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Abstract—We are living amidst a pandemic caused by a
ravaging coronavirus and an accompanying pandemic of mis-
information that has strained our economy and socio-political
institutions. A key scientific goal is to examine mechanisms that
lead to the widespread propagation of contagions, e.g., misinfor-
mation and pathogens, and identify risk factors that can trigger
widespread outbreaks. A common phenomenon underlying the
spread of disease and misinformation epidemics is the evolution
of the contagion as it propagates, leading to the emergence of
different strains, e.g., through genetic mutations in pathogens
and alterations in the information content. Recent studies have
revealed that models that do not account for heterogeneity
in transmission risks associated with different strains of the
circulating contagion can lead to inaccurate predictions. However,
existing results on multi-strain spreading assume that the network
has a vanishingly small clustering coefficient, whereas, clustering
is widely known to be a fundamental property of real-world social
networks.

In this work, we investigate spreading processes that entail
evolutionary adaptations on random graphs with tunable clus-
tering and arbitrary degree distributions. We derive a math-
ematical framework that predicts the epidemic threshold and
the probability of emergence as functions of the characteris-
tics of the spreading object, the evolutionary pathways of the
pathogen/misinformation, and the structure of the underlying
network as given by the joint degree distribution of single-edges
and triangles. To the best of our knowledge, our work is the first
to jointly characterize the impact of clustering and evolution
on the emergence of epidemic outbreaks. We supplement our
theoretical finding with numerical simulations and case studies,
shedding light on how clustering can offer pathways for mutation,
thereby altering the course of the epidemic.

Index Terms—Spreading Processes, Clustering, Evolution,
Agent-based models, Social Networks, Epidemics,

I. INTRODUCTION

A. Background and Related Work

The recent outbreak of COVID-19 triggered by the novel
coronavirus SARS-CoV-2 led to a widespread strain on public
health and the economy. The highly transmissible and rapidly
evolving [1] nature of the SARS-CoV-2 coronavirus and the
absence of pharmacological interventions in the early stages of
the outbreak led to lock-downs and social distancing measures
to combat the spread. The widespread use of social media
platforms to trigger misinformation pertaining to COVID-19
further impeded efforts to mitigate its spread [2]. Spreading
processes have emerged as a key analytical and computational

Fig. 1: The contact network comprises a clustered network where
the number of single-edges and triangles attached to each node is
separately specified through the joint degree distribution. We consider
the propagation of two strains of a contagion indicated in blue and red.
The spreading proceeds as follows: An arbitrarily chosen seed node
acquires strain-1. The seed node independently infects its susceptible
neighbors with a probability T1. After infection, the contagion mutates
to strain-2 within the hosts with probability µ12. The process continues
recursively and terminates when no further infections are possible.

tool for understanding the mechanisms underlying the spread
of contagions in different contexts, e.g., the spread of infec-
tious diseases and misinformation.

Akin to different strains of a pathogen arising through
evolutionary adaptations or mutations, different versions of
the information are created as the content is altered on social
media platforms [3], [4]. The resulting variants/strains of the
information may have varying propensities to be circulated
in the social network. A key scientific goal across the above
spreading phenomena is to examine the underlying mecha-
nisms that lead to the widespread propagation of contagions,
e.g., misinformation and pathogens, and identify risk factors
that can trigger widespread outbreaks. From the standpoint
of spreading processes, this necessitates the development of
a rich class of agent-based models that can simultaneously
account for realistic patterns of interaction in the population
and evolution in the contagion.

Most network-based epidemiological models do not con-
sider the role of evolutionary adaptations in the spread of
infectious diseases [5]–[18]. However, as discussed above, in
the context of the spread of infections (resp., misinformation),
different strains of the contagion emerge as it propagates in the
network due to mutations in the pathogen (resp., alteration in
the information content). Therefore, it is essential to account
for differing transmission risks associated with each vari-



ant/strain of the contagion. A growing body of work [4], [19]–
[21] uses multi-strain models to analyze the spread of mutating
contagions. Moreover, recent studies [4], [20] have highlighted
that models which do not consider evolutionary adaptations
can lead to incorrect predictions about the spreading dynamics
of mutating contagions on contact networks.

