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Electrical & Computer Engineering

Carnegie Mellon University
Pittsburgh, PA

oyagan@andrew.cmu.edu

Carlee Joe-Wong
Electrical & Computer Engineering

Carnegie Mellon University
Pittsburgh, PA

cjoewong@andrew.cmu.edu

Abstract—Cascading failures are a common phenomenon in
complex networked systems, where failures at only a few nodes
may trigger a process of sequential failures. We investigate the
robustness against cascading failures in systems carrying flows or
loads that contain multiple interdependent networks, e.g., power
grid, transportation system, etc. In these systems, the coupling
coefficients between the networks, which determine how the flow
from failed components gets redistributed across the networks, is
a key factor affecting the robustness against cascading failures.
Prior work has introduced the step-wise optimization (SWO)
strategy that dynamically adjusts the coupling coefficients during
the course of the cascading failures in an effort to preserve the
network size. SWO has been shown to have good performance
against cascading failures on synthetic data. In this paper, we
show the optimality of the SWO strategy under certain conditions
on the flow and capacity distributions of the nodes. We also
show, via simulations, that the SWO strategy performs well under
various real-world network topologies as well.

Index Terms—cascading failure, interdependent networks

I. INTRODUCTION

Modern systems such as the communication networks con-
necting the Internet of Things (IoT), power grids, and urban
transportation networks form interdependent large-scale net-
work systems. Recently, there has been significant research
interest in the analysis and optimization of robustness of
such systems, with a major focus on the phenomenon called
cascading failures. This phenomenon represents cases where
failures initiated in a small part of the network trigger a process
of sequential failures that may eventually cause a disastrous
impact on the whole system. Many real-world systems, includ-
ing the power grid [1], railway networks [2], communication
networks, IoT [3], etc., can be subject to cascading failures,
e.g., see [4], [5] for additional examples.

Much of the existing literature on cascading failures focuses
on the robustness of a single network [4], [6], [7]. However,
cascading failures are particularly likely to take place in
systems consisting of multiple, interdependent networks. For
example, urban transportation systems may include road net-
works, bus systems, a subway systems, other railway systems,
and bike-sharing systems. These networks are interdependent
in the sense that a failure in one of them will likely lead to an
increased load (e.g., by passengers using alternatives modes of
transportation) in others. The robustness of such interdependent
networks was studied in [8]–[14], where it was shown that

interdependent networks can be more vulnerable to cascading
failures than isolated networks [15].

In this paper, we focus on networks that carry a load (or, a
flow) and apply a flow/load redistribution model to investigate
the robustness of the interdependent networks. The coupling
coefficients that define the portion of flow/load to be transferred
between networks are a crucial factor determining the robust-
ness of such systems [16]. We are interested in cases where
these coefficients can be adjusted dynamically in response to
network failures. For example, passengers can be given time-
varying incentives to take one mode of transportation instead
of another after a road or subway link fails, as studied in
[17]. Intuitively, dynamic coupling policies are expected to
outperform static ones (where the coupling across networks
remains the same throughout the cascading failures). However,
it is difficult to analyze the optimality of dynamic coupling
policies, as we need to track the system’s dynamics and not
just its asymptotic outcome, as done in prior work [18]. This
analysis is particularly difficult in real networks, where we
cannot necessarily characterize the system in terms of the
mean statistics over several nodes: real-world transportation
networks, for instance, have relatively few nodes, which may
invalidate the common use of the law of large numbers to track
system dynamics.

In this work, we consider the step-wise optimization (SWO)
strategy introduced in [18], which minimizes the total extra
load (from the failed nodes) that needs to be redistributed in the
subsequent step. Our previous work [18] creates a framework
to dynamically adjust the coupling coefficients and characterize
the resulting final system size. In this work, we go a step
further to show the effectiveness of our proposed strategy with
the following contributions:

• We show that the SWO strategy maximizes the final
surviving number of nodes when the distribution of free-
space (i.e., capacity minus initial load) in each node
follows a Uniform distribution (see Section IV).

• We show that the SWO strategy achieves comparable per-
formance to that of the optimal fixed-coupling coefficients
(FCC) strategy (see Section V) in extensive simulations.

• We use real-world transportation networks from several
cities around the world to show the effectiveness of the
SWO strategy in real networked systems (see Section V).



