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Abstract—Spread of influence is one of the most widely studied
propagation processes in the literature on complex networks.
Examples include the rise of collective action to join a riot and
diffusion of beliefs, norms, and cultural fads, to name a few.
Most existing works on modeling influence propagation consider
a single content (e.g., an opinion, decision, product, political
view, etc.) spreading over a network independent from everything
else. However, most real-life examples involve multiple correlated
contents spreading simultaneously and exhibiting positive (e.g.,
opinions on same-sex marriage and gun control) or negative (e.g.,
opinions on universal health care and tax-relief for the “rich”)
correlation. To accommodate these cases, this paper proposes
the vector threshold model, as an extension of the widely used
Watts threshold model for complex contagions. Here, the state
of a node is represented by a binary vector representing their
opinion on a number of content items. Nodes switch their states
based on the influence they receive from their neighbors in the
network. The influence is represented by a vector containing
the proportion of neighbors who support each content; both
positively and negatively correlated contents can be captured
in this formulation by using different rules for switching node
states. Our main result is concerned with the expected size of
global cascades, i.e., cases where a randomly chosen node can
initiate a propagation that eventually reaches a positive fraction
of the whole population. We also derive conditions on network
structure for global cascades to be possible. Analytic results are
supported by a numerical study.

Index Terms—Influence Propagation; Correlated Opinion
Spread; Social Networks.

I. INTRODUCTION

In recent decades, mathematical modeling of propagation
processes over networks have been studied in a wide range of
contexts including cascading failures [1], [2], epidemics and
social contagions [3]–[7], systemic risk in banking networks
[8], to name a few. Contagion processes are typically modeled
and studied under two different categories referred to as simple
and complex contagions, respectively [9]. Simple contagion
models are used for cases where a single source of exposure
is enough for an individual to get infected and to start
spreading the content to their contacts; e.g., news articles,
disease spreading, etc. On the other hand, complex contagion
models are used in cases where social reinforcement plays a
key role in the spreading process. In other words, complex
contagion models are used when multiple sources of exposure
to a content (e.g., an opinion, a product, a political view, etc.)
are needed for individuals to change their action or state. For
example, an individual may not adopt a new behavior (or,

change their opinion) after seeing only one friend doing so,
but the situation might change if the ratio of their contacts
doing it exceeds a certain level.

This paper focuses on complex contagions for which several
models have been proposed in the literature. Perhaps the
most widely known among them is the linear threshold model
proposed by Watts in [10]. In this model, each node belongs
to one of two states, inactive or active, and has a threshold
τ in (0, 1] which is drawn from a distribution P (τ). This
threshold indicates the required fraction of active neighbors for
an inactive node to turn active. Starting from a state where all
nodes are initially inactive, a small number of nodes are chosen
uniformly at random and made active. Then, an inactive node
with degree d of which m are active will get activated with
probability

F [m, d] , P
[m
d
> τ

]
, (1)

where F [m, d] is referred to as the response function. This
model allows studying the propagation of binary influence
(where individuals are either active or inactive) over monoplex
networks (where there exists only one link type). Under these
assumptions, this model overly simplifies the dynamics for link
relationships and possible states of each node. With this mo-
tivation several works have proposed and studied models that
involve a richer set of node states and link types. For instance,
Yağan and Gligor [11] extended this vanilla threshold model
to multiplex networks in order to incorporate the fact that there
may exist more than one type of edges in the network; e.g.,
friendship, colleagueship, family, etc. With this observation,
they proposed a content-dependent multiplex threshold model.
In this model, the network consists of r different link types
with each link type having certain influence weight that varies
by the content that is being spread. For instance, their models
make it possible to capture the fact that video games might be
more likely to spread among high-school friends rather than
parents, while the opposite might be true for political ideas.
From a different perspective, Melnik et al. [12] extended the
vanilla linear threshold model to multi-stage (i.e., non-binary)
influence propagation. In their model, nodes can belong to a
richer a set of states, i.e., inactive, active, hyper-active, etc.

The common aspect of [11] of [12] is the assumption that
there is only one content being spread in network. Alterna-
tively, Borodin et al. [13] proposed a threshold model for



competitive influence. If there are two contents, A and B,
spreading over networks, then nodes satisfying the condition
of supporting A (resp. B) will turn to the state of supporting
A (resp. B). If nodes satisfy both of the conditions for
supporting A and B, then the nodes will randomly choose
a content to support. Although there are multiple contents in
the propagation process, there is limited correlation between
the contents arising from the specific constraint that nodes
can not support A and B simultaneously. Aside from this, the
spreading of one content has little impact on the spreading
of the other. Additionally, even though some researchers
studied the spread of correlated contents (e.g., competition,
cooperation, etc.), they focused on simple contagions rather
than complex contagions [14].

