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Abstract— We consider a graph property known as r-
robustness of the random K-out graphs. Random K-out graphs,
denoted as H(n;K), are constructed as follows. Each of the n
nodes select K distinct nodes uniformly at random, and then an
edge is formed between these nodes. The orientation of the edges
is ignored, resulting in an undirected graph. Random K-out
graphs have been used in many applications including random
(pairwise) key predistribution in wireless sensor networks,
anonymous message routing in crypto-currency networks, and
differentially-private federated averaging. r-robustness is an
important metric in many applications where robustness of
networks to disruptions is of practical interest, and r-robustness
is especially useful in analyzing consensus dynamics. It was
previously shown that consensus can be reached in an r-robust
network for sufficiently large r even in the presence of some
adversarial nodes. r-robustness is also useful for resilience
against adversarial attacks or node failures since it is a stronger
property than r-connectivity and thus can provide guarantees
on the connectivity of the graph when up to r− 1 nodes in the
graph are removed. In this paper, we provide a set of conditions
for Kn and n that ensure, with high probability (whp), the r-
robustness of the random K-out graph.

Index Terms— Robustness, random graphs, random K-out
graphs, resilience, security, consensus dynamics

I. INTRODUCTION

Random K-out graph is one of the earliest random graph
models studied in literature [1], and has recently found a
variety of applications such as analyzing the performance of
the random pairwise key predistribution scheme in wireless
sensor networks [2]–[6], decentralized learning [7], and
anonymity preserving crypto-currency networks [8]. Random
K-out graphs, denoted as H(n;K), are constructed over a set
of n nodes as follows. Each node selects K distinct nodes
uniformly at random, and then an undirected edge is formed
between any pair of nodes if at least one selects the other.

One of the reasons that there are many applications
envisioned for random K-out graphs is its ability to generate
a connected topology even with a small number of nodes
[9]; hence an important topic of interest is the connectivity
and robustness of the network with respect to failures and
disruption. A network is said to be connected if there exists
a path of edges between every pair of vertices; and it was
previously shown in [1], [2] that random K-out graphs are
connected whp when K ≥ 2 and not connected when K = 1;
i.e.,

lim
n→∞

P [H(n;K) is connected] =

{
1 if K ≥ 2,

0 if K = 1.
(1)
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A more generalized form of the connectivity property is r-
connectivity. A graph is r-connected if it remains connected
after the removal of any set of r − 1 (or, fewer) nodes.
It was previously shown in [1] that random K-out graphs
are r-connected whp when K ≥ r. Another graph property
regarding robustness of a graph is r-robustness. A graph is
r-robust if for every disjoint subset pair that partitions the
graph, at least one node in one of these subsets is adjacent
to at least r nodes in the other set; see Section II for a more
formal definition for r-robustness. It was shown in [10] that
if a graph is r-robust, it is at least r-connected. Thus, r-
robustness is a stronger property than r-connectivity.

An important application where r-robustness property is
useful is consensus dynamics, where some parameters of
several agents get aligned after a sufficiently long period
of local interactions. Consensus based approaches have been
widely used in control theory and federated learning, which
is an emerging field to train machine learning models in
distributed systems [11], [12]. For example, in control theory,
consensus dynamics have been used in a variety of appli-
cations in multi-agent systems such as flocking, swarming,
synchronization of coupled oscillators and load balancing in
networks [13]. There are also numerous studies involving
consensus control under a variety of, application-specific,
constraints. For example, in [14], a consensus control system
was presented for a strongly connected network under the
constraints of input saturation and communication time delay.
In another example, [15], a consensus algorithm was pre-
sented for control of multi-agent systems in a fully connected
network in the presence of adversaries.

To achieve resilience to adversaries in the control of a
multi-agent system, network topology also plays an impor-
tant role. For example, in [16], conditions on the connectivity
of the network required to be resilient to misbehaving or
faulty agents were derived for a linear consensus network.
Furthermore, it was shown in [17] that there is a direct
connection between the topology of the network and the
performance/speed of the consensus dynamics, denoting the
importance of comparing different graph models to find the
topology most suitable for a given application. In [18], it
was shown that network connectivity is not sufficient to
characterize consensus when nodes use a certain class of
local filtering rules. Instead, it was shown that consensus
can be reached in graphs that are sufficiently robust. Thus,
analyzing the r-robustness property of different graph models
is particularly relevant for applications based on consensus
dynamics. In federated learning applications of the consensus
dynamics, random K-out graphs have received recent atten-
tion. In [7], random K-out graphs were used to construct
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a communication graph in a differentially-private federated
averaging scheme. From these examples, it is clear that the
r-robustness of random K-out graphs will be of interest in
future applications of random K-out graphs.