II. NETWORK MODEL

Consider the set of networks N = {A,B}. There are three
characteristics for each node i, which are its capacity Ci

(indicating the maximum load the node can handle), load Li,
and free space Si = Ci − Li.

The initial load and free space of the nodes in both networks
are assumed to be drawn from given (possibly different)
probability distributions. We assume that both networks can
be subject to an initial failure that leads to the removal of a
certain fraction of their nodes, chosen uniformly at random.
We list the initial parameters defining the system in Table I.

List of initial parameters
Notation Definition
pA, pB Initial portion of nodes failed in networks A and B.

(Equivalent to the probability that each node fails.)
NA, NB Initial number of nodes of network A and B.
LA, LB Initial load of a node in network A and B.
SA, SB Free space of a node in network A and B, each

following certain probability distribution.

TABLE I: Initial Parameters of the System

When a node fails, it is assumed that the load it carries
will be redistributed to other nodes. For example, suppose a
subway station shuts down due to construction. In that case,
the load carried by that node must then be redistributed to other
adjacent nodes, becoming part of their load, e.g., passengers
must instead walk to nearby stations, which must now serve
them. This redistribution might lead to further node failures
by virtue of their increased load exceeding their capacity, i.e.,
their free-space falling below zero. For example, a station may
become so crowded that passengers cannot board trains there.

In an interdependent network system, the extra load, i.e.,
the load carried by those nodes that recently failed, can
be redistributed in the same network or in other networks,
which captures the phenomenon of the load being shed to the
coupled networks. We formalize this idea by considering a
sequence of discrete time-steps t = 1, 2, . . .. We define the
coupling coefficients at time t as 1−α(t) and 1−β(t), which
respectively define the portion of load that is redistributed from
network A (resp. network B) to network B (resp. network A).

Fig. 1: Illustration of the two networks system.

A. Cascading Failure Process

In this work, we are interested in the phenomenon ”cascad-
ing failure,” which is the sequential failure triggered by the

initial failure of a small portion of the network. We track the
node failures in each time step t = 1, 2, . . .. A node will fail if
its total load after receiving the extra load exceeds the node’s
capacity. That is, for the i-th node in network A to fail at time
step t, the total load it carried before receiving the extra load
(LAi

(t− 1)) should be less than its capacity CAi
, ensuring it

does not fail before time step t. Further, LAi
(t) > CAi

since
node i’s total load exceeds its capacity after receiving the extra
load. If the node fails at time t, its load will be redistributed to
other surviving nodes at the next time step t+1. This process
continues until no more nodes fail, either because there is no
extra load to be redistributed or all nodes have already failed.

The relation between the initial attack size and the final
system size (i.e., number of surviving nodes) is a monotonic
decreasing function. When the initial attack size reaches a
certain threshold, prior work [4], [16] has shown that the final
size of the system transitions between two phases: one where
some nodes survive and one where none survive. We define the
critical attack size as our metric for the network robustness,
which specifies the minimal initial attack size (the expected
initial attack portion) for which all nodes eventually fail.

B. Time-Dependent Parameters and Load Update Rules

With the initial system parameters given in Table I, we now
define various time-dependent system parameters that specify
the system’s status. These parameters are listed in Table II
for network A. The same notation is used for network B by
changing the subscript from A to B.

We follow the widely used [6], [19], [20] fiber-bundle model,
which has been used to investigate the breakdown of a broad
class of systems [4], [16], [21], and we assume both networks
are fully connected. Our prior work [18] shows that this model
generalizes to networks that are not fully-connected. Under
these conditions, the load to be redistributed in network A at
time t will consist of the internally redistributed load, and the
load from network B. ∆LA(t), the extra load that a single node
received in network A, will be this sum of this load divided
by the number of surviving nodes. That is:

∆LA(t) =
FAtα(t) + FBt(1− β(t))

NAt
(1)

Thus, for a single node j in network A, the load update is:

LA,j(t) = LA,j(t− 1) +
FAtα(t) + FBt(1− β(t))

NAt
(2)

Similar equations can be derived for the extra load experienced
by nodes in network B.

III. MATHEMATICAL BACKGROUND

Under our assumptions of fully-connected networks and an
equal redistribution model with a large number of nodes, we
can use mean-field analysis to specify the system status by
tracking the surviving portion and average extra load of nodes
in each network. We give a brief overview of mathematical
analysis step by step in this section, following our prior work
[18]. In the next section, we use this analysis to analyze the
optimality of the SWO strategy.



