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ABSTRACT

Recognition of human activities, using smart phones and
wearable devices, has attracted much attention recently. The
machine learning (ML) approach to human activity recog-
nition can broadly be classified into two categories: training
an ML model on (i) an impersonal dataset or (ii) a personal
dataset. Previous research shows that models learned from
personal datasets can provide better activity recognition ac-
curacy compared to models trained on impersonal datasets.
In this paper, we develop a hybrid incremental (HI) method
with logistic regression models. This method uses incremen-
tal learning of logistic regression, to combine the advantages
of both impersonal and personal approaches. We investigate
two essential issues in this method, which are the selection of
the learning rate schedule and the class imbalance problem.
Our experiments show that the model learned using our HI
method give better accuracy than the model learned from
personal or impersonal data only. Besides, the techniques of
adaptive learning rate and cost-sensitive learning give faster
updates and more robust ML models in incremental learn-
ing. Our method also has potential benefits in the area of
privacy preservation.
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1. INTRODUCTION

Human activity recognition based on sensor data has be-
come very popular recently, partially due to the increasing
availability of sensors in mobile devices and the advances
in data analytics. Simply put, this approach is based on
collecting data from various sensors, handcrafting a number
of features, learning classifiers from the features, and then
applying the learned classifiers to determine users’ activi-
ties. Activity recognition has several applications, such as
in healthcare [10, 9, 4] and mobile advertising [25].

Traditionally, there are two ways of training a machine
learning model using data collected on mobile devices: on
servers in the cloud [31, 26] and on the mobile devices [33,
22, 1]. However, it is often not sensible to train a general
machine learning model on an impersonal dataset in servers
and then move the model to different users’ cell phones. The
reason is that behaviors of different users may vary substan-
tially and the collected data may be empirically sampled
from different distributions. For example, the bus models
and road situations vary in different countries. When users
take buses in different countries, the data sensed by their
smart phone acceleration sensor would be different. There-
fore, a feature engineered based on this raw sensor data will
probably be sampled from different distributions. As a re-
sult, it will be extremely difficult to predict user activities
such as riding a bus.

To overcome this problem, for different user, we can specif-
ically train a model in the cloud, based on that user’s per-
sonal data. However, there are several potential problems
also. First, we need to train different models for different
users on servers and then send those models over the net-
work, which can be problematic for server computational
load and network bandwidth. Second, it may be difficult for
servers to access enough personal data for all users. Another
option would be to leave the training task to the mobile de-
vice. One shortcoming of this approach is that compared to
cloud computing, the power and computational capability
of a mobile device is quite limited. Besides, at the begin-
ning when the devices start collecting users’ personal data,
the training data belonging to some activity classes could be
very limited, which in turn would make the trained model’s
generalization ability for those classes quite poor.



In this work, we propose and carefully evaluate a hybrid
incremental (HI) method to effectively address, from two
angles, the problems mentioned above. First, at the begin-
ning of the process we train an impersonal machine learning
model in the cloud using an impersonal dataset. Then we
send this model to the mobile devices of different users. Af-
ter receiving the impersonal model, each device will then
decide whether it should further train the model incremen-
tally; this decision will be based on whether the device has
(enough) personal and labeled data. We study the logistic
regression learning model in this paper, considering its ex-
tremely small model size that saves bandwidth, good perfor-
mance in activity recognition, and easy incremental update.

Unfortunately, the logistic regression model faces two prob-
lems in this particular incremental learning task. First, with
the variations in the behavior of different users, it is often
difficult to select a universally suitable learning rate across
all users. Second, the personal data is usually class imbal-
anced. Usually, it is easier to collect the data of certain ac-
tivities such as being still, walking, and running, compared
to other activities including biking and taking the bus.

To avoid jeopardizing the logistic regression model af-
ter incremental learning, we carefully examine the adaptive
learning rate and apply cost sensitive techniques to address
these two problems.

The contributions of this paper are as follows.

e We propose and thoroughly evaluate an HI method
for an activity recognition system that combines the
benefits of training the model on universal impersonal
data and on personal data by incremental learning.

e We point out a non-trivial problem in our method,
namely that of selecting the learning rate. We adopt
an adaptive learning rate technique to deal with this
problem.

e We show that there is a potential class imbalance prob-
lem on personal datasets in practice, and address it
using cost sensitive machine learning techniques.