The discussion given above indicates that most works on
complex contagions studied the spreading of either a single
content (e.g., opinion, rumor, product, political view, etc.), or
multiple contents spreading simultaneously but with limited
correlation between each other. However, real-life influence
propagation processes can have multiple contents spreading
simultaneously with positive or negative correlation, and in-
dividuals might support more than one content at the same
time. For example, the spread of the purchase behaviors
of different products from the same company might exhibit
positive correlation; e.g., an individual who already purchased
an iPhone might be more easily influenced by their friends
to buy the Apple HomePod. In contrast, one’s opinions on
universal health care and proposed tax relief for “wealthy”
individuals would be expected to have negative correlation.

With this motivation, this work aims to initiate a study on
complex contagions where multiple contents spread simulta-
neously in a correlated manner. To this end, we propose an
extension of the Watts threshold model [10] allowing corre-
lated contents to spread at the same time, referred to as the
the vector threshold model; see Section II-B for description of
the model. Under this model, we derive analytic results for the
expected size of global cascades, i.e., cases where a randomly
chosen node can initiate a propagation that eventually reaches
a positive fraction of the whole population. We also derive
conditions on the contagion parameters under which global
cascades take place with positive probability. Our analytic
results are supported by a numerical study through which we
demonstrate how the correlations between spreading contents
affect the expected size of global cascades. In particular, we
find that when the mean degree is low, correlations have
limited impact on the size of global cascades. In contrast, we
show that different levels and types of correlations could result
in global cascades with significantly different size when the
mean degree is high.

The rest of the paper is organized as follows. In Section II,
we introduce the network model, the proposed vector threshold
model, and the problem of interests. In Section III, we give
the derivations of the expected size of global cascades and the
condition for the existence of global cascades. Then, in Section
IV, we use numerical experiments to support our analysis
and discuss the impact of correlations among contents on the

expected size of global cascades. In Section V, we conclude
our work and provide a brief discussion on future directions.

II. MODEL AND PROBLEM DEFINITION

A. The network model: The configuration model

The degree sequence or the degree distribution is one of the
most important parameters of networks. To be able to incor-
porate arbitrary degree distributions, we use the configuration
model to construct networks. The configuration model is a
widely used reference model for real-world networks, and is
also analytically tractable [15]–[17]. Let N = {1, 2, . . . , n}
denote the vertex set where n is the number of vertices.
For each node in N , its degree is assigned by a prescribed
degree distribution P (d) where d is the random variable for the
degree. After the assignment, each node has the same number
of half -edges as its degree. A half-edge accounts for an edge
one end of which is connected to the previously assigned
vertex while the other end of which is free to connect any other
half-edges. Then, we randomly choose two half-edges to form
an edge connecting two vertices until no half-edges are left.
This model requires that the sum of the degrees is even. With
the above process, the configuration model could generate
networks by selecting a graph uniformly at random among
all possible graphs that have the same degree distribution; see
[15], [16] for more details. In addition, self-loops or multi-
edges could be omitted in the limit of large network size [17],
which simplifies the analysis in Section III-A.

B. The vector threshold model: A threshold model with mul-
tiple correlated contents

As mentioned in Section I, there are many works that
model the influence propagation in networks. However, few of
them consider the simultaneous spread of multiple correlated
contents. Therefore, we introduce a general threshold model,
which is called the vector threshold model. Without loss of
generality, we assume that there are two correlated contents
or opinions which are denoted by Content-1 and Content-2,
respectively, and that nodes could have two choices for each of
the contents, support or not support. Then, with two contents
spreading in a network, there exist four possible states for
each node: 0) not supporting both of the contents; 1) only
supporting Content-1; 2) only supporting Content-2; and 3)
supporting both of the contents. For notational convenience,
we use state-i to indicate the i-th state where i = 0, 1, 2, 3,
and name state-0 as inactive while the other states as active.
In addition, once a node gets activated, it will not change its
state. Although we assume there are two correlated contents,
the arguments could be extended to an arbitrary number of
correlated contents.