List of parameters of the system at time t for network A
Notation Definition
t Current time step. Initially t = 0, after each iteration,

the time-step is incremented by one.
α(t), β(t) The in-net ratio at time t for networks A and B

respectively.
NAt Number of surviving nodes in network A.
fAt Fraction of failed nodes up to time t in network A.
FAt Total extra load from network A.
QAt Cumulative average extra load distributed at a single

node in network A up to time t.
∆QAt Average extra load distributed at a single node in

network A at time t.

TABLE II: System Parameters at time t

A. Initial Conditions

Following the notation in Table I, Definition 3.1 summarizes
the initial condition of the network after the initial attack.

Definition 3.1 (Initial Conditions): Consider the system after
the initial attack. For X ∈ {A,B}, the status of the system,
including the failing portion fX0, number of surviving nodes
NX0, total extra load FX0 and average extra load being
redistributed per node QX0 can be written as:

fX0 = pX

NX0 = (1− fX0)NX

FX0 = NX · fX0 · E[LX ]

QA0 = ∆QA0 = α(0)·FA0+(1−β(0)·FB0)
(1−fA0)·NA

QB0 = ∆QB0 = β(0)·FB0+(1−α(0)·FA0)
(1−fB0)·NB

(3)

α(0) and β(0) denote the internal load redistribution portion
for network A and network B respectively at time 0.
Detailed derivations can be found in our prior work [18].

B. Recursive Equations

To trigger the cascading failure process, at least one of the
two networks should have their average extra load exceed the
minimum of the nodes’ free spaces, denoted as SA0 and SB0.
In other words, the necessary and sufficient condition for the
cascading failure process to start is that at least one of the
conditions QA0 ≥ SA0 or QB0 ≥ SB0 is satisfied.

From time step t ≥ 1, we have the following Theorem 3.1.
Theorem 3.1 (Recursive Equations for the System): For X ∈

{A,B}, time step t ≥ 1, the status of the system can be written
as the following recursive equations.

fX t = 1− (1− pX ) · P [SX ≥ QX (t−1)]

NX t = (1− fX t)NX

FX t = NX · (fX t − fX (t−1)) · E[LX +QX (t−1)]

= NX · (1− pX ) · P [QX (t−2) < SX ≤ QX (t−1)] · E[LX +QX (t−1)]

∆QAt = α(t)·FAt+(1−β(t)·FBt)
(1−fAt)·NA

∆QBt = β(t)·FBt+(1−α(t)·FAt)
(1−fBt)·NB

QX t = QX (t−1) +∆QX t

(4)

The final state of the system after the cascading failure
process is when the system size (i.e., number of surviving
nodes) does not change. More formally:

NAt −NA(t−1) = 0, NBt −NB(t−1) = 0 (5)

C. Step-wise Optimization & the Objective Function

When we attempt to stop a cascade of failures, we wish
to maximize the number of surviving nodes (i.e., minimize
the number of failed nodes). We first note that at any given
time, the total free space and the number of surviving nodes
have already been determined by prior failures. It has been
shown in [18] that step-wise optimization strategy minimizing
the total extra load to be redistributed at the subsequent time
step is an effective algorithm to prevent cascading failures. The
optimization problem can be written as Definition 3.2:

Definition 3.2: (The Step-wise Optimization (SWO) Prob-
lem): In each step of the cascading failure process, greedily
minimize the expected extra load in the next time step. The
optimization problem at each time step can be formulated as:

min
α,β

 ∑
X=A,B

E
[
LX +QX (t+1)

]
∆NX (t+1)

 (6)

subject to:

0 ≤ α(t) ≤ 1, 0 ≤ β(t) ≤ 1 (7)

Here the expectation of the load on a single node is:

E
[
LX +QX (t+1)

]
= E

[
LX +QX t +∆QX (t+1)

]
(8)

Based on different choices of the free space distribution, the
optimization problem can be either convex or not [18]. When
the free space distribution is Uniform, the SWO problem in
Eqs. (6-7) is shown in [18] to be convex.

IV. OPTIMALITY OF THE STEP-WISE OPTIMIZATION
(SWO) STRATEGY

In this section, we will show how to specify the extra load
in the subsequent time steps and show the optimality of SWO
in a special uniform distribution case.