The rest of the paper is structured as follows. Section 2
discusses related work. In Section 3, we present our hybrid
incremental (HI) method for activity recognition. It com-
bines the advantages of two traditional methods: training
a machine learning model on an impersonal dataset and on
a personal dataset. In Section 4, we discuss our method
for tuning the learning rate and resolving the class imbal-
ance problem. Section 5 is devoted to empirical results that
validate our analysis and justify the methods we developed.
We conclude the paper in Section 6 with discussion of future
research directions.

2. RELATED WORK
2.1 Activity Recognition

With high availability of sensors in mobile devices be-
coming the norm, and data analysis and machine learning
techniques getting more and more advanced, human activity
recognition is becoming a popular and solvable problem.

A typical activity recognition system [31, 26, 16, 22, 1,
2, 19, 24] works as follows: Data is collected from vari-
ous sensors (e.g., accelerometer, magnetometer, GPS, gyro-
scope) and stored in a log of raw data. From this raw data,
meaningful features, such as mean, variance, and FFT in a

fixed size window, are generated through feature engineer-
ing techniques. Then a machine learning model is trained
on the engineered features. The obtained machine learning
model is then used to predict a user’s activity for specific
feature values. With this activity recognition engine, users’
daily activity and health can be monitored. For example, we
can calculate users’ daily calorie consumption and encourage
users to do more exercise when necessary.

In general, based on the training process, this research
can be classified into two categories: training a machine
learning model on impersonal datasets on the server [31,
26, 21], or on the mobile device [21, 33, 22, 1]. Lockhart
and Weiss [21] created a comprehensive comparison between
training a model using an impersonal dataset and a personal
dataset. This study concluded that with careful control of
the setting, training on a personal dataset can effectively
improve the recognition accuracy. Another previous work
[17] combine data from multiple users and devices based on
their similarities, to achieve better prediction performance.

2.2 Incremental Learning on Device

Incremental learning is an important technique in machine
learning. Usually, we train a model on a dataset and use it
for prediction. When more and more new data are collected,
we need to update the model. If we train the model from
scratch every time, the costs would be very high. Incre-
mental learning incorporates the old model with the newly
available data and avoids re-training from scratch.

Several previous works focus on different types of data
in incremental learning problems. For example, Bifet and
Gavalda [6] focused on time-varying data via an adaptive
windowing approach. Gao et al. [12] handled concept-drifting
data streams with skewed distributions. There are some
works specifically on incremental learning in activity recog-
nition. For instance, Longstaff et al. [22] proposed incre-
mental learning and adaptation in streaming settings. Ac-
tive and semi-supervised learning was applied to improve
activity recognition [1]. Zeng et al. [33] proposed a dynamic
heterogeneous sensor fusion framework, which incrementally
updates the weights of different sensors.

In this paper, we aim to develop a robust incremental
learning technique for logistic regression model in activity
recognition. Logistic regression is chosen here for several
reasons. First and foremost, its small model size fits well to
our proposed method. Also, it is scalable, enables parallel
training in servers and fast incremental training in devices,
and has high recognition accuracy; see Section 3.2 for details.

2.3 Existing Learning Rate Schedules

The stochastic gradient method (SG) is an effective opti-
mization method in machine learning [34, 15, 7]. However,
SG’s performance is highly sensitive to the selection of learn-
ing rate. Previous works have focused on addressing this
problem [11, 32, 8], which can be divided into three types
according to the way they set the learning rate:

e Fixed Learning Rate: During training, the learning
rate is fixed to a pre-specified constant.

e Adaptive Learning Rate: Based on the objective
function value, the learning rate is adjusted dynami-
cally during training (e.g, [13]).

e Per-coordinate Adaptive Learning Rate: Differ-
ent from the previous two types of learning rate sched-



ules, it applies different learning rates to each coordi-
nate of the model (e.g., [11, 27, 32]).

Chin et. al. [8] have demonstrated the effectiveness of per-
coordinate adaptive learning rate among the above sched-
ules. Taking computational simplicity and cost into consid-
eration, we choose the adaptive gradient algorithm (ADA-
GRAD) [11] in our problem as our adaptive learning rate
schedule.