Even though r-robustness has been studied in several
random graph models such as the Erdős-Rényi graph and
the Barabási-Albert graph model [19], to our knowledge, r-
robustness of random K-out graphs has not been studied
before. The aim of this paper is to fill this gap in the
literature and provide results on the r-robustness of random
K-out graphs. Specifically, we provide a set of conditions
for Kn and n that ensure, with high probability (whp), the
r-robustness of random K-out graph and show that Kn =
O(r log(r)) is needed for r-robustness. We also compare
this result with those obtained for an Erdős-Rényi graph with
same average node degree, and determine that the random
K-out graph becomes r-robust with fewer edges compared
to an Erdős-Rényi graph.

II. NOTATIONS AND r-ROBUSTNESS OF A GRAPH

All random variables are defined on the same probability
space (Ω,F ,P) and probabilistic statements are given with
respect to the probability measure P. The complement of an
event A is denoted by Ac. The cardinality of a discrete set
A is denoted by |A|. We refer to any mapping γ : N0 → N0

as a scaling if it satisfies the condition 2 ≤ γn < n, n =
2, 3, . . .. All limits are understood with n going to infinity. If
the probability of an event tends to one as n→∞, we say
that it occurs with high probability (whp). When comparing
the asymptotic behavior of sequences {an} and {bn}, the
statements an = o(bn), an = ω(bn), an = O(bn), an =
Θ(bn), and an = Ω(bn), are defined in the standard Landau
notation. The asymptotic equivalence an ∼ bn is used to
denote the fact that limn→∞

an

bn
= 1.

The random K-out graph is defined on the vertex set V :=
{v1, . . . , vn} as follows. Let N := {1, 2, . . . , n} denote the
set of vertex labels. For each i ∈ N , let Γn,i ⊆ N \ i denote
the set of Kn labels corresponding to the nodes selected by
vi. The choices made by each node are independent of the
other nodes, hence Γn,1, . . . ,Γn,n are mutually independent.
Distinct nodes vi and vj are adjacent, denoted by vi ∼ vj if at
least one of them picks the other (since edges are undirected
in a random K-out graph, the outcome is still the same if
both vi and vj choose each other). Namely,

vi ∼ vj if [j ∈ Γn,i] ∨ [i ∈ Γn,j ]. (2)

The set of neighbors of node i is defined as Vi := {j ∈
N \ i : vi ∼ vj}, and the degree of node i is denoted as
di = |Vi|. The random graph defined on the vertex set V
through the adjacency relation (2) is called as a random K-
out graph [20], [21] and is denoted by H(n;Kn).

In this paper, we are concerned with the r-robustness
of random K-out graphs. To formally define r-robustness
property, we use the following definitions introduced in [18].

Definition 2.1 (r-reachable set): For a graph H and a sub-
set S of nodes S ⊂ N , we say S is an r-reachable set if
∃i∈ S : |Vi \ S| ≥ r, where r ∈ Z+. In other words, set

S is an r-reachable set if it contains a node that has at least r
neighbors outside that set.

Definition 2.2 (r-robust graph): A graph H is an r-robust
graph if for every pair of nonempty, disjoint subsets ofN that
partition N , at least one of the subsets is r-reachable, where
r ∈ Z+.

III. MAIN RESULTS AND DISCUSSION

Our main result is presented as Theorem 3.1 below.
Let P (n,Kn, r) = P [H(n;Kn) is r-robust].

Theorem 3.1: Consider a scaling K : N0 → N0 and let

t(r) =
2r (log(r) + log(log(r) + 1)

log(2) + 1/2− log
(

1 + log(2)+1/2
2 log(r)+5/2+log(2)

) (3)

be the threshold function. Then, for all r ∈ Z+ satisfying
r ≥ 3, we have

lim
n→∞

P (n,Kn, r) = 1, if Kn > t(r), ∀n.

A. Discussion

In Theorem 3.1, we establish a threshold for one-law of r-
robustness in random K-out graphs, more specifically we find
that a random K-out graph is r-robust when Kn ∼ c·r log(r)
for large n and r, where c > 0 is a constant. The proof of this
result is given in Section IV. We were not able to validate
this result through computer simulation, since it was shown
in [22] that determining r-robustness of a graph is a co-NP-
complete problem.