In an influence propagation process, each inactive node
keeps receiving influence from its contacts. Since its contacts
could belong to different states, we can classify the influence
by the state of its neighbors into different categories, and
represent the received influence in a vector. In our model,
the influence from contacts is measured by the “perceived”
proportion [18], i.e., the fraction of contacts in specific states.



Then, there are two types of influence, one from supporting
Content-1 while the other from supporting Content-2. Because
state-0 neighbors do not exert any influence and state-3 neigh-
bors support both of the contents, the perceived proportion
from state-i is defined as

Proportioni =
# of neighbors in state-i and state-3

# of neighbors
,

i = 1 or 2. (2)

Therefore, each inactive node in the vector threshold model
could receive a vector of perceived proportions, v =
[Proportion1,Proportion2]. Based on the received vector of an
inactive node, we could determine which state the inactive
node will turn to by a response function (3), i.e., the probability
of changing from the inactive state to the other active states.
Under the vector threshold model, given an inactive node with
degree d of which m1, m2, and m3 neighbors for state-1, 2,
and 3, respectively, the probability it turns to state-i is given
by

Fi[m, d] , P [(Proportion1,Proportion2) ∈ Spacei] , (3)

where m = (m1,m2,m3), Proportioni accounts for the
perceived proportion of state-i neighbors (2), and Spacei
means the parameter space of being in state-i. The pa-
rameter space is formed by the perceived proportions, i.e.,
[Proportion1,Proportion2], and is illustrated in Figure 1. By
the flexibility of the design of the parameter space, this model
offers a general solution for different correlations among
contents.

In general, there are three widely recognized correlations
among contents: independent, positive, and negative correla-
tion. We could split the parameter space accordingly to achieve
these correlations. First, the independent correlation means
the spread of contents is independent from each other. For
example, the spread of newly released video games is usually
independent from the spread of new norms. This correlation
could be achieved by dividing the parameter space as Figure
1(a). In Figure 1(a), the threshold required by supporting
Content-2 (resp. Content-1) is not affected by the proportion of
state-1 contacts, i.e., Proportion1 (resp. Proportion2). Second,
the positive correlation could be interpreted as a spreading
content would help the spread of other contents. For instance,
the spread of opinions on same-sex marriage and gun con-
trol could be a positive correlation. If we support same-sex
marriage, we may more easily accept gun control. A positive
correlation between the spread of contents is illustrated in
Figure 1(b). In this figure, the more perceived proportion of
contacts with one content an individual receives, the lower
threshold it requires to turn to the other states. Third, the
negative correlation means the spread of one content would
impede the spread of other contents. For example, the spread
of opinions on universal healthcare and tax-relief for the “rich”
could be a negative correlation. Because the more we support
universal healthcare, the less we will support tax-relief for the
“rich”. This correlation is illustrated in Figure 1(c). As we
can observe from the figure, the more perceived proportion
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Fig. 1: An illustration of different splits on the parameter space for different
correlations.

of state-1 neighbors an individual has, the higher threshold it
requires to turn to state-2.

Moreover, we can have an even more complex split on the
parameter space to model a non-trivial correlation between
the spread of contents, like non-linear boundaries for splitting
the parameter space. In this work, we only focus on a
linear relationship between the perceived proportions and the
boundaries of the states.

C. Problem Definition

In this work, we consider an influence propagation process
under the proposed vector threshold model. In particular,
assume that all nodes are initially inactive, i.e., state-0, a
node is chosen uniformly at random and is set as state-3.
Then, other nodes start changing their states according to
(3) synchronously at times t = 0, 1, . . . , i.e., the influence
starts propagating over networks. Since the contagion process
is monotone (i.e., an active node can never switch back to
inactive or other states), it will eventually stop, i.e., a steady-
state will be reached.

For analyzing a spread of influence, there is a major metric
of interest. The metric is the expected size of global cascades;
see Definition II.2 for more details. In other words, for given
contents (e.g., opinions, rumors, products, etc.), we aim at
calculating the fraction of people eventually adopting these
contents, in the cases where a global spreading event is
possible. We can regard the expected size of global cascades
as a measure of the extent of the propagation process. With
this measure, we could answer or predict how widely an
influence would reach, and then determine if we need to take
further actions to control an influence. In addition, this metric
could help us derive the condition of the existence of global
cascades, which could help us control the propagation of an
influence.

Definition II.1 (Global Cascades). Global cascades mean a
randomly chosen node can initiate a propagation that even-
tually reaches a positive fraction of active nodes among the



whole population. In particular, we define a random variable
S for the fraction of active nodes as

S ,
# of active nodes at steady-state

n
,

where n is the number of nodes in the network. In this case,
a global cascade means S > 0 when n approaches infinity. In
our discussion, active nodes indicate nodes in state-1, state-2,
and state-3.