2.4 Class Imbalance

We regard human activity recognition as a multi-class
classification problem. In the real world, users’ data in dif-
ferent activity categories are not evenly distributed. For
example, we have more data of walking, compared to that
of jogging. With these highly-skewed class distributions, a
model may tend to output the majority class as its predic-
tion. To reduce the influence resulting from class imbalance,
there are two strategies: sampling (e.g., up-sampling and
down-sampling) and cost-sensitive learning.

Seiffert et al. [28] presented a comparative study of data
sampling and cost sensitive learning. They showed that

down-sampling and cost-sensitive learning outperformed other

techniques. Down-sampling method is based on removing
some of the data to change the distribution. However, some
users’ labeled data can be very limited for some activities.
Therefore, we will use cost-sensitive strategy instead of the
down-sampling technique.

3. HYBRID INCREMENTAL METHOD

First, our proposed hybrid incremental (HI) machine learn-
ing method is introduced. Then, it is explained why logistic
regression is selected as the machine learning model in our
proposed method. We further discuss the some advantages
and disadvantages of this method.

3.1 An Overview of the HI Method

Figure 1a shows a traditional way of training an ML model
for an activity recognition system. First, the server collects
all available data and trains a model. If the dataset is too
big for a single machine, a distributed ML platform (e.g.,
Hadoop, Spark) can be applied. Second, the server sends
the ML model to the mobile devices. Users will get the pre-
diction results from a mobile app, based on this ML model.
A closely related approach is that the app uploads the col-
lected sensor data to the server, and the server returns the
prediction results of the ML model.

Figure 1b shows, in contrast, our proposed hybrid incre-
mental method (HI). First, a server collects all available
data and trains an ML model. Second, the server sends the
ML model to the mobile devices. In this HI method, we
have a additional third step for incremental updating of the
model on the mobile devices based on the collected personal
data.

The following categories define our above approach as well
as several other approaches discussed in Section 2.1:

e Impersonal: The models are trained on a general
dataset in remote servers directly. This is a very com-
mon approach, which is shown in Figure 1a.

e Personal: The models are trained on one user’s dataset,
and used to predict this particular user’s activity.

Training

Method . Test
Server | Device

Impersonal [31, 26, 21] Ds 0 M, D*

Personal [21] 0 Dy M;, D

Hybrid [21] D, Dl M.y, D'

Hybrid Incremental (ours) | Ds Ms, D;-’" Mpr, D;-e

Table 1: A comparison between Impersonal, Personal, Hy-
brid and HI Methods. D, is the impersonal data on the
server which includes all users, except the users in the test
set. For user j, D;-r is labeled data that is collected the user’s
device while D;e is data for test. M, is trained on D, M;
is trained on D;r, Ms4j is trained D, U D;—" and Mgy is
incrementally trained on D;’" with M, as the initialization.
If there is no model or data involved, it is (.

e Hybrid: The user’s data is combined with a general
dataset in servers. A model is induced from this com-
bined dataset.

e Hybrid Incremental (HI): First, we train a model
on a general dataset in remote servers. Then, the
model is sent to the user devices. Finally, this model
is incrementally updated based on collected data from
a specific user. This is our proposed approach.

Compared to Hybrid method, the training dataset of
HI method is the same. However, our approach gives
more weights to personal data during training models
and provides better prediction performance, which is
validated in Section 5.4. This method is demonstrated
in Figure 1b.

In detail, we split the dataset user-wise into two groups
Ds and Dgy. Ds is the data stored in remote servers, while
Dg is the data we collected in users’ devices. Each user
either belongs to Ds or Dy, because we assume that the ac-
tual users do not appear in the training data. That is, Ds =
{D1,D3,--+,Dy}, where n is the number of users in the
training data. We also have Dg = {Dn+1, Dnt2, -+ , Dntm},
where m is the number of users in the test data. For each
user j in Dg, where n + 1 < 7 < n + m , we split his or her
data Dj; into two parts, D;-’" and D;-e.

