
Random intersection graphs

and their applications in security,

wireless communication, and social networks

Jun Zhao
CyLab and Dept. of ECE

Carnegie Mellon University

Pittsburgh, PA 15213

junzhao@cmu.edu

Osman Yağan
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Abstract—Random intersection graphs have received much
interest and been used in diverse applications. They are naturally
induced in modeling secure sensor networks under random key
predistribution schemes, as well as in modeling the topologies
of social networks including common-interest networks, collab-
oration networks, and actor networks. Simply put, a random
intersection graph is constructed by assigning each node a set of
items in some random manner and then putting an edge between
any two nodes that share a certain number of items.

Broadly speaking, our work is about analyzing random inter-
section graphs, and models generated by composing it with other
random graph models including random geometric graphs and
Erdős–Rényi graphs. These compositional models are introduced
to capture the characteristics of various complex natural or
man-made networks more accurately than the existing models
in the literature. For random intersection graphs and their
compositions with other random graphs, we study properties such
as (k-)connectivity, (k-)robustness, and containment of perfect
matchings and Hamilton cycles. Our results are typically given
in the form of asymptotically exact probabilities or zero-one
laws specifying critical scalings, and provide key insights into
the design and analysis of various real-world networks.

Index Terms—Connectivity, Hamilton cycle, perfect matching,
phase transition, random graphs, random intersection graphs,
robustness.

I. INTRODUCTION

Random intersection graphs were introduced by Singer-

Cohen [32]. These graphs have received considerable attention

in the literature [1]–[11] [28]–[35] [40]–[54]. In a general

random intersection graph, each node is assigned a set of

items in a random manner, and any two nodes establish

an undirected edge in between if and only if they have

at least a certain number of items in common. Below we

explain uniform/binomial random s-intersection graphs that

are studied in this paper.

In a uniform random s-intersection graph with n nodes,

each node selects Kn distinct items uniformly at random from

the same item pool that has Pn different items, and any two

nodes have an edge in between upon sharing at least s items,

where 1 ≤ s ≤ Kn ≤ Pn holds, and Kn and Pn are functions

of n for generality. We denote a uniform random s-intersection

graph by Gs(n,Kn, Pn). The notion “uniform” means that all

nodes have the same number of items (but likely different sets

of items).

In a binomial random s-intersection graph with n nodes,

each item from a pool of Pn distinct items is assigned to each

node independently with probability tn, and any two nodes

have an edge in between upon sharing at least s items, where

sn and Pn are functions of n for generality. We denote a

binomial random s-intersection graph by Hs(n, tn, Pn). The

term “binomial” is used since the number of items assigned

to each node follows a binomial distribution with parameters

Pn (the number of trials) and tn (the success probability in

each trial).

Random intersection graphs have numerous application ar-

eas including secure wireless communication [41]–[44], social

networks [1], [10], [11], [18], cryptanalysis [3], circuit de-

sign [32], recommender systems [25], classification [19] and

clustering [7], [13]. We detail the use of random intersection

graphs for secure wireless communication and social networks

below.

II. USE OF RANDOM INTERSECTION GRAPHS FOR SECURE

WIRELESS COMMUNICATION

We explain below the application of random intersection

graphs to secure wireless communication; in particular, we

discuss the use of random intersection graphs to model secure

wireless sensor networks.

We first explain that uniform random 1-intersection graphs

naturally capture the Eschenauer–Gligor (EG) key predis-

tribution scheme [17], which is a recognized approach to

ensure secure communications in wireless sensor networks

(citation: 3700+ as of 01/07/2015). In the EG scheme for an

n-size sensor network, cryptographic keys are predistributed

to sensors before sensors get deployed; in particular, before

deployment, each sensor is assigned a set of Kn distinct

cryptographic keys selected uniformly at random from a pool

containing Pn different keys. After deployment, two sensors

establish secure communication over an existing link if and

only if they have at least one common key. We say that a secure

sensor network has full visibility if secure communication

between two sensors only require the key sharing and does

This paper summarizes some of the results in our work [40]–[54].



not have link constraints (examples of link constraints include

the links being reliable and the distance between sensors being

small enough). Then the topology of a sensor network with the

EG scheme under full visibility is given by a uniform random

1-intersection graph G1(n,Kn, Pn).
The full visibility model explained above does not capture

link constraints, but wireless links in practice might be unre-

liable due to the presence of physical barriers in between or

because of harsh environmental conditions severely impairing

transmission. Moreover, in real–world implementations of

sensor networks, two sensors have to be within a certain

distance from each other to communicate. Therefore, in our

analysis of secure sensor networks, we consider two types of

link constraints: link unreliability and transmission constraints.