Definition II.2 (The Expected Size of Global Cascades).
Given global cascades are possible, the expected global cas-
cades size is defined as

lim
n→∞

E [S | S > 0] , (4)

where the random variable S is defined in Definition II.1 .

III. MAIN RESULTS

A. Analysis of the expected size of global cascades

In this section, we aim to derive the expected size of global
cascades, i.e., the final fraction of active nodes in a network;
see Definition II.2 for more details. If a global cascade exists,
we could obtain the final fraction of active nodes by calculating
the probability of that a randomly chosen node is active (i.e.,
in state-1, state-2, or state-3), which is expressed as (5).

lim
n→∞

E [S | S > 0] = P [a randomly chosen node is active]

=
∑
d

Pd

d∑
m1

d−m1∑
m2

d−m1−m2∑
m3

(
d

m1

)(
d−m1

m2

)
×(

d−m1 −m2

m3

)
qm1
1 qm2

2 qm3
3 (1− q1 − q2 − q3)d−m1−m2−m3

× {F1[m, d] + F2[m, d] + F3[m, d]} , (5)

where q1 (resp. q2 and q3) indicates the probability of that the
neighbors of a chosen node is in state-1 (resp. state-2 and state-
3), Pd is the probability of having degree d for a randomly
chosen node, and m1 (resp. m2 and m3) in m = [m1,m2,m3]
is the number of neighbors in state-1 (resp. m2 and m3). We
explain the validity of (5) as follows. First, for a randomly
chosen node, the probability of having d contacts is Pd. Given
the node with d contacts, by a combinatorial argument, the
probability of having m = (m1,m2,m3) neighbors is(

d

m1

)(
d−m1

m2

)(
d−m1 −m2

m3

)
× qm1

1 qm2
2 qm3

3 (1− q1 − q2 − q3)d−m1−m2−m3 . (6)

If a node has m = (m1,m2,m3) active neighbors among d
contacts, the probability of turning active is

F1[m, d] + F2[m, d] + F3[m, d], (7)

where Fi[m, d] is the response function (3) of turning to state-
i from state-0, i = 1, 2, 3. Therefore, (5) is obtained by first
iterating all possible m and then taking the expectation of the
multiplication of (6) by (7) with respect to d.

From the expression of (5), it is clear that we need the
help of q1, q2, and q3 to calculate the expected size of

global cascades. We could obtain q1, q2, and q3 by the
tree-approximation approach [19]. The tree-approximation ap-
proach was developed to get a mean-field solution to the Ising
model [20]. In this approach, we assume that networks have a
tree-structure. That is, each node has only one parent node and
several children nodes. Then, we label each layer of the tree
from the bottom to the top, 0, 1, . . . . For each node at layer `,
there is only one parent node at layer `+1 and several children
at layer `−1. The number of children follows the excess degree
distribution mentioned; see [16] for more details. In addition,
the states of nodes at layer ` will not update their states until
all nodes at layer i, i = 0, 1, . . . , ` − 1 finish updating. In
this case, parent nodes at ` + 1 are always inactive before
the updates of the states of nodes at layer `. With this tree-
assumption, we could derive the probability of being in each
state for the contacts of the initially activated nodes in the
network. First, we define qi,` as the probability that a randomly
chosen node at layer ` turns to state-i, i = 0, 1, 2, 3. Obviously,
the probability that the chosen node at layer ` is in state-0 is
1−q1,`−q2,`−q3,`. With these probabilities, we can recursively
express the probabilities of being in any states for nodes at
layer `+ 1.

In the following, we give a detailed derivation of q1,` (9),
since we can derive the other probabilities in the similar way.
We can see the validity of (9) as follows. For nodes at layer `,
the probability of having d contacts is dPd

〈d〉 , since we already
know that there is one parent at layer `+1; see excess degree
in [16]. Among these d contacts, there are d− 1 children and
1 parent node. With these d − 1 children, the probability of
having m = (m1,m2,m3) active neighbors is(

d− 1

m1

)(
d− 1−m1

m2

)(
d− 1−m1 −m2

m3

)
qm1

1,`−1q
m2

2,`−1

× qm3

3,`−1(1− q1,`−1 − q2,`−1 − q3,`−1)
d−1−m1−m2−m3 .