To put this result in perspective, we compare it with the
result from an Erdős-Rényi graph G(n, p), one of the most
commonly studied random graph models. In [22], it was
shown that an Erdős-Rényi graph G(n, p) is r-robust whp if
pn = log(n)+(r−1) log(log(n))+ω(1)

n , which translates to an av-
erage node degree of < kn >∼ log(n)+(r−1) log(log(n)).
This shows that random K-out graphs can be ensured to be
r-robust whp at an average node degree significantly smaller
than the average node degree required for an Erdős-Rényi
graph to be r-robust. Hence we can conclude that random
K-out graphs are much more robust than Erdős-Rényi graphs
in terms of the r-robustness property when both graphs have
similar average node degree.

Another point worth mentioning is the comparison of the
thresholds for r-robustness and r-connectivity. It was shown
in [1] that random K-out graph H(n;Kn) is r-connected
whp for large n when Kn ≥ r. Since the threshold for r-
robustness is Kn ∼ c · r log(r) for large n and r where
c > 0 is a constant, there is only a factor of log(r) difference
between them for large n and r. This result is as expected
since r-robustness is a stronger property than r-connectivity.

B. Further Applications

Random K-out graphs have been useful for constructing
distributed networks since they become connected efficiently
(with as few edges as possible, compared to Erdős-Rényi
graphs) [23]. As such, they have a wide variety of appli-
cations such as wireless sensor networks [2], decentralized
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learning [7], and anonymity preserving crypto-currency net-
works [8].

Since we have shown that they also satisfy the r-robustness
property with fewer edges compared to Erdős-Rényi graphs,
they can also be used in applications that require r-robustness
with as few edges as possible such as robust control of multi-
agent systems, robust and differentially-private federated
learning, as discussed in the introduction.

IV. A PROOF OF THEOREM 3.1

To prove Theorem 3.1, we need to show that the random
K-out graph H(n;Kn) is r-robust whp when Kn > t(r), ∀n,
for r ∈ Z+ satisfying r ≥ 3, and with t(r) defined as in (3).

First, let En(Kn, r;S) denote the event that S ⊂ V is an
r-reachable set as per Definition 2.1. The event En(Kn, r;S)
occurs if there exists at least one node in S that is adjacent
to at least r nodes in R = V \ S, the subset comprised of
nodes outside the subset S. Thus, we have

En(Kn, r;S) =
⋃

i∈NS


∑

j∈NR

1 {vi ∼ vj}

 ≥ r


with NS , NR denoting the set of labels of the vertices in S
and R, respectively, and 1{} denoting the indicator function.
We are also interested in the complement of this event
En(Kn, r;S), denoted as (En(Kn, r;S))

c, which occurs if
all nodes in S are adjacent to less than r nodes in R = V \S.
This can be written as

(En(Kn, r;S)c) =
⋂

i∈NS


∑

j∈NR

1 {vi ∼ vj}

 < r

 .

Note that at least one subset in every disjoint subset pairs
that partition V needs to be r-reachable per the definition of
r-robustness, hence it is sufficient to show that every subset
of V with size up to bn2 c is r-reachable with high probability
to prove r-robustness. Thus, let Z(Kn, r) denote the event
that all non-empty subsets of the vertices with size up to
bn2 c is r-reachable. Namely, Z(Kn, r) is the event that for
all subset pairs S and V \S such that S ⊂ V and |S| ≤ bn2 c,
the subset S is r-reachable. Thus, we have

Z(Kn, r) =
⋂

S∈Pn: |S|≤bn2 c

En(Kn, r;S),

where Pn is the collection of all non-empty subsets of V .
Complementing both sides and using union bound, we get

P [(Z(Kn, r))
c
] ≤
∑

|S|≤bn2 c

P[(En(Kn, r;S))
c
]

=

bn
2 c∑

m=1

∑
S∈Pn,m

P[(En(Kn, r;S))
c
], (4)

where Pn,m denotes the collection of all subsets of V with
exactly m elements.

Let Sm be a subset of the vertex set V with size m, i.e.
Sm ⊂ V and |Sm| = m. Also define Rm = V \ Sm, and
define En,m(Kn, r) as the event that a random subset of V

of size m is an r-reachable set. From the exchangeability of
the node labels and associated random variables, we have

P[En(Kn, r;Sm)] = P[En,m(Kn, r)], Sm ∈ Pn,m.

|Pn,m| =
(
n
m

)
, since there are

(
n
m

)
subsets of V with m

elements. Thus, we have∑
Sm∈Pn,m

P[(En(Kn, r;Sm))
c
] =

(
n

m

)
P[(En,m(Kn, r))

c
].