In the link unreliability model, each link between two sensors

is independently active with probability qn and inactive with

probability (1− qn). For transmission constraints, we use the

widely adopted disk model: each node’s transmission area

is a disk with a transmission radius rn so two nodes must

have a distance at most rn for direct communication. In terms

of the node distribution, we consider that the n sensors are

independently and uniformly deployed in a region A, where

A is either a torus T without any boundary or a square S
with boundaries, each with a unit area.

Note that qn and rn are functions of n for generality. The

link unreliability induces an Erdős–Rényi graph [15] denoted

by GER(n, qn), and the model of transmission constraints

yields a random geometric graph denoted by GRGG(n, rn,A).
In consideration of the EG scheme and the link constraints, the

topology of a sensor network with the EG scheme under link

unreliability is given by the intersection of a uniform random

1-intersection graph G1(n,Kn, Pn) and an Erdős–Rényi graph

GER(n, qn), where for graphs G1 and G2, two nodes have an

edge in between in G1 ∩G2 if and only if these two nodes

have an edge in G1 and also an edge in G2. Similarly, the

topology of a sensor network with the EG scheme under

transmission constraints is given by the intersection of a

uniform random 1-intersection graph G1(n,Kn, Pn) and a

random geometric graph GRGG(n, rn,A).
The EG scheme was further extended to the Chan–Perrig–

Song (CPS) scheme [12] (citation: 3000+ as of 01/07/2015).

The only difference between the two schemes is that in the

CPS scheme, a secure link between two sensors requires

the sharing of at least s different keys rather than just one

key. Then from the analysis on the EG scheme above and

recalling the graph notation, we immediately obtain that: (i)

the topology of a sensor network with the CPS scheme under

full visibility is given by Gs(n,Kn, Pn); (ii) the topology of a

sensor network with the CPS scheme under link unreliability is

given by Gs(n,Kn, Pn) ∩ GER(n, qn); and (iii) the topology

of a sensor network with the CPS scheme under transmission

constraints is given by Gs(n,Kn, Pn) ∩ GRGG(n, rn,A).

III. USE OF RANDOM INTERSECTION GRAPHS FOR

SOCIAL NETWORKS

We explain that random intersection graphs are natural

models for social networks [6], examples of which given below

are common-interest networks, researcher networks and actor

networks. In a common-interest networks [48], each user has

several interests following some distribution, and two users

are said to have a common-interest relation if they share at

least s interest(s). In a researcher network (an example of

a collaboration network) [5], [13], each researcher publishes

a number of papers, and two researchers are adjacent if co-

authoring at least s paper(s). In an actor networks, [10], [11],

each actor contributes to a number of films, and two actors

are adjacent if acting at least s common film(s). Similarly,

there could be other types of social networks. For all social

networks described above, it is clear the induced topologies

are represented by random intersection graphs.

IV. A SUMMARY OF RESULTS

We present below the results of random intersection graphs,

and their compositions with other random graphs in terms of

various properties including k-connectivity, perfect matching

containment, Hamilton cycle containment, and k-robustness.

These properties are defined as follows: (i) A graph is k-

connected if each pair of nodes has at least k internally node-

disjoint path(s) between them, and connectivity just means 1-

connectivity. (ii) A perfect matching is a set of edges that do

not have common nodes and cover all nodes with the exception

of missing at most one node. (iii) A Hamiltonian cycle means

a closed loop that visits each node exactly once. (iv) The

notion of k-robustness proposed by Zhang and Sundaram

[37] measures the effectiveness of local-information-based

diffusion algorithms in the presence of adversarial nodes;

formally, a graph with a node set V is k-robust if at least

one of (a) and (b) below holds for each non-empty and strict

subset T of V: (a) there exists at least a node va ∈ T such

that va has no less than k neighbors inside V \ T , and (b)

there exists at least a node vb ∈ V \T such that vb has no less

than k neighbors inside T , where two nodes are neighbors if

they have an edge in between. This notion of k-robustness has

received much attention recently [23], [24], [38], [39], [43],

[54].