The difference between the Impersonal, Personal, Hybrid
and HI methods is summarized in Table 1. In the Impersonal
approach, for a particular user j, we train a model M, on
impersonal data Ds, and make prediction on D;e. In the
Personal approach, we train a model M; on personal data
D;r, and make prediction on D;e. In the Hybrid approach,
we train a model M;y; on the combined dataset Ds U D;T.
Then, model Mjy; is tested on data D;e. In our method, we
train a model M on impersonal data Ds. Then, the model
M is sent to different users. For each user j, M; is used as
the initial model for incremental updating. The data used in
incremental learning is D;-r. After incremental learning we
have an updated model Mgy, which is also tested on data
Dl

3.2 Logistic Regression as Classifier

Multiple models can be considered in our incremental hy-
brid method, such as decision tree, AdaBoost, support vec-
tor machines, random forest, etc. We will focus on logistic
regression in this paper. In this case, the model mentioned



2) Train Model in
Remote Servers

1) Upload Local Data
to Remote Servers

3) Send the Model to
Devices

e

(a) Traditional server-centric method. It trains ML models
based on an impersonal dataset on a server, and then sends
the learned model to mobile devices. There are no model
updates on the devices.

1) Update Model in

Remote Server i
——

2) Send Model to

Devices

3) Update Model L - E g E

Locally

(b) Proposed HI method. It trains ML models based on imper-
sonal dataset in the server, and then sends the model to the
mobile devices. After obtaining the model, a mobile device
can incrementally update the model.

Figure 1: A comparison between the traditional server-centric method and the proposed HI method.

in Section 3.1 is a weight vector w. The model w is initial-
ized as M, of the HI method in Table 1 before incremental
update. After incremental learning is finished, Mgy is the
updated w. If training instances are x;,7 = 1,...,[, and
labels are y; € {1, —1}, logistic regression aims to optimize
the following loss function:

!
H‘lhi,n%WTW + CZ log(1 + efyinxi),

=1

where C > 0 is a parameter used to keep the two terms bal-
anced, %WTW is a regularization term, and [ is the number of
training instances. Logistic regression handles binary clas-
sification problems. In order to make predictions on multi-
class datasets, we apply the one-against-all method [14]. To
handle a dataset with k classes, this method constructs k bi-
nary models. Each of the k models is trained by treating one
class as positive and all the remaining classes as negative.
The reasons why we choose logistic regression as the ma-
chine learning model in our HI method are listed below.

e Compared with other approaches such as decision tree,
AdaBoost and random forest, logistic regression’s model®
size can be extremely small, even after using explicit
kernel feature mapping [31]. Besides, when the size of
training data increases, the model size of decision tree,
AdaBoost and random forest will typically increase as
well. However, for logistic regression the model size
will stay the same, and grow linearly with the dimen-
sionality of the data. Therefore, logistic regression typ-
ically will use less bandwidth to send the model and
require less space in devices, compared to its alterna-
tives.

e Logistic regression has provided competitive results
in previous activity recognition tasks [31], and typi-
cally achieves very similar results to support vector

Mntuitively, logistic regression model is a type of support
vector machines with logistic loss function instead of hinge
loss. But logistic loss can provide better probability inter-
pretations of predictions, which is very useful in activity
recognition.

machines. However, its logistic loss can provide bet-
ter probability interpretations for activity recognition.
The sigmoid function scales the decision values in to
the range of [0,1]. If a user is classified as walking,
we can easily predict the probability of walking by
calculating the logistic loss. Furthermore, with the
explicit kernel mapping method, we can easily utilize
high-dimensional data while still enjoying small model
size.

e The loss function of logistic regression model is differ-
entiable and the model can easily be trained by the
stochastic gradient (SG) method. We can also easily
design incremental SG methods to update a logistic
regression model. On the server side, we can still use
complicated but advanced optimization solvers for lo-
gistic regression model training, such as trust region
Newton method [20] and even its scalable distributed
version [35]. Thus, we can easily train new models on
big activity data.

3.3 Discussion of the Method

In this section, we discuss the potential advantages and
disadvantages of this method.

3.3.1 Potential Advantages

Our novel incremental hybrid method enjoys several ad-
vantages:

e Low Bandwidth Consumption: In the HI method,
when users have new data, they do not upload their
data to remote severs to retrain a model. Moreover,
the servers do not send models to different users when
the model is updated. Thus, bandwidth can be saved
in practice. With the newly collected data, the model
is updated in each user’s device. Further, the logistic
regression model requires very little storage space [31].

e User Privacy: In the HI method, each user does not
need to upload their personal data to a central server,
so their personal data and privacy are potentially bet-
ter protected.

e Efficient Update of Model: When a user creates
new data, the device can incrementally update the ML



model in a real-time fashion. There is no need to up-
load the new data and wait for the server to finish the
training and send back the updated model.

