f2, F, JID). The definition

v:=inf(n=1,2, ... : {K1(O), ... ,Kn(O)}=PK)

under the enforced probabilistic assumptions on key ring
selection.

V. AN EASY ONE-LAW

Lemma 4.1 and the calculations following it suggest a very
simple strategy to obtain versions of the one-law in random
key graphs. Consider an admissible scaling P, K : No ~ No
such that

for all n = 1,2, ... sufficiently large. On that range, it follows
from (25) that

liD [An(On)C] < (~:) (1 _(;:)) n

< (~:) e- (f-;.) (27)

by standard bounding arguments. The conclusion

(30)

S E PK a.s.

lim JID [n < v] = o.
n---+oo

JID [Cn(O) n [v <n]] + JID [Cn(O) n [n < v]]
JID [v <n] + JID [Cn(O) n [n < v]].

P(n; 0)

This is a consequence of the fact that simultaneously we have

The desired conclusion is obtained upon letting n go to
infinity in this last relation and making use of (30). •

is then well posed (with the usual convention that u = 00 if
the defining set is empty). The N U ~oo}-valued rv v gives the
smallest value of n for which all (K) possible key rings are
distributed in OC(n; 0). It is easy to see that v < 00 a.s. so that

n (P)-l
nl~~ ~ ~1 [Ki(O) = S] = K '

This is a consequence of the Strong Law of Large Numbers
and of the fact that the set PK is finite.

Now, for each n = 2, 3, ..., because K 2:: 2, it follows
from Lemma 4.1 that the graph OC(n; 0) is connected whenever
v ::; n, whence

(26)

(28)

then follows provided the condition

(29)(
Pn ) -(;n)lim e tc., = 0

n---+oo K n

holds under (26). This observation readily leads to the follow­
ing one-law.

Lemma 5.1: Consider an admissible scaling P, K : No ~
No such that (26) holds for all n = 1,2, ... sufficiently large.
We have limn ---+oo P(n; On) = 1 provided the condition (29)
holds

In the next three sections we use Lemma 5.1 to derive
several one-laws under specific sets of assumptions.

VI. FIXED K AND P

The next result has a well-known analog for Erdos-Renyi
graphs.

Lemma 6.1: For any given pair 0 = (K,P) with 2 ::; K::;
P, we have limn ---+oo P(n; 0) = 1.

The pair 0 = (K, P) with 2 ::; K ::; P corresponds to a
scaling whose deviation function a : No~ lR is given by

K2

an:=np-Iogn, n=1,2, ...

Proof 2 - It follows from (25) that

liD [An(O)] ~ 1- (~) (1- (~)) n

for all n = 1,2, ... sufficiently large to ensure (~) ::; n. The
conclusion limn ---+oo JID [An(O)] = 1 is now immediate and we
get the result by making use of the inclusion (23). •

VII. THE CASE lim sUPn ---+oo Pn < 00

Lemma 6.1 leads to a proof of the conjectured one-law for
scalings K, P : No~ No satisfying the property

P:= lim sup R, = inf (sup Pm) < 00. (31)
n---+oo n~l m~n

Lemma 7.1: For any admissible scaling K, P : No ~ No
satisfying (31). we have limn ---+oo P(n, On) = 1.

Here as well we give two different proofs.
Proof 1 - Given the integer-valued nature of the sequence
{Pn , n = 1,2, ...} the finiteness assumption on P implies



that P is itself a finite integer. As a result, there exists a finite
integer n* such that Pn ::; P + 1 for all n 2: n*.

Under the admissibility constraint (9), there exists a finite
number, say L, of distinct pairs (Ki, Pi), ... , (K1, Pi) such
that for each £ = 1, ... , L, it holds

2 <Kg <Pt <P + 1

and
(Kn , Pn ) = (Kg, Pt), n E N,

where N l , ... , N L are disjoint and countably infinite subsets
of No with

uf=1Nt = {n** ,n** + 1, ...}

for some n** 2: n* (so as to ensure set equality). Applying
Lemma 6.1 we obtain

lim P(n;On) =1, £=I, ... ,L
nENe

where limnENe indicates that the limit is taken with n
going to infinity along the subsequence defined by Ni, The
conclusion limn~oo P(n, On) = 1 easily follows from the
fact that the sets N l, ... , N L are disjoint, and that the limit
points of these L subsequences coincide. •

Proof 2 - Under the finiteness condition (31) we have

lim sup (KPn
) < 00.

n~oo n

Hence, both conditions (26) and (29) hold, and the result
follows from Lemma 5.1. •

This is of course a weaker version of Theorem 3.2 but as the
discussion below shows, its proof is much simpler and comes
with the additional benefit of pointing out the underlying
reason for connectivity when Pn is much smaller than n ­
In that case it is very likely that all the possible key rings are
eventually assigned!

Proof. Condition (34) implies the existence of a constant
C > °such that

for some finite integer n*. Therefore, (32) is automatically
satisfied for 8 in the prescribed range and condition (26) holds.

Next, by the aforementioned monotonicity, we also get

p2 e-if:: < C2n28e-c-2nl-2~ n >_ n*
n - ,

and the convergence (33) follows since we have 28 < 1 here.
The desired conclusion is now immediate by Lemma 5.1.•

As was the case with Theorem 3.2, it follows from (16) and
Lemma 8.1 that limn~oo P(n; On) = 1 whenever

2 < tc; < r;

for all n = 1,2, ... sufficiently large under the condition (34)
with 8 in (0, ~).
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