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Abstract— We consider a graph property known as r-
robustness, a robustness metric that plays a key role in
analyzing consensus dynamics. It was previously shown that in
the presence of adversarial nodes, consensus can be reached
in an r-robust network for sufficiently large r. Further, r-
robustness is a stronger property than r-connectivity, hence it is
also useful in many applications where robustness of networks
to disruptions such as adversarial attacks or node failures
is of practical interest. In this paper, we study r-robustness
of random K-out graphs, which have been used in many
applications including random (pairwise) key predistribution
in wireless sensor networks, anonymous message routing in
crypto-currency networks, and differentially-private federated
averaging. Significantly improving an earlier result, we provide
a set of conditions for K and n that ensure, with high probability
(whp), the r-robustness of the random K-out graph. Simulation
results are used to verify the results. To demonstrate the
viability of our results in practical applications, we compare
our results with the results from Erdős-Rényi and the Barabási-
Albert random graph models.

Index Terms— Robustness, random graphs, random K-out
graphs, consensus dynamics, resilience

I. INTRODUCTION

The advances in networking and low-cost, high perfor-
mance devices has resulted in the emergence of various
forms of complex distributed networks, such as communica-
tion networks [1], power grids [2], and economic networks
[3]. Since such large-scale distributed systems have many
potential vulnerable points for failures or attacks, there has
been a considerable effort in studying the robustness of such
networks. Robustness of a network can be simply defined as
the ability to withstand failures and perturbations, and due to
the various forms these failures and perturbations can occur,
various metrics have been defined for robustness.

One such classical metric is connectivity. A graph is
connected if there exists a path of edges between every pair
of vertices. A more generalized form of the connectivity
property is r-connectivity. A graph is said to be r-connected
if it remains connected after the removal of any set of
r − 1 (or, fewer) nodes. r-connectivity is used in many
applications, such as in minimum r-connectivity maintenance
methods, where it is desired for a robot team to perform
various behaviors at best while maintaining a global and
redundant connected network [4]. Further, in an r-connected
network, there are at least r disjoint paths between each
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pair of nodes. Since higher number of disjoint paths sig-
nifies higher fault tolerance, r-connectivity is also useful in
applications where higher fault tolerance is desired, such as
wireless sensor networks [5].

Another metric pertaining to the robustness of a graph is
r-robustness, which was introduced in [6]. A graph is said
to be r-robust if, for every disjoint subset pairs of the graph,
at least one node in one of these subsets is adjacent to at
least r nodes outside that set. The r-robustness property is
stronger than r-connectivity since it was shown in [7] that
if a graph is r-robust, it is at least r-connected. As will
be explained below, the r-robustness property is especially
useful in consensus dynamics.

Consensus dynamics is the process of alignment of some
parameters of several agents through a sufficiently long
period of local interactions. It is one of the most popular
and simplest multi-agent dynamics and has been studied in
many applications in communication systems. For example,
in Internet of Things (IoT), it has been used in a variety of
applications such as federated learning [8], block-chain [9],
and smart grid [10]. For example, in [11] a leader-follower
consensus algorithm was used to synchronize heterogeneous
energy storage devices and bring plug-and-play capability
smart grid systems. In social sciences, it has been studied
in wisdom of crowds, where aggregate opinion is used to
estimate unknown quantities [12]. It has also been used in
control theory applications of multi-agent systems such as
flocking, swarming, synchronization of coupled oscillators,
load balancing in networks [13].

Since consensus dynamics relies on interactions with
other nodes, one key consideration is the resilience against
adversarial nodes. In [14], conditions on the connectivity of
the network required to be resilient to misbehaving or faulty
agents were derived for a linear consensus network. However,
it was shown in [7] that for consensus networks in general,
when adversarial nodes are present, network connectivity
is not sufficient to characterize consensus. Instead, it was
shown that when there are up to F adversarial nodes in the
neighborhood of every correctly-behaving node, consensus
can be reached if the network is (2F + 1)-robust. Hence,
r-robustness property is especially useful for consensus dy-
namics, and has been studied in numerous applications. For
example, in [15], control laws were derived to group robots
in formations of r-robust graphs to allow for consensus in
the presence of malicious robots. Hence, it is of practical
interest to analyze the r-robustness of different graph models
in order to find graph models that satisfies this property as



efficiently (i.e. with fewest number of edges) as possible.
One graph model that is known to be edge efficient in

terms of connectivity and r-connectivity properties is the
random K-out graph model [16]. Random K-out graph,
denoted as H(n;K), is a random graph constructed over
a set of n nodes as follows. Each node selects K distinct
nodes uniformly at random, and then an undirected edge is
formed between any pair of nodes if at least one selects the
other. The orientation of the edges is ignored, resulting in an
undirected graph. Random K-out graph is one of the earliest
random graph models studied in literature [17], and has been
used in applications such as the random pairwise key predis-
tribution scheme in wireless sensor networks [18]–[22], and
anonymity preserving crypto-currency networks [23]. It has
also recently been used in federated learning applications of
consensus dynamics, to construct a communication graph in
a differentially-private federated averaging scheme [24].