A. Optimality and the Expression of Subsequent Extra Load

At time step t0, we define the expected loads and
free space distributions of Network A and Network B as
E[L0A],E[L0B ], fA, fB respectively.

We define LG
tA, L

G
tB as the extra load being generated at

time step t for networks A and B respectively; the total load
being generated at time step t is LG

t = LG
tA + LG

tB . We then
define LR

tA, L
R
tB as the extra load being redistributed at time

step t for networks A and B respectively; the total load being
redistributed at time step t is LR

t = LR
tA+LR

tB . Since the extra
load generated at the current time step will be redistributed at
the next time step, we have the relation that LR

t+1 = LG
t .

At an arbitrary time step t0, for simplicity, we define the
current time step to be 1 and the previous time step to be
0. For the corresponding LG

0 = LR
1 , setting the load to be

redistributed in network A as LR
1A, we have LG

1 :



LG
1 = LG

1A + LG
1B (9)

where:{
LG
1A = E

[
SA|LA ≤ SA < LA +

LR
1A

N1A

]
·NA0

(
FA

(
LA +

LR
1A

N1A

)
− FA(LA)

)
LG
1B = E

[
SB |LB ≤ SB < LB +

LG
0 −LR

1A

N1B

]
·NB0

(
FB

(
LB +

LG
0 −LR

1A

N1B

)
− FB(LB)

)
(N1A, N1B) represent the current numbers of nodes in Net-
work A and Network B respectively.

Following this, we denote the fraction of total extra load to
be redistributed in the next time step t = 2 in Network A as
LR
2A. The total extra load being generated in t = 2 can be

represented as:

LG
2 = LG

2A + LG
2B (10)

where:

LG
2A = E

[
SA|LA +

LR
1A

N1A
≤ SA < LA +

LR
1A

N1A
+

LR
2A

N2A

]
·N0A

(
FA

(
LA +

LR
1A

N1A
+

LR
2A

N2A

)
− FA

(
LA +

LR
1A

N1A

))
LG
2B = E

[
SB |LB+

LG
0 −LR

1A
N1B

≤SB<LB+
LG
0 −LR

1A
N1B

+
L1−LR

2A
N2B

]
·N0B

(
FB

(
LB+

LG
0 −LR

1A
N1B

+
L1−LR

2A
N2B

)
−FB

(
LB+

LG
0 −LR

1A
N1B

))
(11)

Again, (N2A, N2B) represent the current number of nodes in
Network A and Network B respectively.

To prove the optimality of SWO, we need to show that
LG∗
1 + LG∗

2 = L∗, where:
LG∗
1 = minLR

1A
LG
1

LG∗
2 = minLR

2A
LG
2

L∗ = minLR
1A,LR

2A
(LG

1 + LG
2 )

(12)

In other words, for any two consecutive time steps, the
possible minimum total extra load is equal to the sum of
myopically minimizing the extra load in each time step. This
result will imply that for any two consecutive time steps, we
cannot do better than myopically minimizing the extra load
being redistributed in each time step. By induction, starting
from the last two time steps, we can then guarantee that no
other strategy can have less total extra load than step-wise
minimization of the extra load.

B. Optimality of SWO under Uniform Distribution

We suppose that the free space of both networks follows
uniform distributions with the same parameters, so that:{

SA ∼ U(S0, S0 + d)

SB ∼ U(S0, S0 + d)
(13)

The objective function of the SWO problem in Definition 3.2
can then be rewritten, and [18] derives closed-form solutions
for the resulting optimal coupling coefficients.

Under uniform free space distributions, the SWO strategy
can reach the global optimum, i.e., it minimizes the accu-
mulated total extra load (and thus maximizes robustness to
cascading failures). In this section, we are going to prove this
statement.

Theorem 4.1: (SWO reaches the global optimum under
Uniformly distributed free space) The solution that myopically
minimizes the total extra load in each time step is equivalent
to the globally optimal policy that minimizes the accumulated
total extra load across all time steps.

Proof sketch: Following Section IV-A, we compare the sum
of the total extra load by SWO for two consecutive time steps
(t = 1 and t = 2) and the minimal total extra load that can be
reached for these two consecutive time steps.