Substituting this into (4), we obtain

P [(Z(Kn, r))
c
] ≤
bn

2 c∑
m=1

(
n

m

)
P[(En,m(Kn, r))

c
] (5)

We will abbreviate

Pm :=

(
n

m

)
P[(En,m(Kn, r))

c
],

PZ := P [(Z(Kn, r))
c
] .

Then, we can write

PZ ≤
bn

2 c∑
m=1

Pm (6)

To find Pm, we first need to find the probability of a node
in Sm being adjacent to d nodes in Rm, denoted as Pd. A
node v in the subset Sm can be adjacent to d nodes in Rm

if it chooses i nodes out of its Kn selections from the subset
Rm, and at the same time d− i nodes in Rm that were not
selected by the node v select v, where i ≤ d and d ≤ Kn.
Then, Pd can be expressed as the sum of the probabilities
of such events over all possible i values, leading to

Pd =

d∑
i=0

(
n−m

i

)(
m−1
Kn−i

)(
n−1
Kn

) (
Kn

n− 1

)d−i

·
(

1− Kn

n− 1

)n−m−d(
n−m− i
d− i

) (7)

Using this, the probability of a node in Sm being adjacent to
less than r nodes in Rm, denoted as Pr can be calculated as
Pr =

∑r−1
d=0 Pd. Furthermore, the probability that all nodes in

Sm are adjacent to less than r nodes in Rm, denoted as Pm,r

can be found as Pm,r ≤ (Pr)m. Hence, Pm =
(
n
m

)
Pm,r ≤(

n
m

)
(
∑r−1

d=0 Pd)m. Using (7) we obtain

Pm ≤
(
n

m

)(r−1∑
d=0

d∑
i=0

(
n−m

i

)(
m−1
Kn−i

)(
n−1
Kn

) (
Kn

n− 1

)d−i

·
(

1− Kn

n− 1

)n−m−d(
n−m− i
d− i

))m

(8)

To prove Theorem 3.1, we need to show that lim
n→∞

PZ = 0

when Kn > t(r), ∀n, r ∈ Z+ satisfying r ≥ 3, r2 = o(n),
and t(r) defined as in (3). Depending on the value of m,
we need to consider three cases when evaluating Pm, which
are the (i) m ≤ Kn + 1 − r , (ii) Kn + 2 ≤ m , and (iii)
Kn−r+2 ≤ m ≤ Kn +1 case. We start with the first case.
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(i). Case 1 (m ≤ Kn + 1− r):
In this case it can easily be seen that even if a node v ∈ Sm

chooses all the other m − 1 nodes in Sm, it still needs to
make Kn + 1−m more selections, which need to be chosen
from the subset Rm. Since r ≤ Kn + 1−m, every node in
Sm will be adjacent to at least r nodes in Rm, and hence
Sm will be guaranteed to be r-reachable. Thus, we have

Pm = 0, m ≤ Kn + 1− r (9)

(ii). Case 2 (Kn − r + 2 ≤ m ≤ Kn + 1):
When Kn−r+2, any node v ∈ Sm is guaranteed to select

at least Kn + 1 − m nodes in Rm, hence the summation
variable i (which tracks the number of selections made by v
in Rm), in (8) should start from Kn + 1 −m in this case.
Thus, for this case we have

Pm ≤
(
n

m

)( r−1∑
d=Kn+1−m

d∑
i=Kn+1−m

(
n−m

i

)(
m−1
Kn−i

)(
n−1
Kn

)
·
(

Kn

n− 1

)d−i(
1− Kn

n− 1

)n−m−d(
n−m− i
d− i

))m

≤
(
n

m

)(r−1∑
d=0

d∑
i=0

(
n−m

i

)(
m−1
Kn−i

)(
n−1
Kn

) (
Kn

n− 1

)d−i

·
(

1− Kn

n− 1

)n−m−d(
n−m− i
d− i

))m

(10)

Hence, we can still use (8) to find an upper bound on Pm.

(iii). Case 3 (Kn + 2 ≤ m):
In this case it is not guaranteed that a node v ∈ Sm will

select a node in Rm, so we can directly use (8) to find an
upper bound on Pm.