A major challenge with existing network-based multi-strain
models [4], [19], [20] is that they admit a vanishingly small
clustering coefficient that tends to zero in the limit of large
network size. Hence, these models cannot accurately capture
some important aspects of real-world social networks, most
notably the property of high clustering [16], which has a sig-
nificant impact on the behavior of various spreading processes
[22], [23]. To better model real-world social networks that are
typically clustered, we employ a model of random networks
with tuneable clustering and arbitrary degree distributions
introduced by Miller [14] and Newman [15]. We present
a summary of key references in Table I. To the best of
our knowledge, our work is the first to analyze multi-strain
spreading on networks with tuneable clustering. The proposed
framework (Section II) enables joint evaluation of the impact
of evolutionary adaptations in the contagion e.g., pathogens
and misinformation, and clustering in the contact network for
arbitrary degree distributions and mutation patterns.

B. Main Contributions

With the aim of understanding the mechanisms underlying
epidemics caused by contagions that get altered as they prop-
agate, we derive key epidemiological quantities for the multi-
strain model [19] on random graphs with tuneable clustering
[14], [15]. Our main contributions are summarized below.
i) On the theoretical side, we derive the probability of the
emergence, i.e., the probability that a spreading process initi-
ated by an infective seed node, selected uniformly at random,
leads to an unbounded chain of infections, thus infecting a
strictly positive fraction of individuals in the limit of large
network size.
ii) Next, we derive the critical epidemic threshold, thereby
defining the boundary of the region in the parameter space
inside which only a finite chain of transmissions are observed
with high probability and outside which epidemics occur with
a positive probability.
iii) We provide extensive simulations validating our theoretical
results for practical settings as well as different mutation and
clustering patterns. For doubly Poisson contact networks, we
observe that clustering increases the threshold of epidemics
but reduces the probability of emergence around the phase
transition point. Moreover, through an analytical case study
for one-step irreversible mutation patterns, we observe that
clustering can provide additional pathways for mutations,
thereby altering the course of the epidemic.
iv) On the practical side, our results characterizing the proba-
bility of emergence and epidemic threshold pave the way for
assessing the risks associated with the emergence of epidemic
and information outbreaks. Our results highlight that we need

to evaluate the risks of the emergence of new strains in light of
policy measures that alter the structure of the contact network.

Single-strain/
Multi-strain1

Clustered/
Tree-like

Single-layer/
Multi-layer2 Related Work

single-strain tree-like single-layer [5]–[7], [11]
single-strain tree-like multi-layer [8], [12], [13]
single-strain clustered single-layer [14]–[16]
single-strain clustered multi-layer [17], [18]
multi-strain tree-like single-layer [4], [19]
multi-strain tree-like multi-layer [20]

TABLE I: Overview of related works on network-based epidemiolog-
ical models. Existing results for multi-strain spreading only focus on
networks with vanishingly small clustering coefficients, while we ac-
count for multi-strain spreading in networks with tuneable clustering.

C. Organization

We describe the clustered network and the multi-strain
transmission model in Section II. In Section III, we provide
our main theoretical and experimental results characterizing
the emergence of epidemics. We summarize our findings and
future directions in Section V. A brief outline of the proofs is
provided in Section IV, with further details provided in [25].