We define the remaining width of the uniform distribution of
networks A and B as DA, DB , respectively, where DA, DB ≤
d in the original uniform distribution in Equation (13). These
widths change through out the cascading failure process and
are determined by the average extra load a node receives in
each round. Since we assume equal redistribution, when the
cumulative average extra load is less than S0 in Equation (13),
the width remains unchanged, that is, DA = DB = d. Once
the cumulative average extra load is more than S0, the width
starts to decrease and nodes fail. The remaining number of
nodes is proportional to the current width. The distribution
of free space remains uniform since the extra load is equally
redistributed to all nodes.

Since by adjusting coupling coefficients α and β, we can
either send all the loads to network A (α = 1, β = 0) or
send all the loads to network B (α = 0, β = 1), any load
redistribution in between these two cases can be achieved (i.e.,
partial redistribution to A and partial redistribution to B.). It
is therefore sufficient to optimize LG

1A and LG
1B instead of

optimizing α, β.
Following Equation (9), we have:

LG
1 = LG

1A + LG
1B

=
LG
0 E[L0A]

DA
+ LR

1B

(
E[L0B ]

DB
− E[L0A]

DA

) (14)

The target variable LR
1B means the load to be redistributed

in Network B. The load to be redistributed in Network A is
simply LR

1B = LG
0 −LR

1B , which is determined by LR
1B . Since

the total extra load generated LG
1 is a simple linear equation

of the target variable LR
1B , the optimal point of the coupling

coefficients are located at the boundary, i.e., either LR
1B = 0

or LR
1B = L0, which means either α(1) = 1, β(1) = 0 or

α(1) = 0, β(1) = 1. Without loss of generality, we assume
that E[L0B ]

DB
≥ E[L0A]

DA
, where considering SWO as in Definition

3.2, the LR
1B that minimizes LG

1 will be 0. Considering SWO
in the following time step t = 2, we separate our analysis into
two cases.
Case 1 (LR

2B = LG
1 minimizes LG

2 ):
LG
2 , the total extra load being generated in t = 2 is then:

LG
2 =

LG
1 E[L1B ]

DB

(15)

The total extra load when using SWO to myopically minimize
the extra load in each time step can be written as:

LG
(SWO) = LG

1(SWO) + LG
2(SWO)

=
LG
0 E[L0A]

DA
+

LG
1 E[L1B ]

DB

(16)



Suppose that at t = 1 we take arbitrary LR
1B(arb) such that

0 < LR
1B(arb) ≤ LG

0 . Then the extra load of the first step
LG
1(arb) will be:

LG
1(arb) =

LG
0 E[L0A]
DA

+ LR
1B

(
E[L0B ]
DB

− E[L0A]
DA

)
>

LG
0 E[L0A]
DA

= LG
1(SWO)

(17)

When taking LR
1B(arb), the optimal LR

2B(arb) that minimizes
the load generated in t = 2 will be:

LR
2B(arb) = LG

1(arb) (18)

Then the total extra load of t = 2 will be:

LG
2(arb) =

LG
1(arb)E[L1B(arb)]

D1B(arb)
> LG

2(SWO)
(19)

Thus in this case, altering the choice of the first step by
choosing 0 < LR

1B(arb) ≤ LG
0 will cause the sum of the total

extra load to exceed the one from SWO. In other words, no
other method can do better than SWO in this case.
Case 2 (LR

2B = 0 minimizes LG
2 ):

In this case, all the extra load is still distributed to network
A. Then we have the following relation:

E[L0A]NA + LG
0

DANA − LG
0

<
E[L0B ]

DB
, (20)

which can be written as:

DANAE[L0B ] > DBNAE[L0A] +LG
0 DB +LG

0 E[L0B ] (21)

Considering the sum of the total extra load of the two steps
by SWO, we have:

LG
(SWO) = LG

1(SWO)

DA + E[L0A]

DA − LG
0

NA

(22)

Consider another sum of the total extra load of the two steps
if we set an arbitrary value 0 < LR

1B(arb) ≤ LG
0 , we have:

LG
(arb) =

(
LG
1(arb) + LR

1B(arb)

(
E[L0B ]
DB

− E[L0A]
DB

))
·

(
DA+E[L0A]

DA−LG
0

NA

+
LR

1B(arb)

NA

)
(23)

The difference between the total extra loads of these two
different strategies will be:

LG
(SWO) − LG

(arb)