In light of these three cases, we can see that Pm only needs
to be evaluated for m ≥ Kn−r+2. Following standard upper
bounds will be used in the rest of the proof.(

n

l

)
≤
(n
l

)l( n

n− l

)n−l

, ∀l = 1, . . . , n (11)(
n

l

)
≤
(en
l

)l
, ∀l = 1, . . . , n (12)

1± x ≤ e±x, ∀x (13)

Using (11), we have(
n−m

i

)(
m−1
Kn−i

)(
n−m−i

d−i
)(

n−1
Kn

) ≤
(
n−m
i

)i(
n−m

n−m− i

)n−m−i

·
(
m− 1

Kn − i

)Kn−i( m− 1

m− 1 + i−Kn

)m−1+i−Kn

·
(
n−m− i
d− i

)d−i(
n−m− i
n−m− d

)n−m−d(
Kn

n− 1

)Kn

·
(

1− Kn

n− 1

)n−1−Kn

(14)

Substituting (14) into (8), we have

Pm ≤
(
n

m

)[r−1∑
d=0

d∑
i=0

(
(n− 1)(d− i)(Kn − i)
(m− 1 + i−Kn)iKn

)i

·
(

(n−m− d)Kn

(n− 1−Kn)(d− i)

)d(
n− 1−Kn

n− 1

)2n−m−Kn−1

·
(

(m− 1)Kn

(n− 1)(Kn − i)

)Kn
(

n−m
n−m− d

)n−m

·
(

m− 1

m− 1 + i−Kn

)m−1−Kn
]m
(15)

We now use upper or lower bounds on the summation
variables i and d. Note that the i and d − i terms in the
denominator become zero when i = 0 or d = i. Since these
terms were obtained from the upper bound on combination,
and since

(
n
0

)
= 1, lower bound of i and d − i terms on

the denominator is taken as 1. It can still be shown that the
upper bound found below using this correction still holds for
all possible i or d values. After this, we have

Pm ≤
(
n

m

)[r−1∑
d=0

d∑
i=0

(
d(n− 1)

m− 1−Kn

)i

·
(
Kn(n−m− d)

n− 1−Kn

)d(
n− 1−Kn

n− 1

)2n−m−Kn−1

·
(

(m− 1)Kn

(n− 1)(Kn + 1− r)

)Kn
(

n−m
n−m− d

)n−m

·
(

m− 1

m− 1−Kn

)m−1−Kn
]m

≤
(
n

m

)[r−1∑
d=0

(d+ 1)

(
dKn(n− 1)(n−m− d)

(m− 1−Kn)(n− 1−Kn)

)d

·
(
n− 1−Kn

n− 1

)2n−m−Kn−1( m− 1

m− 1−Kn

)m−1−Kn

·
(

(m− 1)Kn

(n− 1)(Kn + 1− r)

)Kn
(

n−m
n−m− d

)n−m
]m

(16)

Noting that d ≤ r − 1 and
(

n−m
n−m−d

)n−m−d
≤ ed ≤ er−1,

we have

Pm ≤
(
n

m

)[r−1∑
d=0

r

(
(r − 1)Kn(n− 1)(n−m)

(m− 1−Kn)(n− 1−Kn)

)d

·
(
n− 1−Kn

n− 1

)2n−m−Kn−1( m− 1

m− 1−Kn

)m−1−Kn

·
(

(m− 1)Kn

(n− 1)(Kn + 1− r)

)Kn

er−1

]m
(17)
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≤
(
n

m

)[
er−1r2

(
(r − 1)Kn(n−m)

(m− 1−Kn)

)r−1

·
(

1− Kn

n− 1

)2n−m−Kn−1(
1 +

Kn

m− 1−Kn

)m−1−Kn

·
(

1 +
Kn

n− 1−Kn

)r−1(
mKn

n(Kn + 1− r)

)Kn
]m

(18)

≤
(
n

m

)[
er−1r2Kr−1

n (r − 1)r−1e
Kn(r−1)
n−1−Kn e

Kn(m+Kn−1)
n−1

·
(

n−m
m− 1−Kn

)r−1(
mKn

n(Kn + 1− r)

)Kn

e−Kn

]m
(19)

≤
[
err2Kr−1

n (r − 1)r−1e
Kn(r−1)
n−1−Kn e

mKn
n e

K2
n

n−1 e−Kn

·
(

n−m
m− 1−Kn

)r−1(
Kn

Kn + 1− r

)Kn(m
n

)Kn−1
]m

(20)