II. PROBLEM SETUP

A. Network Model

We consider a generalization [14], [15] to the standard
configuration model [7] that generates random graphs with
arbitrary degree distribution and tuneable clustering. Note that
we could quantify the level of clustering associated with a
network in different ways, but here we focus on the notion of
global clustering coefficient defined as

Cglobal =
3× number of triangles in the network

number of connected triples

where a connected triple means a single vertex connected by
edges to two others. The algorithm used to generate random
graphs with clustering works as follows. We first specify the
probability that an arbitrary node has s single-edges and is part
of t triangles through the joint degree distribution {qs,t}∞s,t=0.
Note that if a node has s single-edges and is part of t triangles,
then its degree is s + 2t since each triangle adds two edges
connecting the node to the other end nodes of the triangle.
We can view s as the number of single stubs and t as the
number of corners of triangles. In order to create the network,
we choose pairs of single stubs uniformly at random and join
them to make a complete edge between two nodes, and we
choose trios of corners of triangles at random and join them
to form a triangle. The total degree distribution in the network

1Note that we focus on the spread of contagions where a single infectious
contact can lead to infection or awareness of a piece of information, which
is in contrast to models such as Linear Threshold Models [24] for complex
contagions such as influence propagation.

2The single-layer model typically refers to a single network layer generated
using the configuration model. In contrast, the multi-layer model [8], [20]
is typically constructed by taking the disjoint union (q) of network layers
generated independently according to the configuration model.



is obtained through the joint distribution of single-edges and
triangles {qs,t}∞s,t=0 as follows,

pk =
∑
s,t

qs,tδk,s+2t

where pk denotes the probability that an arbitrary node is of
degree k and δij is the Kronecker delta function. In contrast
to the standard configuration model, where Cglobal approaches
zero in the limit of large network size, the quantity Cglobal

is positive for networks generated according to the above
algorithm implying the existence of a non-trivial clustering
in the network. We note that the network can admit cycles
comprising single-edge and triangle-edges, but they occur with
a vanishingly small probability in the limit of large network
size [7].

B. Transmission Model

For modeling the spread of the contagion, we adopt the
multi-strain spreading model [19] where each strain or variant
of the contagion is associated with varying risks of trans-
mission. For i = 1, 2, · · · ,m, we let Ti denote the trans-
missibility of strain-i, i.e., the probability that an infectious
node carrying strain-i infects its neighbor. We account for
evolutionary adaptations or mutations in the contagion by
specifying the probability µij that strain-i mutates to strain-
j within a host, where i, j = 1, 2, · · · ,m and

∑
j µij = 1.

The epidemiological and evolutionary processes are assumed
to occur on a similar timescale, and each new infection
offers an opportunity for mutation [19]. We focus on the
case where m = 2, i.e., there are two strains propagating
in the population, yet extending our theory to the general
case of m strains is straightforward. The transmissibility and
mutation probabilities for different strains are encoded through
the transmission and mutation matrices, respectively denoted
as TTT and µµµ below.

TTT =

[
T1 0
0 T2

]
, µµµ =

[
µ11 µ12

µ21 µ22

]
.

We consider a multi-type branching process that starts by
selecting a node uniformly at random and infecting it with
a particular strain, then exploring all the neighbors that are
reached and infected due to this node (Figure 1). At each
stage of the spreading process, a node carrying strain-i infects
its neighbors independently with probability Ti. We assume
that co-infection with multiple strains is not possible and
subsequent to each transmission event, the contagion mutates
to strain j with probability µi,j , where i, j = 1, 2, · · · ,m
within the host. The process continues recursively until no
further infections are possible. Further details regarding the
multi-strain spreading setup are presented in Section III-D.

C. Metrics Studied

We characterize an outbreak as an epidemic if the introduc-
tion of the contagion to a host population causes an outbreak
infecting a positive fraction of individuals. In contrast, we
characterize outbreaks as being self-limited when the spreading

process dies out after a finite number of transmission events.
We study the following metrics [7], which are used in quantify-
ing and assessing risks during the early stages of an outbreak.
i) The probability of emergence starting from strain-i is the
probability that the spreading process initiated by a seed node
chosen uniformly at random, carrying strain-i infects a positive
fraction of the population in the limit of large network size,
i.e., triggers an outbreak of size Ω(n).
ii) The epidemic threshold defines a boundary of the region
inside which the outbreak always dies out after infecting only a
finite number of individuals, while outside which an epidemic
outbreak occurs with a positive probability.