One reason for the widespread use of the random K-
out graph model is its ability to generate a connected
topology even with a small number of edges per node. It was
previously shown in [17], [25] that random K-out graphs are
connected whp if K ≥ 2 and not connected if K = 1; i.e.,

lim
n→∞

P [H(n;K) is connected] =

{
1 if K ≥ 2,

0 if K = 1.
(1)

Further, it was shown in [17] that random K-out graphs are
r-connected whp when K ≥ r. The thresholds for both these
properties are much smaller than the respective thresholds
for Erdős-Rényi graphs, one of the most commonly studied
random graph models [26], demonstrating the edge efficiency
of random K-out graph model in terms of connectivity
and r-connectivity. Since r-connectivity and r-robustness are
related as described above, one question is whether random
K-out graphs also satisfy r-robustness efficiently.

With these motivations in mind, in this paper, we study
the r-robustness property of random K-out graphs. The r-
robustness property has been studied on several random
graph models such as the Erdős-Rényi graph and the
Barabási-Albert graph model [27], and by us on random K-
out graphs [28]. In our previous work, we have shown that for
large n, K = O(r log(r)) is needed to ensure r-robustness
with high probability (whp). In this paper, using a novel proof
technique, we show that r-robustness can be achieved with
a much smaller threshold, and find that r⋆(K) ≥ ⌊K/2⌋,
in other words, that K ≥ 2r is sufficient to ensure that
the random K-out graph H(n;K) is r-robust whp. We use
computer simulations to verify this result, and compare this
result with those obtained for an Erdős-Rényi graph and
Barabási-Albert graph with same average node degree, and
determine that random K-out graphs attain r-robustness at
a significantly lower mean node degree value compared to
Erdős-Rényi graphs, and within a factor of 2 compared to
Barabási-Albert graphs.

The rest of the paper is organized as follows. In Section II,
we introduce the notations, the random K-out graph model
and the r-robustness property. In Section III, we present
the main results and provide a discussion of its utility in

Fig. 1. An example for a 2-connected, and 1-robust graph.

practical applications. In Section IV, we provide the proof
of our result. Conclusions are provided in Section V.

II. NOTATIONS AND r-ROBUSTNESS OF A GRAPH

All random variables are defined on the same probability
space (Ω,F ,P) and probabilistic statements are given with
respect to the probability measure P. The complement of an
event A is denoted by Ac. The cardinality of a discrete set A
is denoted by |A|. The indicator function is denoted by 1{}.
If the probability of an event tends to one as n → ∞, we say
that it occurs with high probability (whp). The asymptotic
equivalence an ∼ bn is used to denote limn→∞

an

bn
= 1. We

let ⟨d⟩ denote the mean node degree of a graph.
Definition 2.1 (Random K-out Graph): [25], [29], [30]

The random K-out graph is defined on the vertex set V :=
{v1, . . . , vn} as follows. Let N := {1, 2, . . . , n} denote
the set vertex labels. For each i ∈ N , let Γn,i ⊆ N \ i
denote the set of K labels, selected uniformly at random,
corresponding to the nodes selected by vi. It is assumed that
Γn,1, . . . ,Γn,n are mutually independent. Distinct nodes vi
and vj are adjacent, denoted by vi ∼ vj if at least one of them
picks the other. Namely, vi ∼ vj if [j ∈ Γn,i] ∨ [i ∈
Γn,j ]. The random graph defined on V through this adjacency
condition is called a random K-out graph and is denoted by
H(n;K). The set of neighbors of a node i is denoted by
Vi := {j ∈ N \ i : vi ∼ vj}

Definition 2.2 (r-connectivity): A graph is r-connected if
it remains connected after the removal of any set of r − 1
(or, fewer) nodes or edges.
The random K-out graph H(n;K) is r-connected whp for
large n when K ≥ r [17].