(8)

Again, with m = (m1,m2,m3) active neighbors in different
states, the probability of turning to state-1 for the node is
given by F1[m, d]. If we iterate all possible m and take an
expectation on the product of (8) and F1[m, d] with respect to
the degree d, we will get (9). Then, using similar arguments,
we could get the expressions for q2,` (10) and q3,` (11).

q1,` =
∑
d

dPd
〈d〉

d−1∑
m1

d−1−m1∑
m2

d−1−m1−m2∑
m3

F1[(m1,m2,m3), d− 1, `− 1] (9)

q2,` =
∑
d

dPd
〈d〉

d−1∑
m1

d−1−m1∑
m2

d−1−m1−m2∑
m3

F2[(m1,m2,m3), d− 1, `− 1] (10)

q3,` =
∑
d

dPd
〈d〉

d−1∑
m1

d−1−m1∑
m2

d−1−m1−m2∑
m3

F3[(m1,m2,m3), d− 1, `− 1] (11)



where

Fk[(m1,m2,m3), d− 1, `− 1] =(
d− 1

m1

)(
d− 1−m1

m2

)(
d− 1−m1 −m2

m3

)
× qm1

1,`−1q
m2

2,`−1q
m3

3,`−1

× (1− q1,`−1 − q2,`−1 − q3,`−1)d−m1−m2−m3

× Fk[(m1,m2,m3), d]. (12)

With the above derivations, we obtain a non-linear system
described by the equations (9) - (11). We could recursively
solve the non-linear system, and then get q1,∞, q2,∞, and
q3,∞. These quantities obtained from the tree-approximation
technique correspond to q1, q2, and q3 introduced at the
beginning of this section. Next, we could replace these prob-
abilities into (5) to get the expected size of global cascades.
As discussed in previous works [21], the tree-approximation
technique generates accurate results in the asymptotic limit
n→∞. We will confirm the correctness of our analysis even
when the number of nodes is finite in Section IV-A.

B. The condition of the existence of global cascades

In this section, we aim to find the condition of the exis-
tence of global cascades. As mentioned in Section III-A, the
proposed vector threshold model could be described by a non-
linear system given by (9) - (11). In this case, the behaviors
of this non-linear system imply the state of the dynamics.

As described in Section III-A, we have the relationship
q1 := q1,∞, q2 := q2,∞, and q3 := q3,∞. Then, the recursive
equations (9) - (11) have the form

qi = fi(q1, q2, q3), i = 1, 2, 3. (13)

From the equations (9) - (11), we can easily find that there
exists a trivial fixed point q1 = q2 = q3 = 0. If we replace
this fixed point into (5), then we could obtain

P [a randomly chosen node is active] = 0, (14)

which means there is no global cascade from Definition II.1.
However, if there exists a non-trivial fixed point which leads
to a positive value for (5), then it indicates the existence of
global cascades. To check the existence of non-trivial fixed
points, we could use the Jacobian matrix J (15) obtained by
linearizing equations at q1 = q2 = q3 = 0.

J =
∂fi(q1, q2, q3)

∂qj
|q1=q2=q3=0. (15)

If the special radius, i.e., the largest eigenvalue in absolute
value, of J is larger than one, then it means the non-linear
system is not stable at q1 = q2 = q3 = 0. In this case, there
exist non-trivial fixed points, which indicates there would exist
global cascades. Otherwise, we could conclude that there do
not exist global cascades.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

State-3State-2

State-1State-0

(0.18,0.32)

(0.18, 0.32)

(0, 0.32)

(0.18, 0)

(1, 0.32)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

State-3
State-2

State-1State-0

(0.18, 0.32)

(0.36, 1)

(0, 0.22)

(0.12, 0)

(1, 0.18)

(b)

Fig. 2: The different region split strategies in Section IV-A.

IV. NUMERICAL EXPERIMENTS

A. The agreement between our analysis and experimental
results

In this section, we aim to demonstrate the correctness of our
analysis when the number of nodes is finite. We use Poisson
distribution to assign the degree for each node. Namely, the
probability that a node has degree d is given by:

P (d) = e−λ
λd

d!
, d = 0, 1, . . . , (16)

where λ denotes the mean number of edges assigned for
each node. We use n = 2 × 106 as the number of nodes,
and two different split strategies on the parameter space
which are shown in Figure 2(a) and 2(b). We can interpret
these two figures as a spread of uncorrelated contents and
correlated contents, respectively, which has been discussed in
Section II-B. Then, for each degree parameter, we conduct
1,000 experiments, take the average of the cascade size for
experiments with global cascades,1 and depict them in Figure
3 and 4. From both of Figure 3 and 4, we can observe that there
is a good agreement between our analysis and experimental
results. These observations confirm the correctness of our
analysis of the expected size of global cascades.