III. RESULTS AND DISCUSSION

In this section, we present our main results characterizing
the probability of emergence and epidemic threshold.

A. Preliminaries

The analysis of the probability of emergence relies on
recursive equations linking the number of nodes infected by
the seed node to the number of nodes consequently infected
by later-generation infectives. To enable such a recursive
analysis, we first present preliminary facts regarding the pos-
sible configurations based on the type of strain acquired by
endpoints of a triangle emanating from an infectious parent
node strain-i. The situation becomes particularly challenging
as compared to single-strain models [14], [15] since we
need to jointly consider the status of the two nodes at the
endpoints of a triangle. A graphical illustration of the resulting
configurations for the case when the triangle emanates from
a parent node carrying the type-1 strain (indicated in blue) is
given in Figure 2. We present the corresponding probability
of each configuration (pij) in Table II, with j = 1, 2, · · · , 6
and where i = 1, 2 corresponds to the type of strain carried
by the parent node. We illustrate how the probabilities are

p12

p15p14

p11 p13

p16
Fig. 2: Different possible configurations for a triangle emanating
from a parent node carrying strain-1. Nodes that acquire strain-1
(resp., strain-2) after mutation are indicated in blue (resp., red). The
configurations are based on whether the node at either endpoint of the
triangle gets infected and the resulting strain it acquires after mutation.

derived for a sample configuration p13 in Figure 2 and direct
the reader to [25] for derivations of the remaining scenarios
in Table II. In Figure 2, the configuration corresponding to
p13 occurs when i) the parent node infects both endpoints of
the triangle, and they acquire strain-1, or ii) the parent node
infects one of the two endpoints (say the left node) but fails to
infect the other endpoint (say the right node) which later gets
infected (due to the left node). Hence, the probability for this



pi1 (1− Ti)2
pi2 2Tiµi1 (1− Ti) (1− T1)
pi3 (Tiµi1)

2 + 2Tiµi1 (1− Ti)T1µ11
pi4 2Tiµi2 (1− Ti) (1− T2)
pi5 (Tiµi2)

2 + 2Tiµi2 (1− Ti)T2µ22
pi6 2

(
T 2
i µi1µi2 + Tiµi1 (1− Ti)T1µ12 + Tiµi2 (1− Ti)T2µ21

)
TABLE II: The probability pij of occurrence for each of the scenarios
in Figure 2, where i = 1, 2 corresponds to the strain carried by
the parent and j = 1, . . . , 6 corresponds to the configuration at the
endpoints of the triangle emanating at the parent node.

configuration is (T1µ11)
2

+2T1µ11 (1− T1)T1µ11, where the
factor 2 is due to symmetry. Now that we have established the
framework for presenting our main results, we present our first
analytical result characterizing the probability of emergence.

B. Probability of Emergence

Theorem 3.1 (Probability of Emergence): For multi-strain
spreading with parameters (TTT ,µµµ), initiated by a randomly se-
lected seed node carrying strain-i, on a clustered network with
a given joint degree distribution of single-edges and triangles
(qs,t), for i = 1, 2, we have

P[Emergence] = 1−
∑
s,t

qs,t(hi(1))s(gi(1))t, (1)

where hi(1), gi(1) are the smallest non-negative roots of the
fixed point equations:

hi(1) = 1− Ti + Ti

(
µi1
∑
s,t

sqs,t
〈s〉

h1(1)s−1g1(1)t

+ µi2
∑
s,t

sqs,t
〈s〉

h2(1)s−1g2(1)t
)
, (2)

gi(1) = pi1 + pi2

(∑
s,t

tqs,t
〈t〉

h1(1)sg1(1)t−1

)

+ pi3

(∑
s,t

tqs,t
〈t〉

h1(1)sg1(1)t−1

)2

+ pi4

(∑
s,t

tqs,t
〈t〉

h2(1)sg2(1)t−1

)

+ pi5

(∑
s,t

tqs,t
〈t〉

h2(1)sg2(1)t−1

)2

+ pi6

(∑
s,t

tqs,t
〈t〉

h1(1)sg1(1)t−1

)

·

(∑
s,t

tqs,t
〈t〉

h2(1)sg2(1)t−1

)
, i = 1, 2. (3)

We provide an outline for the proof of Theorem 3.1 in
Section IV-A and direct the reader to [25] for more details.
We present numerical simulations in Section III-D.