Definition 2.3 (r-reachable Set): [6, Definition 6] For a
graph G and a subset S of nodes S ⊂ N , we say S is r-
reachable if ∃i ∈ S : |Vi \ S| ≥ r, where r ∈ Z+. In other
words, S is an r-reachable set if it contains a node that has at
least r neighbors outside S.

Definition 2.4 (r-robust Graph): [6, Definition 7] A
graph G is r-robust if for every pair of nonempty, disjoint
subsets of N , at least one of these subset pairs is r-reachable,
where r ∈ Z+.

For example, for the graph given in Fig. 1, if we
construct the subset pair S1 = {vA, vB , vC} and S2 =
{vD, vE , vF , vG}, both vA and vC in S1 have only one
neighbor in S2, while vD and vE in S2 have only one
neighbor in S1, meaning both S1 and S2 are 1-reachable.
It can be seen that all other subset pairs are also at least 1-
reachable, hence the graph is 1-robust. Further, the removal
of any one node does not disconnect the graph, but removal



Fig. 2. Empirically observed minimum r∗(K) value in 500 experiments for
n = 20, along with the theoretical minimum r value asserted by Theorem
3.1 and the theoretical threshold for r-connectivity.

of nodes D and E disconnects the graph, hence this graph is
2-connected, and 1-robust. We also note that r-robustness is a
stronger property than r-connectivity since it was previously
shown in [7] that if a graph is r-robust, it is also r-connected.

III. MAIN RESULTS AND DISCUSSION

Our main result is presented as Theorem 3.1 below.
Theorem 3.1: Define

r⋆(K) = max
r=1,2,3...

{ lim
n→∞

P (H(n;K) is r-robust) =1}

Then, we have
r⋆(K) ≥ ⌊K/2⌋

In Theorem 3.1, we establish a threshold for one-law of r-
robustness in random K-out graphs, and find that r⋆(K) ≥
⌊K/2⌋. In other words, we find that with high probability,
a random K-out graph is r-robust when K ≥ 2r, r ≥
2, r ∈ Z+, and n → ∞. This threshold is much smaller
than the previously established threshold [28] of K >

2r(log(r)+log(log(r)+1)

log(2)+1/2−log(1+ log(2)+1/2
2 log(r)+5/2+log(2) )

which scales with r log r.

Hence, Theorem 3.1 constitutes a sharper one-law for r-
robustness. The proof of this result is given in Section IV.

A. Simulation Results

Determining r-robustness of a graph involves checking
all subsets of a graph, and it was shown in [31] that it
is a co-NP-complete problem, hence we were only able to
run simulations for small n values. In the simulations, we
generate instantiations of the random graph H(n;K), with
n = 20, and K in the range [1, 12]. For each K value, we
generate 500 experiments and in each experiment we record
the empirical r∗(K), which is r⋆emp(K) = max{r = 1, 2, :
generated graph H(n;K) is r-robust)}. The minimum, and
maximum empirical r∗(K) observed in these 500 experi-
ments for each K value, rmin(K) and rmax(K), are plotted
in Fig. 2 along with the corresponding theoretical plot
obtained from Theorem 3.1. Also the theoretical upper bound
for r-robustness is plotted. This plot is obtained from the
upper bound of r ≤ K for r-connectivity [17], since r-
robustness is a stronger property than r-connectivity, it can
also be used as an upper bound on r-robustness. Hence,
combining this with the lower bound of Theorem 3.1, we
can write ⌊K/2⌋ ≤ r⋆(K) ≤ K. As can be seen from Fig. 2,

both empirical plots, rmin(K) and rmax(K), are between the
plots of theoretical lower and upper bounds for all tested K
values, validating both the lower bound asserted by Theorem
3.1 and the upper bound obtained from [17] when the number
of nodes is small.

B. Discussion

To demonstrate the utility of random K-out graphs in
practical applications compared to other random graph mod-
els, we compare our results with the results from other
graph models. First, we compare with an Erdős-Rényi graph
G(n, p), one of the most commonly studied random graph
models. In [31], it was shown that an Erdős-Rényi graph
G(n, p) is r-robust whp if pn = log(n)+(r−1) log(log(n))+ω(1)

n ,
which translates to an average node degree of < k >∼
log(n)+ (r− 1) log(log(n)). Since the random K-out graph
is r-robust whp when K ≥ 2r, which means an average node
degree of < k >= 4r, we can conclude that the average node
degree required for a random K-out graph to be r-robust is
significantly smaller than the average node degree required
for an Erdős-Rényi graph, demonstrating that the random
K-out graph is more edge efficient for r-robustness.