3.3.2 Potential Disadvantages

Although our HI method enjoys several advantages, in
practice it also faces two potential yet very important prob-
lems.

e Learning Rate Selection [8]: Usually, the behaviors
of different users are quite different. Thus the empir-
ical distributions of different users’ activity data vary
substantially, especially when the amount of personal
activity data is extremely small. Thus, the optimal
learning rate in SG for different users can vary signif-
icantly. Optimizing the learning for a particular user
is a non-trivial problem.

Class Imbalance: People tend to collect far more
data of being still and walking, than data of being run-
ning or driving. Unfortunately, some machine learning
algorithms, such as support vector machines or logistic
regression, prefer to predict the majority class [29, 3,
30]. Their performance will degrade when the data is
extremely imbalanced.

4. MACHINE LEARNING METHODS IN HI

In this section, we discuss our hybrid and incremental
learning approach, and how to leverage different machine
learning techniques to handle the potential issues faced by
this method. First, we train a machine learning model from
scratch on impersonal data in the servers. We discuss a few
reasons to focus on logistic regression as the classifier in our
method. We can use off-the-shelf learning methods such as
SG or the Newton method to train this model. After get-
ting the tuned model, we send it to the mobile devices for
incremental training.

4.1 Incremental Learning On Devices

Incremental learning is a machine learning technique that
takes an existing model and adjust it based on new exam-
ples. Thus, we can apply incremental learning to update the
model without re-training from scratch.

In our method, each device downloads a logistic regression
model My = w from the remote server as the initial model.
Then, based on the model w from the remote sever, we
update it using new collected data from the device. Our
incremental learning workflow is summarized in Algorithm

1.

4.2 Adaptive Learning Rate

We apply the Stochastic Gradient (SG) method for in-
cremental learning [18]. SG is sensitive to the selection of
learning rate, and parameters tuning can be a slow and toil-
some process [11, 32, 27]. As introduced in Section 2.3, we
apply one of the per-coordinate adaptive learning rate algo-
rithms, ADAGRAD, to address this problem.

ADAGRAD normalizes the gradients in the current it-
eration via the past gradients. Then, ADAGRAD use the
square root of the sum of gradients to normalize the learning
rate for each selected sample i:

«

Nik = -
Bt =0 VI(W)5 s

fork=1,...,n, (1)

Algorithm 1: Incremental learning by ADAGRAD for
logistic regression model.

Data: Training data on device (mobile phone)

(x1,91), (X2,92), -+ (%1, 91).-

: Model w from the remote server,
regularization parameter C' and number of
iteration Njier, @, B, and o = 0 which stores
the sum of gradients for each dimension k.

Result: Updated model w.

for m — Niter do

for i — [ do
V(W) = w OS5, (14 ™) Ty
or=or +Vf(w)ifork=1,...,n
N = ﬁ fork=1,...,n
wir =wi + . Vf(w)k fork=1,....)n

Input

where o and [ are user-specific parameters and fixed during
training process, and V f(w); is the k" dimension of the
gradient of each selected instance 1.

4.3 Cost-Sensitive Logistic Regression
We observe later in Section 5.7 that the classes are imbal-
anced. Thus, we use a simple yet easy method to implement
a cost-sensitive strategy to solve this problem. In contrast
to traditional logistic regression, it optimizes the following
loss function.
min 1wTw
in =
w2

!
+ct Z log(1 + efyinxi)é(yi > 0)

1=1

l
+07 Y log(1+e "™ )iy <0)  (2)

=1

where CT and C~ mean the cost for the positive class and
negative class respectively, and §(z) is an indicator function:

®3)

5(z) = 1, if statement x is true,
“ 10, otherwise.

We set CT as the number of positive instances while C'~ is
the number of negative instances.

S. EXPERIMENTAL RESULTS

In this section, we conduct several experiments to demon-
strate the validity of the proposed methods.

5.1 Dataset

We use the data in Activity Prediction Data® [16] and
Human Activity Recognition Using Smartphones Data Set
in UCI Data® [5]. The two datasets contain data from differ-
ent volunteers performing different activities (e.g., walking,
jogging, etc.). Some of the statistics are listed in Table 2.