C. Epidemic Threshold

Our following result characterizes the epidemic threshold.

Fig. 3: The probability of emergence on contact networks with doubly
Poisson distribution (5), with the distribution for single-edges and
triangles, respectively parameterized by λs and λt. The theoretical
probability and transition points are derived from Theorems 3.1 and
3.2, respectively. The experimental probability of emergence is ob-
tained by averaging over 1.5 × 104 experiments. We also plot the
conditional mean for the outbreak size (S), given that it occurs, as
observed in the experiments. The network size n is 2 × 105 and the
number of independent experiments for data point is 1.5 × 104 for
λs = λt = λ and we vary λ in the interval (0, 10).

Theorem 3.2 (Epidemic Threshold): For multi-strain spread-
ing with parameters (TTT ,µµµ) on a clustered network, we define

JJJ =

[
ΠΠΠ 000
000 ∆∆∆

][ 〈s2〉−〈s〉
〈s〉 III 〈st〉

〈s〉 III
〈st〉
〈t〉 III 〈t2〉−〈t〉

〈t〉 III

]
. (4)

Let σ(J) denote the spectral radius of J . The epidemic thresh-
old is given by σ(J) = 1, where

ΠΠΠ =

[
T1µ11 T1µ12

T2µ21 T2µ22

]
,

∆∆∆ =

[
p12 + 2p13 + p16 p14 + 2p15 + p16
p22 + 2p23 + p26 p24 + 2p25 + p26

]
.

Observe that for i, j = 1, 2, the matrix entry ΠΠΠij corresponds
to the probability that a parent node carrying strain-i infects
its neighbor via a single-edge with strain-j after mutation.
Similarly, ∆∆∆ij corresponds to the mean number of nodes that
acquire strain-j at the endpoints of a triangle emanating from
a parent node carrying strain-i. We note that the epidemic
threshold as presented in Theorem 3.2 is a strict generalization
of the multi-strain model without clustering, the threshold for
which can be inferred by substituting ∆∆∆ = 0 in (4). In Section
III-E we further decompose the epidemic threshold to delineate
the impact of clustering through a case-study with irreversible
mutations. A brief outline for proving Theorem 3.2 is provided
in Section IV-B; the full derivation is available in [25].

D. Simulations

Next, we describe the simulation setup and results. Unless
stated otherwise, the spreading process is initiated by selecting
a seed node uniformly at random and infecting it with strain-
1. The seed node infects each neighbor independently with
probability T1, following which, each newly infected neighbor



mutates independently to strain-2 with probability µ12. In
the kth round, a node that was infected by a node carrying
strain-i first undergoes mutation with probability given through
the mutation matrix before attempting to infect its neighbors
during the k+1th round. Each node is assumed to be infectious
only for one round. As the infections continue to grow,
both strains might co-exist in the population. Moreover, the
presence of cycles in the contact network can simultaneously
expose a susceptible node to multiple infections. We assume
that co-infection is not possible, and resolve the exposure to
multiple infections as follows. If a node is exposed to x infec-
tions of strain-1 and y infections of strain-2 simultaneously,
the node becomes infected with strain-1 (respectively, strain-
2) with probability x/(x+y) (respectively, y/(x+y)) for any
non-negative constants x and y. The process terminates when
no further infections are possible.