Secondly, we compare our result with the Barabási-Albert
preferential attachment graph model, which is a graph model
where starting with a seed (initial graph), at each time a
new node with a given number of edges is added to the
graph. This new node forms an edge with another existing
node in the graph with probability that is proportional to
the number of links that the existing node already has. It
was found in [31] that a Barabási-Albert graph is r-robust
if the seed (initial graph) G is an r-robust graph, and if the
degree of each added node is at least r. Hence, an r-robust
Barabási-Albert graph can be constructed with an average
node degree of < k >= 2r. This result is less than our
result of < k >= 4r for the random K-out graph model,
hence the Barabási-Albert graph is more efficient on the
number of edges to attain r-robustness compared to random
K-out graphs. This can be attributed to the fact that the edge
selection for a node in a random K-out graph is uniformly
random, but nodes are more structured in the Barabási-Albert
graph model, nodes that have a higher degree have a higher
probability of being selected. The drawback of this model
is that the degree of each node needs to be known at each
step of the generating process, which might be a concern in
applications that require privacy or anonymity of the nodes.

Since random K-out graphs satisfy the r-robustness prop-
erty with much fewer edges compared to Erdős-Rényi
graphs, and only within a factor of 2 with the Barabási-
Albert graphs, and as discussed in the introduction, they have
already been used in many applications for their property of
being connected efficiently (with as few edges as possible,
compared to Erdős-Rényi graphs) [32], this demonstrates
that the random K-out graph model is a viable option for
applications that require r-robustness with as few edges as
possible such as robust control of multi-agent systems, and
robust and differentially-private federated learning.



Another point worth mentioning is the comparison of the
thresholds for r-robustness and r-connectivity. It was shown
in [31] that the thresholds for r-robustness and r-connectivity
are the same in Erdős-Rényi graphs. However, the random K-
out graph H(n;K) is not r-connected whp for large n when
K < r, and is r-connected whp for large n when K ≥ r
[17]; and this is different from our threshold of K ≥ 2r
for r-robustness. This raises the question as to whether our
threshold of 2r is the tightest possible for r-robustness. Since
in Figure 2, the empirical plots, rmin(K) always lies below
the theoretical upper bound for r-robustness, this shows that
having a threshold of r∗(K) ≥ K is not possible based
on this simulation. Still, determining whether a threshold
tighter than ⌊K/2⌋ ≤ r∗(K) ≤ K exists for r-robustness is
currently an open problem and a direction for future work.

IV. A PROOF OF THEOREM 3.1
Due to space limitations, we only provide a shortened

version of the proof of Theorem 3.1 here. We refer the
readers to [33] for the detailed version of the proof.

To prove Theorem 3.1, we need to show that r⋆(K) ≥
⌊K/2⌋, i.e. that for large n, the random K-out graph H(n;K)
is r-robust whp when K ≥ 2r, for r ≥ 2 ∈ Z+. To do this,
similar to the proof given in [31] for Erdős-Rényi graphs,
we first find an upper bound on the probability of a subset
of given size being not r-reachable, and then use this to
show that the probability of not being r-robust goes to zero
when n → ∞ and K ≥ 2r. Different from prior work which
relied on the commonly used upper bounds for the binomial
coefficients

(
n
k

)
≤
(
en
k

)k
and the union bound [28], [31]

to bound the probability of a subset of given size being
not r-reachable, our proof uses tighter upper bounds for
the binomial coefficient, and we also use the Beta function
to derive tight upper bounds on the CDF of the Binomial
distribution, enabling us to establish a tighter threshold than
what was previously possible; e.g., see [28]. First, we provide
a few definitions and properties that will be useful throughout
the proof, starting with the following standard bounds.(

n

m

)
≤
(en
m

)m
, ∀m = 1, . . . , n (2)

Upper bound for binomial coefficients when n → ∞ and
1 ≤ m ≤ ⌊n/2⌋ [34]:(

n

m

)
≤ (1 + o(1))

√
n

2πm(n−m)
· nn

mm(n−m)(n−m)

(3)
Let B(a, b) denote the beta function, Bx(a, b) denote the

incomplete beta function, and Ix(a, b) denote the regularized
incomplete beta function, where a and b are non-negative
integers. These functions are defined as follows [35]:

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt =
(a− 1)!(b− 1)!

(a+ b− 1)!