A. Results of random intersection graphs

1) Results of uniform random 1-intersection graphs:

Theorem 1 (k-Connectivity in uniform random

1-intersection graphs by our work [43]). For a uniform

random 1-intersection graph G1(n,Kn, Pn), if there is a

sequence αn with limn→∞ αn ∈ [−∞,∞] such that

Kn
2

Pn
=

lnn+ (k − 1) ln lnn+ αn

n
,

then under Pn = Ω(n), it holds that

lim
n→∞

P [G1(n,Kn, Pn) is k-connected. ]

= lim
n→∞

P [G1(n,Kn, Pn) has a minimum degree at least k. ]

=e
−

e− limn→∞ αn

(k−1)! =











0, if limn→∞ αn=−∞,

1, if limn→∞ αn=∞,

e
−

e−α∗

(k−1)! , if limn→∞ αn=α∗∈(−∞,∞).



Remark 1. Theorem 1 presents the asymptotically exact prob-

ability of k-connectivity in a uniform random 1-intersection

graph, while a zero–one law is implicitly obtained by Rybar-

czyk [29] and explicitly given by us as a side result [41], [48].

For connectivity (i.e., k-connectivity in the case of k = 1),

Blackburn and Gerke [2] and Yağan and Makowski [35] show

different granularities of zero–one laws, while Rybarczyk [28]

derives the asymptotically exact probability.

Theorem 2 (Perfect matching containment in uniform

random 1-intersection graphs by our work [50]). For a

uniform random 1-intersection graph G1(n,Kn, Pn), if there

is a sequence βn with limn→∞ βn ∈ [−∞,∞] such that

Kn
2

Pn
=

lnn+ βn

n
,

then under Pn = ω
(

n(lnn)5
)

, it holds that

lim
n→∞

P[G1(n,Kn, Pn) has at least one perfect matching. ]

=e−e
− lim

n→∞
βn

=











0, if limn→∞ βn=−∞,

1, if limn→∞ βn=∞,

e−e−β∗

, if limn→∞ βn=β∗∈ (−∞,∞).

Remark 2. Theorem 2 presents the asymptotically exact

probability of perfect matching containment in a uniform

random 1-intersection graph. A similar result is given by

setting s as 1 in the work of Bloznelis and Łuczak [8]

studying Gs(n,Kn, Pn). However, they use conditions Kn =

O
(

(lnn)
1
5

)

and Kn
2

Pn
= O

(

lnn
n

)

. Furtherermore, for the

one-law (i.e., the case where G1(n,Kn, Pn) contains a per-

fect matching almost surely), their result relies on Pn =
o
(

n(lnn)−
3
5

)

, whereas our result use Pn = ω
(

n(lnn)5
)

.

We note that Pn is expected to be at least on the order of

n in the sensor network applications of uniform random 1-

intersection graphs [17]. In addition, Blackburn et al. [4]

derive a result that is weaker than Theorem 2, to analyze

cryptographic hash functions. Specifically, they show that for

a uniform random 1-intersection graph G1(n,Kn, Pn) under

Pn = Ω(nc) with a constant c > 1, then G1(n,Kn, Pn)
contains (resp., does not contain) a perfect matching almost

surely if limn→∞

(

Kn
2

Pn

/

lnn
n

)

> 1 (resp., < 1).

Theorem 3 (Hamilton cycle containment in uniform ran-

dom 1-intersection graphs by our work [50]). For a uniform

random 1-intersection graph G1(n,Kn, Pn), if there is a

sequence γn with limn→∞ γn ∈ [−∞,∞] such that

Kn
2

Pn
=

lnn+ ln lnn+ γn

n
,

then under Pn = ω
(

n(lnn)5
)

, it holds that

lim
n→∞

P[G1(n,Kn, Pn) has at least one Hamilton cycle. ]

=e−e
− lim

n→∞
γn

=











0, if limn→∞ γn=−∞,

1, if limn→∞ γn=∞,

e−e−γ∗

, if limn→∞ γn=γ∗∈ (−∞,∞).