While our results hold for arbitrary distributions for the
triangles and single-edge, as a concrete illustration we consider
the setting where the joint degree sequence qs,t is given by
the doubly Poisson distribution, i.e., the number of single-
edges and triangles are independent, and they follow a Poisson
distribution. Namely, we set

qs,t = e−λs
(λs)

s

s!
· e−λt

(λt)
t

t!
, s, t = 1, . . . (5)

with λs and λt denoting the mean number of single-edges and
triangles, respectively. For the experiments in Figures 3 and
4, we set T1 = 0.2, T2 = 0.5, µ11 = µ22 = 0.75.

In Figure 3, we consider the cases when λs = λt = λ with
λ varying from 1 to 10. For each value of λ, we obtain the
empirical probability of emergence. In particular, we set the
network size n to 2× 105 and perform 1.5× 104 independent
experiments for each data point. The empirical probability
of emergence is given by the fraction of experiments for
which an outbreak emerges. In addition, we compute the
critical value of λ for which (4) has a spectral radius of
one, i.e., σ(JJJ) = 1, to mark the phase transition point.
We also plot the expected epidemic size S obtained by the
simulations. We observe that both the probability of emergence
and the epidemic size transition from zero to a positive value
around the epidemic threshold. Our theoretical results on the
probability of emergence and phase transition point are in
agreement with simulation results.

Next, to evaluate the impact of clustering, we consider a
joint degree distribution that allows us to control the level
of clustering, while keeping the mean total degree fixed. In
particular, for each node, we set the number of incident single-
edges as 2 × Poisson

(
4−c
2 λ

)
and the number of triangles to

Poisson
(
c
2λ
)

where c ∈ [0, 4]. This ensures that as c varies,
both the mean and the variance of the degree distribution
remains constant, allowing us to focus only on the effect of
clustering. The parameter c controls the level of clustering in
the contact network. As c increases, the clustering coefficient
of the network also increases. Observe that when c = 0,
there will be no triangles in the network, and the clustering
coefficient will be close to zero. In contrast, when c = 4,

Fig. 4: The impact of clustering: For each node, the number of
incident single-edges is 2×Poi

(
4−c
2
λ
)

and the number of triangles is
Poi

(
c
2
λ
)
. This ensures varying c keeps the mean degree and excess

degree distribution fixed while changing the clustering coefficient.
The network size n is 2 × 105, and the number of independent
experiments for each data point is 104. Our experimental results show
that high clustering increases the threshold of epidemics and reduces
the probability of emergence around the transition point.

there will be no single-edges in the network, and the clustering
coefficient will be close to one. As c increases, the clustering
coefficient of the network also increases.

In Figure 4, we consider three different values for the
parameter c, namely, c = 0.01, c = 2.00, and c = 3.99,
respectively to illustrate the impact of the clustering coefficient
on the probability of emergence and the epidemic threshold.
Our results reveal that high clustering increases the threshold
of epidemics and reduces the probability of emergence around
the transition point. These observations are consistent with the
single-strain spreading [17] on clustered networks.

E. Joint Impact of Clustering and Evolution

Next, we discuss the interplay of clustering and evolution
on the probability of emergence of epidemic outbreaks. We
consider the case where the fitness landscape consists of two
strains. The process starts when the population is introduced
to the first strain (strain-1) which is moderately transmissible
and initially dominant in the population. In contrast, the other
strain (strain-2) is highly transmissible and initially absent in
the population but has the risk of emerging through mutations
in strain-1. For µ22 = 1 and µ12 ∈ [0, 1], we have:

µµµ =

[
1− µ12 µ12

0 1

]
; TTT =

[
T1 0
0 T2

]
, T1 < T2. (6)

The above mutation and transmission parameters (6) corre-
spond to the one-step irreversible mutation scheme, which is
used widely [19], [21] to model scenarios where a simple
change is required for the contagion to evolve to a highly
transmissible variant. We first isolate the impact of clustering
in altering the epidemic threshold in the following Lemma.