2http:/ /www.cis.fordham.edu/wisdm /dataset.php
3https://archive.ics.uci.edu/ml/datasets/Human-+
Activity+Recognition+Using+Smartphones,  which we
refer as UCI Data in the rest of this paper.
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methods.

Data | # Users | # Activities
Activity Prediction Data [16] 36 10
UCI Data [5] 30 6

Table 2: Number of users and number of activities in two
evaluated datasets.

5.2 Experimental Setting

To simulate the setting discussed in Section 3.1, for Hu-
man Activity Recognition Using Smartphones Data Set in
UCI Data [5], we split 30 users into two groups with 21
users and 9 users respectively. This follows the original split
into training and test sets. We place 21 users’ data on the
server and 9 users’ data are on their separated devices. For
each one among these 9 users, we assume he or she has
10 samples known? in each class of activity for incremen-

4For each user in this dataset, 10 data is about 25% of all

‘ Training Test

Server | Device

about 75% of 9 users
75% of 12 users

about 25% of 9 users

(1) | 21 users
25% of 12 users

24 users

Table 3: A table indicates how training and test data is split
for dataset (1) UCI Data and (2) Activity Prediction Data.
Here, 25% of 9 users indicates that for each user among the
9 users, 25% data are used for incremental training and the
remaining 75% is used for testing.

tal training and report the test accuracy on the rest of the
samples. For Activity Prediction Data [16], we split 36
users into two groups with 24 users and 12 users respec-
tively. 24 users’ data are placed on the server and 12 users’
data are on their own devices. For each one among the 12

his data in each class of activity.



Machine Learning Model | Test Accuracy | Model Size

Decision Tree 0.7174 5.264 KB
Random Forest (2 trees) 0.7262 17.984 KB
Random Forest (5 trees) 0.7749 46.864 KB
Support Vector Machines 0.7397 1.080 KB
Logistic Regression 0.7398 1.080 KB

Table 4: Test accuracy and model size comparison for dif-
ferent learning models, on Activity Prediction Data.

Machine Learning Model | Test Accuracy | Model Size

Decision Tree 0.8798 4.272 KB
Random Forest (2 trees) 0.8340 15.840 KB
Random Forest (5 trees) 0.9048 45.104 KB
Support Vector Machines 0.9580 13.464 KB
Logistic Regression 0.9581 13.464 KB

Table 5: Test accuracy and model size comparison for dif-
ferent learning models, on UCI Data.

users with devices, we assume he or she has 25% data known
in each class of activity for incremental training and report
the test accuracy on the remaining 75% of data. The rea-
son we split this data in this way is that in the transformed
dataset Activity Prediction Data provided, the data is
not well distributed. That is, for some users in some classes
of activities, the data contains fewer than 10 samples.

The details about how to split the dataset is listed in Table
3.

5.3 Model Size Experiments

In this section, we compare different machine learning
model sizes. We also present corresponding results for their
test accuracy. We note that a model with small model size
and competitive accuracy is suitable for our HI Method.

In the comparison, we use the decision tree, random forest
and support vector machines as baseline approaches. Table
4 and 5 show the results on Activity Prediction Data and
UCI Data respectively, from which several observations can
be made. First, compared to decision tree and random for-
est, logistic regression usually achieves competitive accuracy
and smaller model size. Random forest has high accuracy
but large model size, while decision tree with small model
size typically can not predict as well as other models. Sec-
ond, logistic regression models and support vector machines
usually achieve very similar performance while also having
the same model size. As mentioned in Section 3.2, one ad-
vantage of logistic regression is that it has a clear probability
interpretation for the predictions.

Another nice property of logistic regression compared to
decision tree and random forest is that its model size is con-
stant irrespective of the size of the data used in training the
model. As shown in Figure 2, when we keep increasing the
amount training data, the model size of decision tree and
random forest will increase linearly. However, the model
size of logistic regression will not change.

In real world, the training data stored in a server is ex-
pected to be much bigger than the data we use in experi-
ments. Besides, the server data will keep increasing when
more labeled data is collected. Thus, it is concluded that
the logistic regression with constant model size is a better
choice.

In view of the experimental results and previous discus-
sion in Section 3.2, the rest of experiments will focus on the

evaluation of logistic regression model.

5.4 Model Accuracy Experiments
Models trained from hybrid datasets can lead to better

performance than models trained from impersonal datasets [21].