Remark 3. Nikoletseas et al. [26] proves that G1(n,Kn, Pn)
under Kn ≥ 2 has a Hamilton cycle with high probability if it

holds for some constant δ > 0 that n ≥ (1 + δ)
(

Pn

Kn

)

ln
(

Pn

Kn

)

,

which implies that Pn is much smaller than n (Pn = O(
√
n )

given Kn ≥ 2, Pn = O( 3
√
n ) if Kn ≥ 3, Pn = O( 4

√
n )

if Kn ≥ 4, etc.). Different from the result of Nikoletseas

et al. [26], our Theorem 3 is for Pn = ω
(

n(lnn)5
)

.

Furthermore, Theorem 3 presents the asymptotically exact

probability, whereas Nikoletseas et al. [26] only derive

conditions for G1(n,Kn, Pn) to have a Hamilton cycle almost

surely. They do not provide conditions for G1(n,Kn, Pn) to

have no Hamilton cycle with high probability, or to have a

Hamilton cycle with an asymptotic probability in (0, 1).

Theorem 4 (k-Robustness in uniform random

1-intersection graphs by our work [43]). For a uniform

random 1-intersection graph G1(n,Kn, Pn), with a sequence

δn defined by

Kn
2

Pn
=

lnn+ (k − 1) ln lnn+ δn

n
,

then under Pn = Ω
(

n(lnn)5
)

, it holds that

lim
n→∞

P [G1(n,Kn, Pn) is k-robust. ]

=

{

0, if limn→∞ δn = −∞,

1, if limn→∞ δn = ∞.

Remark 4. As mentioned earlier, k-robustness in this paper is

proposed by Zhang and Sundaram [37]. They present results

on k-robustness in Erdős–Rényi graphs and one-dimensional

random geometric graphs, whereas we study their notion of

k-robustness in random intersection graphs [43], [54].

2) Results of binomial random 1-intersection graphs:

Theorem 5 (k-Connectivity in binomial random

1-intersection graphs by our work [43]). For a binomial

random 1-intersection graph H1(n, tn, Pn), if there is a

sequence αn with limn→∞ αn ∈ [−∞,∞] such that

tn
2Pn =

lnn+ (k − 1) ln lnn+ αn

n
,

then under Pn = ω
(

n(lnn)5
)

, it holds that

lim
n→∞

P [H1(n, tn, Pn) is k-connected. ]

= lim
n→∞

P [H1(n, tn, Pn) has a minimum degree at least k. ]

=e
−

e− limn→∞ αn

(k−1)! =











0, if limn→∞ αn=−∞,

1, if limn→∞ αn=∞,

e
−

e−α∗

(k−1)! , if limn→∞ αn=α∗∈(−∞,∞).

Remark 5. Theorem 5 presents the asymptotically exact prob-

ability of k-connectivity in a binomial random 1-intersection

graph, while zero–one laws are obtained by Rybarczyk [29],

[30]. Connectivity (i.e., k-connectivity in the case of k = 1)

results are presented by Singer-Cohen [32], Shang [31] and

Rybarczyk [29], [30].

Theorem 6 (Perfect matching containment in binomial

random 1-intersection graphs by Rybarczyk [29], [30]).

For a binomial random 1-intersection graph H1(n, tn, Pn), if

there is a sequence βn with limn→∞ βn ∈ [−∞,∞] such that

tn
2Pn =

lnn+ βn

n
, (1)



then under Pn = Ω(nc) for a constant c > 1, it holds that

lim
n→∞

P[H1(n, tn, Pn) has at least one perfect matching. ]

=e−e
− lim

n→∞
βn

=











0, if limn→∞ βn=−∞,

1, if limn→∞ βn=∞,

e−e−β∗

, if limn→∞ βn=β∗∈ (−∞,∞).

Remark 6. For perfect matching containment in a bino-

mial random 1-intersection graph, Rybarczyk [29], [30] also

presents results under Pn = Ω(nc) for a constant c < 1, with

a scaling condition different from (1).