Lemma 3.3: For multi-strain spreading with one-step ir-
reversible mutations (6) on clustered networks with doubly
Poisson distribution (5), the epidemic threshold is given as:

σ(JJJ) = λsT2 ×
(

1 +

(
2λt
λs

(1− T 2
2 + T2)

))
. (7)



Fig. 5: We consider a contact network following a doubly Poisson
distribution (5) and with one-step irreversible mutations (6). we plot
the probability of emergence given by Theorem 3.1 as a function of
(λt, µ12). Here, λt = 0 and µ12 = 0 respectively correspond to
the absence of clustering and mutations. We set T1 = 0.2, T2 =
0.7, µ22 = 1, λs = 1. We observe that the joint impact of clustering
and evolution (λt > 0, µ12 > 0) can lead to a significant increase in
the probability of emergence of an epidemic as compared to the case
when either of these phenomena act in isolation (λt = 0 or µ12 = 0).

Through (7), we can see that compared to a network
with only single-edges (distributed as Poisson(λs)), the
epidemic threshold increases as a multiplicative factor of(

1 +
(

2λt

λs
(1− T 2

2 + T2)
))

. Moreover, when λt = 0, we can
recover the epidemic threshold of σ(JJJ) = λsT2 correspond-
ing to one-step irreversible mutations on a network with a
vanishingly small clustering coefficient [4], [19]. A derivation
of Lemma 3.3 is presented in [25].

In what follows, we note that the addition of clustering
in the network structure can offer additional pathways for
mutations which can, in turn, alter the course of the pandemic.
We demonstrate this phenomenon for the case when the
distribution of the single-edges and triangles is doubly Poisson
with parameters λs and λt respectively, as in (5). We vary λt
and µ12 in the interval [0, 1] to parameterize the transition
from a single-strain to a multi-strain spreading and from an
unclustered to a clustered network. Note that when λt = 0, the
network only comprises of single-edges and has a vanishingly
small clustering coefficient [7]. On the other hand, since the
spreading process is initiated with strain-1, setting µ12 = 0
corresponds to a single-strain setting.

In Figure 5, we invoke Theorem 3.1 and plot the proba-
bility of emergence as a function of (λt, µ12), while setting
T1 = 0.2, T2 = 0.7, µ22 = 1, and λs = 1. We observe that the
probability of emergence remains low when either µ12 = 0
or λt = 0, i.e., the likelihood of seeing an epidemic remains
small when clustering or mutations act in isolation. In other
words, even when mutations occur with a positive probability,
the absence of triangles (λt = 0) renders a negligible risk of
an epidemic outbreak. Similarly, in the absence of mutations
(µ12 = 0), clustering alone does not lead to an increased
risk of an epidemic. However, for µ12 = λt = 1, i.e.,
when mutations occur with a high probability and clustering
is significant, we observe the probability of emergence rises

sharply (Figure 5). This observation further highlights the
need for evaluating risks of emergence of highly contagious
mutations in the light of the structure of the contact network.

IV. PROOF SKETCH

A. Outline for Proof of Theorem 3.1

To see intuitively why Theorem 3.1 holds, we note that
hi(x) (respectively, gi(x)) corresponds to the probability gen-
erating function (PGF) of the number of finite nodes reached
and infected by following a randomly selected single-edge
(respectively, triangle) emanating from a node carrying strain-
i. This gives a way to define the PGF of the number of finite
nodes reached and infected by selecting a node uniformly at
random and making it type-i, denoted by Qi(x). Observe that

Qi(x) = x
∑
s,t

qs,thi(x)sgi(t)
t. (8)

The validity of (8) can be seen as follows– the factor x
accounts for the node which is selected randomly and given
the infection as the seed of the process. Note that this node
has a joint degree (s, t) with probability qs,t. Since this node
carries strain-i, the number of nodes reached and infected by
each of its s single-edges (respectively, each of the t triangles)
has a generating function hi(x) (respectively, gi(x)). From
the powers property of PGFs [26], the total number of nodes
reached and infected in this process when the initial node
carries strain-i and has joint degree (s, t) has a generating
function hi(x)sgi(x)t. As we average over all possible joint
degrees (s, t), we obtain (8). Note that when Q(i) = 1,
the number of infected nodes is finite from the conservation
of probability. Whereas when Q(i) < 1, the corresponding
probability 1 − Q(i) gives the probability of infecting an
infinite number of nodes leading to an epidemic outbreak.