= LG
1(SWO)

DA+E[L0A]

DA−
LG
0

NA

−
(
LG
1(SWO) + LR

1B(arb)

(
E[L0B ]
DB

− E[L0A]
DB

))
·

(
DA+E[L0A]

DA−LG
0

NA

+
LR

1B(arb)

NA

)

= LR
1B(arb)(DA+E[L0A])(

DA−LG
0

NA

)(
DA−LG

0
NA

+
LR
1B(arb)
NA

) (LG
1(SWO)

NA
−
(
DA − LG

0

NA

)(
E[L0B ]
DB

− E[L0A]
DA

))
(24)

We only need to verify the sign of the last term which is:(
LG
1(SWO)

NA
−
(
DA − LG

0

NA

)(
E[L0B ]

DB
− E[L0A]

DA

))
(25)

The above equation can be written as:(
LG
0 E[L0A]

DANA
−
(
DA − LG

0

NA

)(
E[L0B ]

DB
− E[L0A]

DA

))
(26)

This can be further simplified as:

LG
0 E[L0B ]

DANADB
+

E[L0A]DA

DA
− DAE[L0B ]

DB
(27)

Multiplying both sides by DANADB , we have:

E[L0A]NADB − E[L0B ]DANA + LG
0 E[L0B ] (28)

Substituting Equation (20) into the above equation we have
−LG

0 DB < 0. Thus for this case the total extra load of the
two steps with arbitrary 0 < LR

1B(arb) ≤ LG
0 will yield more

total extra load compared to that of using the SWO strategy.
Combining the above two cases, as stated in Section IV-A,

we can conclude that the SWO strategy under uniform free
space distribution achieves the minimum extra load.

V. NUMERICAL RESULTS

To evaluate the SWO strategy, we first show its results under
fully-connected networks, verifying that SWO can outperform
other strategies under uniform free space distributions. Then
we show that in different real-world transportation systems,
the SWO strategy is still an effective algorithm to prevent
cascading failures.

A. Simulation under Fully-Connected Networks

In this subsection, all experiments are done with 1 million
nodes in both networks, and each data point is an average over
100 experiments. The surviving curve indicates the relationship
between the initial attack size and fraction of nodes that
ultimately survive. The transition from a system with some
surviving nodes to 0 indicates the critical attack size. All initial
attacks occurred in network A.

First, we compare SWO to the optimal Fixed Coupling
Coefficients (FCC) strategy and the Size-Based Dynamics
(SBD) strategy. SBD always redistributes the same amount of
load to all nodes in the system. The specific settings are:

• Uniform Distribution (identical): SA, SB ∼
U(20, 180), E[LA] = E[LB ] = 75.

• Uniform Distribution (imbalanced number of nodes):
SA, SB ∼ U(20, 180), E[LA] = E[LB ] = 75, Network B
has half the number of nodes as Network A.

• Uniform Distribution (non-identical): SA ∼
U(20, 180), SB ∼ U(40, 280), E[LA] = E[LB ] = 75.

The experiment results are shown in Table III. We can see
that the SWO strategy has the best robustness compared to all
other baseline strategies. To be specific, under the identical and
imbalanced numbers of nodes settings, all three strategies can
reach the same performance. However, under the non-identical
setting, the SBD strategy performs worse than FCC or SWO.
The FCC strategy can also reach the optimal performance
under all these settings. However, searching for the optimal
coupling coefficients of the FCC strategy requires brute force
search, which scales poorly. Finding the optimal coefficients to
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Fig. 2: Heatmap for the critical attack size of different FCC
settings. The color threshold is set to be 0.58, if the critical
attack size is less than 0.58 it will shows blue in the block.The
optimal critical attack size is 0.632.

a precision of degree d requires d2 more time in a two-network
system. Once the number of interdependent networks grows,
the number of coupling coefficients will grow in exponential
order, as well as the running time. Figure 2 shows a heatmap
of the robustness under different FCC coefficients.