Bx(a, b) =

∫ x

0

ta−1(1− t)b−1dt, 0 ≤ x ≤ 1

Ix(a, b) =
Bx(a, b)

B(a, b)
, 0 ≤ x ≤ 1 (4)

Using these definitions, it can be shown that when r >
0, I1/2(r, r) = 1/2 since B(r, r) = 2B1/2(r, r).

The cumulative distribution function F (a;n, p) of a Bino-
mial random variable X ∼ B(n, p) can be expressed as:

F (a;n, p) = P[X ≤ a] = I1−p(n− a, a+ 1)

= (n− a)

(
n

a

)∫ 1−p

0

tn−a−1(1− t)adt (5)

Lemma 4.1: [35, Eq. 8.17.20]: For a, b > 0, 0 ≤ x ≤ 1,

Ix(a+ 1, b) = Ix(a, b)−
xa(1− x)b

aB(a, b)
(6)

Lemma 4.2: [35, Eq. 8.17.21]: For a, b > 0, 0 ≤ x ≤ 1,

Ix(a, b) = Ix(a, b+ 1)− xa(1− x)b

bB(a, b)
(7)

Lemma 4.3: : For r > 0, 0 ≤ x ≤ 1/2,

Ix(r + 1, r + 1) ≤ Ix(r, r) (8)
Proof: Using (6) and (7), for r > 0, 0 ≤ x ≤ 1, we have:

Ix(r + 1, r + 1) = Ix(r, r)

+
xr(1− x)r

r
·
[

x

B(r + 1, r)
− 1

B(r, r)

]
(9)

Using B(r, r) = 2B(r + 1, r) completes the proof:

Ix(r + 1, r + 1) = Ix(r, r) +
xr(1− x)r

r ·B(r + 1, r)
·
[
x− 1

2

]
Using this property, we will use the following upper bound
in the rest of the proof since Ix(2, 2) = 3x2 − 2x3 :

Ix(r, r) ≤ 3x2 − 2x3, r ≥ 2 (10)

First, let En(Kn, r;S) denote the event that S ⊂ V is an
r-reachable set as per Definition 2.3. The event En(Kn, r;S)
occurs if there exists at least one node in S that is adjacent to
at least r nodes in Sc, the subset comprised of nodes outside
the subset S. Thus, we have

En(Kn, r;S) =
⋃

i∈NS

 ∑
j∈NSc

1 {vi ∼ vj}

 ≥ r


with NS , NSc denoting the set of labels of the vertices
in S and Sc, respectively. Note that at least one subset
in every disjoint subset pairs needs to be r-reachable ac-
cording to the definition of r-robustness, hence the event
En(Kn, r;S)

⋃
En(Kn, r;S

′) needs to hold with high prob-
ability for every disjoint subset pairs S, S′ ⊂ V, S ∩ S′ = ∅.
Now, let E1(Kn, r) denote the event that S or S′ is r-
reachable for every disjoint subset pairs S, S′ ⊂ V , and let
Pn denote the collection of all non-empty subsets of V , then:

E1(Kn, r) :=
⋂

S,S′∈Pn

S∩S′=∅

[En(Kn, r;S) ∪ En(Kn, r;S
′)]

Note that the event that all S ⊂ V such that |S| ≤ ⌊n
2 ⌋

are r-reachable implies the event E1(Kn, r) since for the
disjoint subset pairs S, S′ ⊂ V , either |S| ≤ ⌊n/2⌋ or |S′| ≤



⌊n/2⌋ must hold true. This is because when all S ⊂ V
such that |S| ≤ ⌊n

2 ⌋ are counted, it includes at least one
of the sets S or S′ for every disjoint subset pair S, S′ ⊂
V . Using this, E1(Kn, r) ⊇

⋂
S∈Pn: |S|≤⌊n

2 ⌋ En(Kn, r;S).
Now, let Z(Kn, r) := Ec

1(Kn, r) denote the event that both
S and S′ are not r-reachable. Thus, we have Z(Kn, r) ⊆⋃

S∈Pn: |S|≤⌊n
2 ⌋ Ec

n(Kn, r;S). Using union bound, we get

PZ ≤
⌊n

2 ⌋∑
m=1

∑
S∈Pn,m

P[Ec
n(Kn, r;S)], (11)

where Pn,m denotes the collection of all subsets of V with
exactly m elements. Further, P [Z(Kn, r)] is abbreviated as
PZ := P [Z(Kn, r)]. From the exchangeability of the node
labels and associated random variables, we have∑

S∈Pn,m

P[Ec
n(Kn, r;S)] =

(
n

m

)
P[Ec

n(Kn, r;Sm)] (12)

since |Pn,m| =
(
n
m

)
, as there are

(
n
m

)
subsets of V with m el-

ements. Note that Sm ∈ Pn,m denotes a subset of the vertex
set V with size m, i.e. Sm ⊂ V and |Sm| = m. Substituting

this into (11), we obtain PZ ≤
∑⌊n

2 ⌋
m=1

(
n
m

)
P[Ec

n(Kn, r;Sm)].