Next, we observe that for a node reached by following
a single-edge (resp., triangle) selected uniformly at random,
the joint degree distribution is proportional to the number of
single-edges (resp., triangle) assigned to that node and given
by sqs,t/〈s〉 (resp., tqs,t/〈t〉) where 〈s〉 =

∑
s,t sqs,t (resp.,

〈t〉 =
∑
s,t tqs,t) ensures normalization. We first state and

explain how to derive h1(x), the PGF of the number of finite
nodes reached and infected by following a randomly selected
single-edge emanating from a node carrying strain-1;

h1(x) = 1− T1 + T1x
(
µ11

∑
s,t

sqs,t
〈s〉

h1(x)s−1g1(x)t

+ µ12

∑
s,t

sqs,t
〈s〉

h2(x)s−1g2(x)t
)
. (9)

We note that if no transmission occurs along the randomly se-
lected single-edge emanating from a node carrying strain-1, we
get the factor of (1−T1)x0 in (9). Whereas, if transmission oc-
curs along the selected single-edge, the number of nodes even-
tually infected will be one plus all the nodes reached and in-
fected due to node at the endpoint of the selected edge, which
contributes a factor T1x

(
µ11

∑
s,t

sqs,t
〈s〉 h1(x)s−1g1(x)t +

µ12

∑
s,t

sqs,t
〈s〉 h2(x)s−1g2(x)t

)
. This follows from noting that



the node reached by following the randomly selected single-
edge has already utilized one of its single-edges to connect
to its parent, and it has s − 1 remaining single-edges and t
triangles. Moreover, this node acquires strain-1 (resp., strain-
2) with probability µ11 (resp., µ12). When this node carries
strain-1 (resp., strain-2), the powers property of PGFs readily
implies that the number of nodes infected due to this node has
a generating function h1(x)s−1g1(x)t (resp., h2(x)s−1g2(x)t).
Averaging over all possible joint degrees and node types yields
(9). Due to space constraints, we direct the reader to [25] for
the derivation for the PGFs h1(x), h2(x), g1(x), and g2(x).

B. Outline for Proof of Theorem 3.2

The proof of Theorem 3.2 is linked to the stability of the
fixed point solutions of (2, 3). We note that for i = 1, 2, the
set of equations (2, 3) admits a trivial fixed point h1(1) =
h2(1) = g1(1) = g2(1) = 1. Substituting back into (8)
gives 1 − Qi(1) = 0, i.e., all infected components are of
finite size, and no outbreak emerges. To check the stability
of this trivial solution, we linearize the set of equations (2, 3)
around h1(1) = h2(1) = g1(1) = g2(1) = 1 and compute the
corresponding Jacobian matrix JJJ = [Jij ]. If σ(JJJ) ≤ 1, then
the trivial solution is stable, leading to a zero probability of
emergence. However, if σ(JJJ) > 1, then there exists another
stable solution with h1(1), h2(1), g1(1), g2(1) < 1, leading
to a positive probability of emergence, i.e., 1 − Qi(1) > 0.
Therefore, σ(JJJ) = 1 emerges as the epidemic threshold.

V. CONCLUSIONS

We analyzed multi-strain spreading on networks with tune-
able clustering and arbitrary degree distributions. We derived
the probability of emergence of an epidemic outbreak and
the critical epidemic threshold beyond which epidemics occur
with a positive probability. Our framework allows for evaluat-
ing the emergence of highly transmissible variants in relation
to the extent of clustering in the network. Future directions
include leveraging the multi-strain model on social network
data to gain insights into the efficacy of countermeasures to
combat the unwarranted spread of misinformation.
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