Theorem 7 (Hamilton cycle containment in binomial

random 1-intersection graphs by our work [52]). For a

binomial random 1-intersection graph H1(n, tn, Pn), if there

is a sequence γn with limn→∞ γn ∈ [−∞,∞] such that

tn
2Pn =

lnn+ ln lnn+ γn

n
,

then under Pn = ω
(

n(lnn)5
)

, it holds that

lim
n→∞

P[H1(n, tn, Pn) has at least one Hamilton cycle. ]

=e−e
− lim

n→∞
γn

=











0, if limn→∞ γn=−∞,

1, if limn→∞ γn=∞,

e−e−γ∗

, if limn→∞ γn=γ∗∈ (−∞,∞).

Remark 7. Theorem 7 presents the asymptotically exact prob-

ability of Hamilton cycle containment in a binomial random

1-intersection graph, while zero–one laws are obtained by

Efthymioua and Spirakis [14], and Rybarczyk [29], [30].

Theorem 8 (k-Robustness in binomial random

1-intersection graphs by our work [43]). For a binomial

random 1-intersection graph H1(n, tn, Pn), with a sequence

δn defined by

tn
2Pn =

lnn+ (k − 1) ln lnn+ δn

n
,

then under Pn = Ω
(

n(lnn)5
)

, it holds that

lim
n→∞

P [H1(n, tn, Pn) is k-robust. ]

=

{

0, if limn→∞ δn = −∞,

1, if limn→∞ δn = ∞.

3) Results of uniform random s-intersection graphs:

Theorem 9 (k-Connectivity in uniform random

s-intersection graphs by our work [53]). For a uniform

random s-intersection graph Gs(n,Kn, Pn), if there is a

sequence αn with limn→∞ αn ∈ [−∞,∞] such that

1

s!
· Kn

2s

Pn
s =

lnn+ (k − 1) ln lnn+ αn

n
,

then under Pn = Ω(nc) for a constant c > 2− 1
s , it holds that

lim
n→∞

P [Gs(n,Kn, Pn) is k-connected. ]

= lim
n→∞

P [Gs(n,Kn, Pn) has a minimum degree at least k. ]

=e
−

e− limn→∞ αn

(k−1)! =











0, if limn→∞ αn=−∞,

1, if limn→∞ αn=∞,

e
−

e−α∗

(k−1)! , if limn→∞ αn=α∗∈(−∞,∞).

Remark 8. Theorem 9 presents the asymptotically exact prob-

ability of k-connectivity in a uniform random s-intersection

graph, while a similar result for k-connectivity is given by

Bloznelis and Rybarczyk [9], and a similar result for connec-

tivity (i.e., k-connectivity in the case of k = 1) is shown by

Bloznelis and Łuczak [8], but both results [8], [9] assume

Kn = O
(

(lnn)
1
5s

)

, which limits their applications to secure

sensor networks [12].

Theorem 10 (Perfect matching containment in uniform

random s-intersection graphs by our work [54]). For a

uniform random s-intersection graph Gs(n,Kn, Pn), if there

is a sequence βn with limn→∞ βn ∈ [−∞,∞] such that

1

s!
· Kn

2s

Pn
s =

lnn+ βn

n
,

then under Pn = Ω(nc) for a constant c > 2− 1
s , it holds that

lim
n→∞

P[Gs(n,Kn, Pn) has at least one perfect matching. ]

=e−e
− lim

n→∞
βn

=











0, if limn→∞ βn=−∞,

1, if limn→∞ βn=∞,

e−e−β∗

, if limn→∞ βn=β∗∈ (−∞,∞).

Remark 9. Theorem 10 presents the asymptotically exact

probability of perfect matching containment in a uniform

random s-intersection graph, while a similar result is given

by Bloznelis and Łuczak [8] under Kn = O
(

(lnn)
1
5s

)

.

Theorem 11 (Hamilton cycle containment in uniform

random s-intersection graphs by our work [54]). For a

uniform random s-intersection graph Gs(n,Kn, Pn), if there

is a sequence γn with limn→∞ γn ∈ [−∞,∞] such that

1

s!
· Kn

2s

Pn
s =

lnn+ ln lnn+ γn

n
,

then under Pn = Ω(nc) for a constant c > 2− 1
s , it holds that

lim
n→∞

P[Gs(n,Kn, Pn) has at least one Hamilton cycle. ]

=e−e
− lim

n→∞
γn

=











0, if limn→∞ γn=−∞,

1, if limn→∞ γn=∞,

e−e−γ∗

, if limn→∞ γn=γ∗∈ (−∞,∞).