Before evaluating this expression, we will start with eval-
uating the probability that the set Sm is not r-reachable,
abbreviated as P[Ec

n(Kn, r;Sm)] := PSm . In a random K-
out graph, there can be an edge between nodes vi and vj ,
vi ∼ vj , if node vi picks node vj (among its selection of K
nodes), or similarly if vj picks vi. Hence, a node v ∈ Sm can
have neighbors in Sc

m if it forms an edge with nodes in Sc
m

or if nodes in Sc
m forms edges with node v. Let ESm,1

denote
the event that all nodes v ∈ Sm form an edge with less than
r nodes in Sc

m, and let PSm,1 denote its probability. Also let
ESm,2

denote the event that for each node v ∈ Sm, nodes in
Sc
m form less than r edges with it, and let PSm,2

denote its
probability. Ec

n(Kn, r;Sm) ⊆ ESm,1
∩ ESm,2

, and ESm,1
and

ESm,2 are independent events, hence PSm ≤ PSm,1 · PSm,2 .
Further, let Pvm,1 denote the probability that a node v ∈ Sm

forms an edge with less than r nodes in Sc
m, and let Pvm,2

denote the probability that nodes in Sc
m form less than r

edges with the node v ∈ Sm.
Lemma 4.4: [33]: The probability that the node v ∈ Sm

chooses less than r nodes in the set Sc
m, denoted as Pvm,1 ,

can be upper bounded by the cumulative distribution function
F (r−1;Kn, p) of a binomial random variable with Kn trials
and success probability p = n−m−r+1

n−r .
Using this upper bound, and plugging in n = Kn and

p = n−m−r+1
n−r to (5), then we have

Pvm,1
≤ F

(
r − 1;m, 1− m− 1

n− r

)
= Im−1

n−r
(Kn − r + 1, r)

The selections of each node in Sm are independent, hence
we can use (PSm,1

) = (Pvm,1
)m. Now, in order to find

Pvm,2
, a node in Sc

m forming an edge with the node v
can be modeled as a Bernoulli trial with probability p =
Kn/(n−1) so the event that nodes in Sc

m forming less than

r edges with the node v can be represented by a Binomial
model with n − m trials and p = Kn

n−1 . Hence, Pvm,2
=

F
(
r − 1;n−m, Kn

n−1

)
= In−Kn−1

n−1
(n − m − r + 1, r).

Since the nodes in Sc
m forming edges with nodes in Sm are

not independent of the other nodes in Sm, it is not necessarily
the case that (PSm,2) ≤ (Pvm,2)

m. To find (PSm,2), we
decompose it into the following conditional probabilities.

PSm,2
=P[dv1 < r] · P[dv2 < r|dv1 < r]·
. . .P[dvm < r|dv1 < r, dv2 < r, . . . , dvm−1

< r]

where v1, v2, . . . , vm ∈ Sm represent all the nodes in Sm,
and dvi is used to denote the number of nodes in Sc

m that
form an edge with the node vi. To find an upper bound on
PSm,2

, we consider the worst case. In the worst case, all the
preceding nodes are selected by nodes in Sc

m exactly r − 1
times. This reduces the number of available edges in Sc

m

that can make connections with the remaining nodes in Sm,
hence increases the probability of nodes in Sc

m forming less
than r edges with the remaining nodes in Sm. Hence,

PSm,2
≤ P[dv1 < r] · P[dv2 < r|dv1

= r − 1]·
. . .P[dvm < r|dv1 = r − 1, . . . , dvm−1

= r − 1]