In addition, we observe from Figure 3 and 4 that there exist
two phase transitions, i.e., the place where the expected size
of global cascades change from 0 to a positive fraction or
vice verse. These two phase transitions are reported in many
works [7], [10], [22] and provide insights on the impact of
network connectivity on the expected size of global cascades.
In short, the first transition indicates that global cascades
exist only when the connectivity of a network achieve a
certain value. In contrast, the second transition around high
λ value appears because too much connectivity will increase
the stability of nodes, i.e., when they have a large number of
friends, individuals tend to be difficult to get influenced by a
few active neighbors. In this case, the second phase transition
appears.

B. The impact of correlations between spreading contents

As we have introduced in Section II-B, the proposed thresh-
old model offers a general solution for different correlations
among contents. In this section, we aim at exploring how

1In a single experiment, if the fraction of active nodes is larger than 0.5%,
then we regard the experiment as one with a global cascade.
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different correlations between contents affect the expected size
of global cascades.

We make a comparison between three different correlations:
independent, positive, and negative correlation, which are
illustrated by the region split strategies in Figure 5. To make
a fair comparison, we keep the thresholds right on the x- and
y-axis the same. With this setting, when a node only receives
Proportion1 (resp. Proportion2), i.e., Proportion2 = 0 (resp.
Proportion1 = 0), the probability of being in state-1 (resp.
state-2) are equal in these correlations.

What we can observe from Figure 6 are 1) there still exist
two phase transitions; and 2) when the mean degree of nodes
is at a low level, these correlations produce global cascades
with similar size, while we see significant differences between
these correlations when the degree of nodes is at a high level.
This can be explained as follows. For the first observation,
it happens with the same reason mentioned in Section IV-A.
Limited connectivity results in the first phase transition, while
high stability given by high degree leads to the second phase
transition. Since different splits on the parameter space do
not change the connectivity of networks, which is the reason
behind the appearance of two phase transitions, two phase
transitions still exist. We can explain the reason behind the
second observation as follows. According to (3) and Figure 5,
we find that the positive correlation makes nodes more easily
be activated while it does not change the connectivity. When
the mean degree is at low level, limited connectivity is the
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Fig. 5: The different region splits for different correlations between contents
for Section IV-B. The gray dashed lines indicate the region split strategy of the
independent correlation.
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Fig. 6: The comparison between different correlations on the expected size of
global cascades. These results are obtained by analytic results.

reason for determining the position of the first phase transition
and the expected size of global cascades. Even a correlation
makes nodes more easily be activated, the position and the
size would not change much. In contrast, when the mean is at
high level, there exists enough connectivity. However, high
connectivity will increase the local stability of nodes; i.e.,
according to (3) and Figure 5, if a node has a large amount of
friends, then the node is hard to be activated. The increased
local stability would prevent cascades from happening. As
observed in Figure 5(b), a positive correlation makes inactive
nodes easier been activated. In this case, a positive correlation
helps nodes to overcome the local stability caused by high
degree, which makes global cascades possible again.

From these experiments, we can conclude that depending on
the mean degree of nodes, the impact of different correlations
between spreading contents on the expected size of global
cascades will be significantly different. That is, when the mean
degree is at a high level, the expected size of global cascades is
more sensitive to the correlations between spreading contents.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a vector threshold model that
analyzes a simultaneous spread of correlated influence. We
derive recursive relations characterizing the dynamics of in-



fluence propagation to compute the expected size of global
cascades, i.e., cases where a single individual can initiate a
propagation that eventually influences a positive fraction of
the population. Also, we find what the conditions are in order
for the existence of global cascades. Then, we use a numerical
study to confirm and support our analytic results. In addition,
we report an interesting observation that different correlations
could lead to a significant difference on the expected size of
global cascades only when the mean degree is at a high level.

There are many possible directions for future work. First,
this work only derives the expected size of global cascades.
Giving analytic results for the probability of having global
cascades may be a possible direction. Second, this work
can be extended to more general network models than the
configuration model used here. For instance, it would be
interesting to consider networks that have high clustering
coefficient. Finally, it would also be interesting to study vector
threshold models using non-linear threshold models.
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