Theorem 12 (k-Robustness in uniform random

s-intersection graphs by our work [54]). For a uniform

random s-intersection graph Gs(n,Kn, Pn), with a sequence

δn defined by

1

s!
· Kn

2s

Pn
s =

lnn+ (k − 1) ln lnn+ δn

n
,

then under Pn = Ω(nc) for a constant c > 2− 1
s , it holds that

lim
n→∞

P [Gs(n,Kn, Pn) is k-robust. ]

=

{

0, if limn→∞ δn = −∞,

1, if limn→∞ δn = ∞.

4) Results of binomial random s-intersection graphs:

Theorem 13 (k-Connectivity in binomial random

s-intersection graphs by our work [53]). For a binomial



random s-intersection graph Hs(n, tn, Pn), if there is a se-

quence αn with limn→∞ αn ∈ [−∞,∞] such that

1

s!
· tn2sPn

s =
lnn+ (k − 1) ln lnn+ αn

n
,

then under Pn = Ω(nc) for a constant c > 2− 1
s , it holds that

lim
n→∞

P [Hs(n, tn, Pn) is k-connected. ]

= lim
n→∞

P [Hs(n, tn, Pn) has a minimum degree at least k. ]

=e
−

e− limn→∞ αn

(k−1)! =











0, if limn→∞ αn=−∞,

1, if limn→∞ αn=∞,

e
−

e−α∗

(k−1)! , if limn→∞ αn=α∗∈(−∞,∞).

Theorem 14 (Perfect matching containment in binomial

random s-intersection graphs [54]). For a binomial random

s-intersection graph Hs(n, tn, Pn), if there is a sequence βn

with limn→∞ βn ∈ [−∞,∞] such that

1

s!
· tn2sPn

s =
lnn+ βn

n
,

then under Pn = Ω(nc) for a constant c > 2− 1
s , it holds that

lim
n→∞

P[Hs(n, tn, Pn) has at least one perfect matching. ]

=e−e
− lim

n→∞
βn

=











0, if limn→∞ βn=−∞,

1, if limn→∞ βn=∞,

e−e−β∗

, if limn→∞ βn=β∗∈ (−∞,∞).

Theorem 15 (Hamilton cycle containment in binomial

random s-intersection graphs [54]). For a binomial random

s-intersection graph Hs(n, tn, Pn), if there is a sequence γn
with limn→∞ γn ∈ [−∞,∞] such that

1

s!
· tn2sPn

s =
lnn+ ln lnn+ γn

n
,

then under Pn = Ω(nc) for a constant c > 2− 1
s , it holds that

lim
n→∞

P[Hs(n, tn, Pn) has at least one Hamilton cycle. ]

=e−e
− lim

n→∞
γn

=











0, if limn→∞ γn=−∞,

1, if limn→∞ γn=∞,

e−e−γ∗

, if limn→∞ γn=γ∗∈ (−∞,∞).

Theorem 16 (k-Robustness in binomial random

s-intersection graphs [54]). For a binomial random s-

intersection graph Hs(n, tn, Pn), if there is a sequence γn
with limn→∞ γn ∈ [−∞,∞] such that

1

s!
· tn2sPn

s =
lnn+ (k − 1) ln lnn+ γn

n
,

then under Pn = Ω(nc) for a constant c > 2− 1
s , it holds that

lim
n→∞

P[Hs(n, tn, Pn) is k-robust.]=

{

0, if γ∗=−∞, (2a)

1, if γ∗=∞. (2b)

B. Results of random intersection graphs composed with

Erdős–Rényi graphs

Theorem 17 (k-Connectivity in uniform random

1-intersection graphs ∩ Erdős–Rényi graphs by

our work [41], [48], [51]). Consider a graph

G1(n,Kn, Pn) ∩ GER(n, qn) induced by the composition of

a uniform random 1-intersection graph G1(n,Kn, Pn) and

an Erdős–Rényi graph GER(n, qn). With sn denoting the

edge probability of G1(n,Kn, Pn) ∩ GER(n, qn), if there is a

sequence αn with limn→∞ αn ∈ [−∞,∞] such that

sn =
lnn+ (k − 1) ln lnn+ αn

n
,

then under Pn = Ω(n) and Kn

Pn
= o(1), it holds that

lim
n→∞

P [G1(n,Kn, Pn)∩ GER(n, qn) is k-connected. ]

= lim
n→∞

P

[

G1(n,Kn, Pn) ∩ GER(n, qn)
has a minimum degree at least k.