Consider the general case for P[dva+1
< r|dv1 = r −

1, . . . , dva = r − 1] where 1 ≤ a ≤ m− 1. Assume that q1
nodes in Sc

m formed an edge with only one node among the
nodes v1, . . . , va. Similarly, assume q2 nodes in Sc

m formed
an edge with only two nodes, and so on (qKn

nodes in Sc
m

formed edges with Kn nodes in v1, . . . , va). Also define q =
q1+q2+. . .+qKn

. It can be seen that a =
q1+2q2+...+KnqKn

r−1 .
Here, we have n0 = n−m−q nodes that did not use any of
their selections on v1, . . . , va, so their probability of choosing
the node va+1 is p0 = Kn

n−a−1 . Similarly, we have n1 = q1
nodes that used one of their selections on v1, . . . , va, so their
probability of choosing va+1 is p1 = Kn−1

n−a−1 (for nKn = qKn

nodes, pKn = Kn−Kn

n−a−1 = 0).
Claim: P[dva+1 < r|dv1 = r−1, . . . , dva = r−1] ≤ 1/2 for
all a = 1, . . . ,m with 1 ≤ m ≤ ⌊n/2⌋ when K ≥ 2r.

Proof: Considering the event that a node in Sc
m picking

the node va+1 as a Bernoulli trial, since nodes in with
different probabilities, the total number of times the node
va+1 is picked by the nodes in Sc

m in all the trials, Na+1,
is distributed as a Poisson Binomial distribution Na+1 ∼
PB([p0]

n0 , . . . , [pKn
]nKn ), where pi = Kn−i

n−a−1 , 0 ≤ i ≤
Kn; ni = qi, 1 ≤ i ≤ K−n, and n0 = n−m−q as defined
above. The mean of this distribution is:

µNa+1 = (n−m− q) ∗ Kn

n− a− 1
+

Kn∑
i=1

qi
Kn − i

n− a− 1

=
2n− 2m− a

n− a− 1
∗ r + (Kn − 2r) ∗ (n−m) + a

n− a− 1

Note that 2n−2m ≥ n since m ≤ ⌊n/2⌋, hence first term
is larger than r. Thus, µNa+1

> r when Kn ≥ 2r. Since the
median of a Poisson Binomial distribution, MX ; satisfies
⌊µX⌋ ≤ MX ≤ ⌈µX⌉ [36], we have that MNa+1

≥ r for
any 1 ≤ a ≤ m− 1 if Kn ≥ 2r.



Combining these, we have that PSm,2
≤
(
1
2

)m
when

Kn ≥ 2r. Now, using PSm
≤ PSm,1

· PSm,2
, we have:

PSm
≤ (Pvm,1

)m ·
(
1

2

)m

≤
(
1

2
Im−1

n−r
(Kn − r + 1, r)

)m

We will divide the summation into three parts as follows:

PZ ≤
⌊n/2⌋∑
m=1

(
n

m

)
PSm

=

⌊log(n)⌋∑
m=1

Pm +

⌊0.3n⌋∑
m=⌈log(n)⌉

Pm

+

⌊n/2⌋∑
m=⌈0.3n⌉

Pm := P1 + P2 + P3 (13)

where Pm :=
(
n
m

)
PSm

. Starting with the first summation P1

and using (2), we have:

Pm =

(
n

m

)
PSm ≤

(
n

m

)
PSm,1 · PSm,2 ≤

(
n

m

)
PSm,1

≤

(
en

mB(Kn − r + 1, r)

∫ m−1
n−r

0

tKn−r(1− t)r−1dt

)m

≤

(
e · n

m · m−1
n−r

B(Kn − r+ 1, r)(Kn − r + 1)

(
m− 1

n− r

)Kn−r
)m

≤

 e(1 + r)
(

log(n)−1
n−r

)Kn−r

B(Kn − r + 1, r)(Kn − r + 1)


m

:= (an)
m

For Kn > r, since B(Kn−r+1, r) and r are finite values, we

have lim
n→∞

an = 0 by virtue of lim
n→∞

(
log(n)−1

n−r

)Kn−r

= 0.
Using this, we can express the summation as:

P1 ≤
⌊log(n)⌋∑
m=1

(an)
m ≤

∞∑
m=1

(an)
m ≤ an

1− an
(14)

The geometric sum converges since limn→∞ an = 0, leading
to P1 converging to zero as n → ∞. Now, similarly consider
the second summation P2. Using (2), and (10), we have

Pm ≤
(
n

m

)
PSm,1

· PSm,2
≤
( en

2m
Im−1

n−r
(Kn − r + 1, r)

)m
≤
( en

2m
Im−1

n−r
(r, r)

)m
(15)

≤

(
en

2m

[
3

(
m− 1

n− r

)2

− 2

(
m− 1

n− r

)3
])m

:= (bn,m)m

where (15) is obtained from the fact that Im−1
n−r

(Kn −
r + 1, r) ≤ Im−1

n−r
(r, r) as a consequence of the property

(6). It can be seen that bn,m < 0.98 for all ⌈log(n)⌉ ≤
m ≤ ⌊0.3n⌋ when n → ∞, and defining bn =
lim supn→∞,⌈log(n)⌉≤m≤⌊0.3n⌋ bn,m