And the model trained from personal dataset performs the
best among the three methods. The purpose of this section
is to test the HI method against the other methods in Table
1.

In the experiments, we split the data as described in Sec-
tion 5.2 and report the results on both two datasets. The
experimental results are shown in Figure 3. It can be ob-
served that the HI method performs the best among the
four methods in most cases. Another observation is that the
incremental learning’s improvement are most significant in
the cases when the accuracy of model obtained from server
is not that good. In this case, those badly predicted users’
behavior should be very different from those users whose
data are placed on the server. But as incremental learning
on personal data in the device can capture information on
personal data, it can provided better personal prediction.
The improvement by HI on Activity Prediction Data is
smaller than UCI Data. The reason is that UCI Data is easier
than Activity Prediction Data, with higher average accu-
racy. It means that the different users from UCI Data have
less diversity. As a result, incremental learning on personal
datasets do not help too much in improving test accuracy.
In the experiments in following sections, we will focus on the
relatively difficult Activity Prediction Data.

HI method outperforms personal and impersonal methods.
The improvement can be explained by making use of the ad-
ditional information on the each user’s device. In the real
world setting, if users are not that concerned about their pri-
vacy and willing to upload their personal data to the servers,
we can also train a new model based on a combined dataset
with both impersonal information and personal information,
which we refer as traditional hybrid approach.

The incremental learning in HI method also provides bet-
ter results than retraining a new model on servers in tra-
ditional hybrid approach. It can be interpreted by the pro-
cess when we optimize the loss function of logistic regression
model. When we retrain a model based on impersonal data
and uploaded personal data in servers, we regard every sin-
gle data point as equal. That is, every data point has the
same weights when we calculate the loss function. However,
in the incremental learning model in HI method, the weight
of personal data have higher weights than impersonal data
during the optimization process. After we train an imper-
sonal model in servers, it can be expected that the obtained
model is quite close to the a general optimal solution. In
the incremental learning, we further refine this obtained the
model according to the loss function calculated only by one
user’s personal data. In this case, the model is well adjusted
to provide a more personal optimal solution for this par-
ticular user. This explains why incremental learning in HI
method outperforms traditional hybrid approach.

User with ID of 6 on Activity Prediction Data in Fig-
ure 3 is an interesting example. The original impersonal
data in servers may be too different from this user’s data,
so that model trained on impersonal data provides bad pre-
dictions. However, if we train on personal data, the model
can predict very well. Simply combining the impersonal and
personal data, and training a model won’t help too much, as



Test User ID Uy Us Us Uy Us Usg Ur Usg Uyg Uio Uit Uiz
Learning rate 10~3 0.878 0.78 1 0.722 | 0.785 | 0.741 | 0.126 | 0.806 | 0.803 | 0.473 | 0.809 | 0.857 | 0.642
Learning rate 5 x 104 | 0.878 | 0.772 | 0.73 | 0.696 | 0.755|0.0632| 0.764 | 0.803 | 0.773 | 0.809 | 0.988 | 0.675
Learning rate 10~ 0.878 | 0.772 | 0.754 | 0.696 | 0.748 | 0.505 | 0.758 | 0.803 | 0.773 | 0.801 | 0.988 | 0.658
Learning rate 5 x 105 | 0.878 | 0.829 | 0.794 | 0.696 0.82| 0.632| 0.782| 0.803 | 0.773 | 0.824 | 0.988 | 0.692
Learning rate 10~° 0.878 0.87 | 0.802 | 0.696 | 0.827 | 0.695 0.77 | 0.819| 0.773 | 0.846 | 0.988 | 0.733
Adaptive learning rate | 0.898 | 0.886 | 0.81 | 0.747 | 0.849 | 0.695 | 0.782 | 0.843 | 0.773 | 0.853 | 0.976 0.8

Table 6: Test accuracy with different learning rates and adaptive learning rate, on Activity Prediction Data. Columns

U17U27. .

-, Uiz show different IDs of randomly selected test users. The italics font highlights the best ones for each user and

adaptive learning rate performs best on 9 among 12 users. The underline marks the best ones of fixed learning rates. We can
observe that the optimal fixed learning rates for different users vary a lot.
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Figure 4: A comparison of the learning curves between several fixed learning rates (abbreviated as LR) and adaptive

learning rate.