]

=e
−

e− limn→∞ αn

(k−1)! =











0, if limn→∞ αn=−∞,

1, if limn→∞ αn=∞,

e−e−α∗

, if limn→∞ αn=α∗∈(−∞,∞).

Remark 10. As summarized in Theorem 17, for k-connectivity

in a uniform random 1-intersection graph composed with an

Erdős–Rényi graph, our papers [41], [48] show a zero–one

law and later our another work [51] derives the asymptotically

exact probability. For connectivity, Yağan [33] show a zero–

one law under a weaker scaling.

Theorem 18 (k-Connectivity in uniform random

s-intersection graphs ∩ Erdős–Rényi graphs by our

work [44]). Consider a graph Gs(n,Kn, Pn) ∩ GER(n, qn)
induced by the composition of a uniform random s-

intersection graph Gs(n,Kn, Pn) and an Erdős–Rényi

graph GER(n, qn). With sn denoting the edge probability of

Gs(n,Kn, Pn) ∩ GER(n, qn), if there is a sequence αn with

limn→∞ αn ∈ [−∞,∞] such that

sn =
lnn+ (k − 1) ln lnn+ αn

n
,

then under Pn = Ω(n) and Kn

Pn
= o(1), it holds that

lim
n→∞

P

[

Gs(n,Kn, Pn) ∩ GER(n, qn)
has a minimum degree at least k.

]

=e
−

e− limn→∞ αn

(k−1)! =











0, if limn→∞ αn=−∞,

1, if limn→∞ αn=∞,

e−e−α∗

, if limn→∞ αn=α∗∈(−∞,∞).

C. Results of random intersection graphs composed with

random geometric graphs

Theorem 19 (Connectivity in uniform random

1-intersection graphs ∩ random geometric graphs without

the boundary effect by our work [42]). Consider a graph

G1(n,Kn, Pn) ∩ GRGG(n, rn, T ) induced by the composition

of a uniform random s-intersection graph Gs(n,Kn, Pn) and

a random geometric graph GRGG(n, rn, T ), where T is a

torus of unit area. If

πrn
2 · Kn

2

Pn
∼ a · lnn

n
(3)

for some positive constant a, then under Kn = ω(lnn),
Kn

2

Pn
= O

(

1
lnn

)

, Kn
2

Pn
= ω

(

lnn
n

)

, Kn

Pn
= o

(

1
n

)

, it holds that

lim
n→∞

P [G1(n,Kn, Pn)∩ GRGG(n, rn, T ) is connected. ]

=

{

0, if a < 1,

1, if a > 1.



Theorem 20 (Connectivity in uniform random

1-intersection graphs ∩ random geometric graphs with

the boundary effect by our work [42]). Consider a graph

G1(n,Kn, Pn) ∩ GRGG(n, rn,S) induced by the composition

of a uniform random s-intersection graph Gs(n,Kn, Pn) and

a random geometric graph GRGG(n, rn,S), where S is a

square of unit area. If

πrn
2 · Kn

2

Pn
=



















b ·
ln nPn

Kn
2

n
, for

Kn
2

Pn
= ω

(

1

n1/3 lnn

)

,

b ·
4 ln Pn

Kn
2

n
, for

Kn
2

Pn
= O

(

1

n1/3 lnn

)

,

for some positive constant b, then under Kn = ω(lnn),
Kn

2

Pn
= O

(

1
lnn

)

, Kn
2

Pn
= ω

(

lnn
n

)

, Kn

Pn
= o

(

1
n

)

, it holds that

lim
n→∞

P [G1(n,Kn, Pn)∩ GRGG(n, rn,S) is connected. ]

=

{

0, if b < 1,

1, if b > 1.