Strategies Identical Imbalanced
Number of
Nodes

Non-Identical

SWO 0.524 0.431 0.631
SBD 0.524 0.431 0.607
Best FCC 0.524 0.431 0.631

TABLE III: Critical Attack Size under Different Settings

We proved the optimality of SWO under a uniform free
space distribution in Section III by showing that optimizing
the load for 2 steps is equal to the myopically optimizing the
load 1 step at a time. Here we extend this result to Exponential
free space distribution by running a simulation comparing
2-step optimization (2-step SWO) and 1 step at a time. In
the symmetric settings, where both networks have the same
number of nodes, average load, and free space distribution,
both SWO and 2-step SWO take α = β = 0.5. (i.e. when
initial extra load L0 = 100000, number of nodes NA =
NB = 10000, SA, SB ∼ Exponential( 1

120 ), E[LA] = E[LB ] =
20, both solutions yield α(1) = β(1) = α(2) = β(2) = 0.5,
and the total extra load is L1 + L2 = 18350.6 + 3880.6 =
22231.2). In other non-symmetric settings, both SWO and 2-
step SWO yield coupling coefficients of 0 and 1 (i.e., when
initial extra load L0 = 100000, number of nodes NA =
20000, NB = 10000, SA, SB ∼ Exponential( 1

120 ), E[LA] =
10,E[LB ] = 20, both solution yields α(1) = α(2) = 1, β(1) =
β(2) = 0, and the total extra load is L1 + L2 = 10188 +
1293.2 = 11481.2). We conjecture that as with uniformly
distributed free space, the SWO strategy will also minimize
the accumulated extra load in a system with Exponentially
distributed free space. Generalizing this result to other distri-

butions, however, may be difficult as some distributions do
not have a direct relation of remaining free space and the
number of surviving nodes. In such cases, minimizing the
accumulated extra load maximizes the total remaining free
space of the system, which can be viewed as an alternate
measure of robustness as it measures the ability of the system
to accommodate future failures.

B. Simulation of Real World Networks

We use the subway network topologies of some of the largest
cities in the world [22] to drive our simulation. First, we take
the Tokyo subway as an example. Under the FCC strategy,
the heatmap of the critical attack size of different coupling
coefficient settings is shown in Figure 3a. We can see that the
highest critical attack size is 0.85. The critical attack size of
our SWO strategy is 0.75 instead.

These results imply that though our SWO has better critical
attack size than most FCC settings, it performs worse than
the optimal FCC ones. However, since load is redistributed
according to the (not fully connected) network topology, the
load is not being equally redistributed to all nodes in the
network. Instead, some nodes fail more easily than others (e.g.,
when a node with only one neighbor fails, its entire load will be
redistributed to its neighbor, which is then also likely to fail.).
Keeping extra load in one network might save the other one
and could guarantee that some part of the system survives, but
most of the system may still fail. We plot the survival curve of
SWO and the best FCC strategies, as shown in Figure 3b. We
can see that before the whole system fails, our SWO strategy
allows more nodes to survive than the FCC strategy. The SWO
strategy exchanges the extra load between 2 networks at each
time step and makes sure not to sacrifice any part of the system.
From this viewpoint, our SWO strategy balances the flow in
two networks and has a higher surviving portion compared to
the FCC strategy before the system fails.

Last in Figure 3c, we compare the results of the subway
systems in different cities. The SWO strategy works for all
of them and yields similar results for all cities. This may be
because subway systems, no matter where they located, tend to
follow the same design concepts. Tokyo has a slightly higher
robustness compared to other cities, which may be due to the
Tokyo subway comprising only the core, denser part of the
overall east Japan railway system.

VI. CONCLUSION

In this work, we studied the robustness of interdependent
networks under different coupling strategies based on a flow-
redistribution model. Based on the previous work [18], we
prove the optimality of the SWO strategy to dynamically
adjust the coupling coefficients between networks according
to the current system state. Furthermore, we verify that the
SWO strategy can provide good performance against cascading
failures in topologies based on real world urban transportation
systems. Evidence in Section V shows that networks with an
Exponential free space distribution may have the same SWO
and 2-step SWO solutions. We therefore conjecture that the
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Fig. 3: Results for real-world network topologies.

SWO strategy may be optimal when the free space distributions
have monotonically decreasing probability density functions
(PDFs), since the trend of the PDF (decreasing or increasing)
does not change when we change our reference point. A direct
future work will be proving this conjecture. Moreover, as seen
in [1], [3], cascading failures in power grids and IoT systems
or other networked systems can be modeled as kind of load
carrying systems. Applying and adapting our dynamic coupling
strategies to these different real-world networked systems can
be another useful future direction.
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