The xz-axis shows the number of iterations of learning and the y-axis shows the test accuracy. From

Activity Prediction Data, three randomly selected users’ results are presented.

hybrid’s result shows. In HI method, we give higher weight
to personal data during model training. Although hybrid
approach uses exact the same data with our approach, we
can provide model with much better performance.

5.5 Accuracy Comparisons between Different
Learning Rates

In the real world, the incremental learning dataset is very
small and the users’ behavior diverse. The optimal learn-
ing rate for different users’ data should be different as well.
How to tune the most suitable learning rate for all users is
very tricky. Adaptive learning rate may be a solution and
we compare it with several fixed learning rates. We follow
previous works [23, 8], and set @ = 0.1 and 8 = 1 in the
following experiments.

In Table 6, the optimal fixed learning rate for different
users varies, as marked by the underline. However, we can
also observe that the adaptive learning rate can always achieve
comparable performance with optimal learning rate. Thus,
in real world application, it can helpfully select the most
suitable learning rate automatically.

Similar with the observation in previous work [8], in our
experiments the adaptive learning rate not only determines
the suitable learning rate automatically, but also leads to
faster convergence. This is demonstrated in Figure 4, where
we observe that the adaptive learning rate’s curves are sig-
nificantly lower than those of fixed learning rates. Although
the learning rate can be reduced significantly by using a
larger fixed learning rate, this would also lead to inaccurate
solutions when the optimization is close to the optimum,
which is shown in Table 6. These results show that, in the
incremental learning in HI method for the activity recog-
nition problem, using adaptive learning can lead to both

improved recognition results and reduced training effort in
users’ devices.

5.6 Convergence Speed Experiments

In addition to higher accuracy, another benefit of the HI
method is that it can provide better convergence and less
training time, compared with personal method on the same
level of training personal data. For fair comparison, we use
both adaptive learning rate for two methods. Figure 5 shows
the convergence of the learning algorithm on some users’
personal data. The error on test data in each iteration are
compared between personal method and HI method. The
incremental models in HI method have lower test error after
convergence. Besides, it can be observed that the curve of
incremental model in HI drops faster than the curve with
personal method.

In practice, it means that with the information from a
general model trained on impersonal data in server can not
only help improve the activity recognition accuracy on per-
sonal dataset, but it can also help reduce the training time
on user’s device.

5.7 Class Imbalance Experiments

This section investigates cost-sensitive logistic regression’s
performance in the class imbalance problem. Class imbal-
ance is very common in activity recognition. The class dis-
tribution in our experiments is presented in Figure 6.

In Figure 7, we show the difference between cost-sensitive
logistic regression and cost-insensitive logistic regression. In
these two approaches, we use adaptive learning rate to incre-
mentally update the model. It can be observed that in most
cases, the cost-sensitive setting can achieve the best perfor-
mance. For the user with ID 6, the cost-sensitive approach
is not helpful. In this case, we observe that there is no up-
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Figure 5: A comparison of the learning curves between the Personal method and the HI method. The z-axis shows the number
of iterations of learning and the y-axis shows the test accuracy . From the Activity Prediction Data, three randomly selected
users’ results are presented. The HI method outperforms the Personal method, with better initialization and lower errors.

stairs class from the 6th user’s incremental training data. As
a result, upstairs class becomes the major predictions based
on the cost-sensitive setting.
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Figure 6: The imbalanced class distribution of training data
of 12 test users from the Activity Prediction Data, which
are randomly sampled.

6. CONCLUSION

In this paper, we propose a novel hybrid incremental (HI)
method for activity recognition. Traditionally, we can ei-
ther train models on a impersonal dataset or on a personal
dataset. Our method can effectively combine the advantages
of two approaches. After obtaining a model on impersonal
dataset, the mobile devices can further apply incremental
learning on the model using personal data. We focus on lo-
gistic regression model for its several benefits, including its
small model size that saves bandwidth, good performance in
activity recognition, and easy incremental update. We ad-
dress two important problems that are likely to arise in prac-
tical implementations of this incremental learning task. The
first problem is associated with extreme user diversity mak-
ing it very difficult to tune learning-rate for each user. The
second issue is related with personal data being so imbal-
anced at times that it may spoil the impersonal model. To
overcome those problems, we applied an adaptive learning
rate and cost sensitive technique. Finally the experimental
results are used to validate our solutions.
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