Remark 11. For the graph G1(n,Kn, Pn) ∩ GRGG(n, rn,S),
Krzywdziński and Rybarczyk [22] and Krishnan et al. [21]

also obtain connectivity results, but their results are weaker

than that in Theorem 20 above; see [42, Section VIII] for

details. Furthermore, Pishro-Nik et al. [27] and Yi et al. [36]

investigate the absence of isolated nodes.

V. A COMPARISON BETWEEN RANDOM INTERSECTION

GRAPHS (RESP., THEIR INTERSECTIONS WITH OTHER

RANDOM GRAPHS) AND ERDŐS–RÉNYI GRAPHS

To compare our studied graphs with Erdős–Rényi graphs,

we summarize below the results of Erdős–Rényi graphs shown

in prior work.

Lemma 1 (k-Connectivity in Erdős–Rényi graphs by [15,

Theorem 1]). For an Erdős–Rényi graph GER(n, qn), if there

is a sequence αn with limn→∞ αn ∈ [−∞,∞] such that qn =
lnn+(k−1) ln lnnαn

n , then it holds that

lim
n→∞

P [ GER(n, qn) is k-connected. ]

= lim
n→∞

P [ GER(n, qn) has a minimum degree at least k. ]

=e
−

e− limn→∞ αn

(k−1)! =











0, if limn→∞ αn=−∞,

1, if limn→∞ αn=∞,

e
−

e−α∗

(k−1)! , if limn→∞ αn=α∗∈(−∞,∞).

Lemma 2 (Perfect matching containment in Erdős–Rényi

graphs by [16, Theorem 1]). For an Erdős–Rényi graph

GER(n, qn), if there is a sequence βn with limn→∞ βn ∈
[−∞,∞] such that qn = lnn+βn

n , then it holds that

lim
n→∞

P[ GER(n, qn) has a perfect matching. ] = e−e
− lim

n→∞
βn

.

Lemma 3 (Hamilton cycle containment in Erdős–Rényi

graphs by [20, Theorem 1]). For an Erdős–Rényi graph

GER(n, qn), if there is a sequence γn with limn→∞ γn ∈
[−∞,∞] such that qn = lnn+ln lnn+γn

n , then it holds that

lim
n→∞

P[ GER(n, qn) has a Hamilton cycle. ] = e−e
− lim

n→∞
γn

.

Lemma 4 (k-Robustness in Erdős–Rényi graphs by [37,

Theorem 3] and [43, Lemma 1]). For an Erdős–Rényi graph

GER(n, qn), with a sequence δn for all n through

qn =
lnn+ (k − 1) ln lnn+ δn

n
, (5)

then it holds that

lim
n→∞

P
[

GER(n, qn) is k-robust.
]

=

{

0, if limn→∞ δn=−∞,

1, if limn→∞ δn=∞.

(6)

From Theorems 1–19 and Lemmas 2–4, random graphs

G1(n,Kn, Pn), Gs(n,Kn, Pn), H1(n, tn, Pn), Hs(n, tn, Pn),
G1(n,Kn, Pn) ∩ GER(n, qn), Gs(n,Kn, Pn) ∩ GER(n, qn),
and G1(n,Kn, Pn) ∩ GRGG(n, rn, T ) under the conditions

in the respective theorems have threshold behaviors for the

respective properties similar to Erdős–Rényi graphs with

the same edge probabilities. However, these graphs may be

different from Erdős–Rényi graphs under other conditions or

for other properties; e.g., G1(n,Kn, Pn) is shown to be more

clustered than an Erdős–Rényi graph with the same edge

probability [34].

VI. CONCLUSION

Random intersection graphs have recently been studied in

the literature extensively and used in diverse applications. In

this paper, we summarize results of random intersection graphs

and their compositions with other random graphs, mostly

from our prior work. We also discuss the applications of

random intersection graphs to secure wireless communication

and social networks.
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[10] M. Bradonjić, A. Hagberg, N. Hengartner, and A. Percus. Component
evolution in general random intersection graphs. In Workshop on
Algorithms and Models for the Web Graph (WAW), pages 36–49, 2010.
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[48] J. Zhao, O. Yağan, and V. Gligor. k-connectivity in random key graphs
with unreliable links. IEEE Transactions on Information Theory, 2015.
Available online at http://arxiv.org/abs/1206.1531
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