P2 =

⌊0.3n⌋∑
m=⌈log(n)⌉

(bn,m)m ≤
∞∑

m=⌈log(n)⌉

(bn)
m ≤ b

log(n)
n

1− bn

The geometric sum converges since bn < 1, leading to
P2 converging to zero for large n. Note that the selection of

⌊0.3n⌋ as the upper limit P2 is arbitrary, and this particular
value was chosen to have a finite ratio for m

n on the lower
limit of the third summation, and to satisfy bn < 1.

Lastly, consider the third summation P3. Using (3), and
(10); and assuming Kn ≥ 2r, we have

Pm ≤ (1 + o(1))

√
n

2πm(n−m)
·

((
n

n−m

) n
m−1

· n

2m
· Im−1

n−r
(Kn − r + 1, r)

)m
:= (1 + o(1))

√
n

2πm(n−m)
(cn,m)m (16)

Define dn,m := n
2m ·

(
n

n−m

) n
m−1

Im−1
n−r

(r, r). As a conse-
quence of property (6), when Kn ≥ 2r, n → ∞, ⌈0.3n⌉ ≤
m ≤ ⌊n/2⌋, and r is finite; we have that

Im−1
n−r

(Kn − r + 1, r) = Im−1
n−r

(r, r)

−
Kn−r+1∑
i=r+1

(
m−1
n−r

)i−1

·
(
1− m−1

n−r

)r
(i− 1) ·B(i− 1, r)

≤ Im−1
n−r

(r, r)−
Kn−r+1∑
i=r+1

(0.3)
i−1 · (0.5)r

(i− 1) ·B(i− 1, r)

≤ Im−1
n−r

(r, r)− (0.15)
r

r ·B(r, r)
:= Im−1

n−r
(r, r)− ϵ(r) (17)

Thus, it can be seen that cn,m = dn,m ·
Im−1

n−r
(Kn−r+1,r)

Im−1
n−r

(r,r) ≤

dn,m ·
Im−1

n−r
(r,r)−ϵ(r)

Im−1
n−r

(r,r) , and since ϵ(r) > 0 when r ≥ 2,Kn ≥

2r and ⌈0.3n⌉ ≤ m ≤ ⌊n/2⌋; we have that cn,m < dn,m.

dn,m ≤ n

2m
·
(

n

n−m

) n
m−1

·

[
3

(
m− 1

n− r

)2

−2
(
m− 1

n− r

)3
]

It can be seen that lim supn→∞,⌈0.3n⌉≤m≤⌊n/2⌋ dn,m = 1
since r is finite (This can easily be verified by writing dn,m
in terms of a single variable β = m

n , and finding its value
for all 0.3 ≤ β ≤ 0.5). Hence, we have cn,m < 1 for all
⌈0.3n⌉ ≤ m ≤ ⌊n/2⌋ when r ≥ 2, Kn ≥ 2r, n → ∞.

P3 ≤
⌊n

2 ⌋∑
m=⌈0.3n⌉

(1 + o(1))

√
n

2πm(n−m)
(cn,m)m (18)

the summation converges to zero when n → ∞ since
cn,m < 1 for all terms of the summation, leading to P3

converging to zero as n gets large. Since P1, P2, and P3 all
converge to zero in large n, PZ also converges to zero as n
gets large. This concludes the proof of Theorem 3.1.

V. CONCLUSIONS

In this work, we establish that for large n, r⋆(K) ≥
⌊K/2⌋, in other words, K ≥ 2r ensures, with high proba-
bility, the r-robustness of the random K-out graph H(n;K).
We use computer simulations to verify our result. Using our
result, we compare the mean node degree of a random K-
out graph with the mean node degree of an Erdős-Rényi



graph and a Barabási-Albert graph at the threshold value
required to ensure r-robustness whp, and determine that
random K-out graphs attain r-robustness at a significantly
lower mean node degree value compared to Erdős-Rényi
graphs, and within a factor of 2 compared to Barabási-Albert
graphs. Hence, our result shows that the random K-out graph
model is a viable option in a wide range of applications that
require r-robustness with as few edges as possible such as
robust control of multi-agent systems, and in communication
systems such as robust and differentially-private federated
learning, and wireless sensor networks.
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