≤ exp

(
m

[
r +

Kn(r − 1)

n− 1−Kn
+
mKn

n
+

K2
n

n− 1

+2 log(r) + (r − 1) log(Kn) + (r − 1) log(r − 1)

+(Kn − 1) log
(m
n

)
+ (r − 1) log

(
n−m

m− 1−Kn

)
+Kn log

(
Kn

Kn + 1− r

)
−Kn

])
(21)

We will show that the right side of the above expression
goes to zero as n goes to infinity. Let

An,r,m := exp

(
m

[
r +

Kn(r − 1)

n− 1−Kn
+
mKn

n
+

K2
n

n− 1

+2 log(r) + (r − 1) log(Kn) + (r − 1) log(r − 1)

+(Kn − 1) log
(m
n

)
+ (r − 1) log

(
n−m

m− 1−Kn

)
+Kn log

(
Kn

Kn+1−r

)
−Kn

])
We write

PZ ≤
Kn+1−r∑

m=1

Pm +

log(n)∑
m=Kn+2−r

An,r,m +

bn
2 c∑

m=log(n)

An,r,m

≤
log(n)∑

m=Kn+2−r
An,r,m +

bn
2 c∑

m=log(n)

An,r,m := Q1 +Q2,

since the first summation
∑Kn+1−r

m=1 Pm is zero as deter-
mined in Case 1. Thus, we need to show that both Q1 and
Q2 go to zero as n→∞. We start with the first summation
Q1. Assume as in the statement of Theorem 3.1 that

Kn >
2r (log(r) + log(log(r) + 1)

log(2) + 1/2− log
(

1 + log(2)+1/2
2 log(r)+5/2+log(2)

) , ∀n

(22)

Taking n→∞ and using the fact that m ≤ log(n) from the
limits of the summation, and also using the given condition
r2 = o(n), we have

An,r,m ≤ exp (m [o(1) + r + 2 log(r) + (r − 1) log(Kn)

+(r − 1) log(r − 1)−Kn +Kn log

(
Kn

Kn + 1− r

)
+(Kn − 1) log (m) + (r − 1) log (m− 1−Kn)])

· exp[−m(Kn − r) log (n)]

An,r,m ≤ o
(
em(Kn−r) log(n)

)
e−m(Kn−r) log(n) (23)

It can easily be seen that the e−m(Kn−r) log(n) term dom-
inates this expression for large n, hence lim

n→∞
An,r,m = 0.

Thus, for large n, we have

Q1 ≤
log(n)∑

m=Kn+2−r
(An,r,m)

r ≤
∞∑

m=1

(An,r,m)
r

=
An,r,m

1−An,r,m

(24)

where the geometric sum converges by virtue of
limn→∞An,r,m = 0. Using this once again, it is clear from
the last expression that limn→∞Q1 = 0.

Now, similarly consider the second summation S2. Again
assume Kn is larger than the threshold given in (22), and
use the given condition r2 = o(n). For large n, we have

Q2 ≤
bn2 c∑

m=log(n)

exp

(
m

[
r +

Kn(r − 1)

n− 1−Kn
+
mKn

n

+2 log(r) + (r − 1) log(Kn) + (r − 1) log(r − 1)

+(Kn − r) log
(m
n

)
+ (r − 1) log

(
m(n−m)

n(m− 1−Kn)

)
+

K2
n

n− 1
+Kn log

(
Kn

Kn + 1− r

)
−Kn

])
(25)

Since the sequence
am = mKn

n + (Kn − r) log
(
m
n

)
+ (r − 1) log

(
m(n−m)

n(m−1−Kn)

)
is monotonically increasing with m in the range
log(n) ≤ m ≤ bn2 c, we can use the term with m = n

2 as an
upper bound for this sequence. Hence, we have

Q2 ≤
bn2 c∑

m=log(n)

exp

(
m

[
o(1) + log(2) + r − Kn

2

+(r − 1) log(Kn) + (r + 1) log(r)

−Kn log (2) +Kn log

(
Kn

Kn + 1− r

)])
(26)

Since Kn ≥ 2r log r+2r
log(2)+1/2 , we have

log

(
Kn

Kn + 1− r

)
≤ log

(
1 +

log(2) + 1/2

2 log(r) + 5/2 + log(2)

)
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Plugging thus back to (26), we have

An,m,r ≤ exp ([o(1) + log(2) + r + (r − 1) log(Kn)

+(r + 1) log(r)−Kn

[
1

2
+ log(2)

− log

(
1 +

log(2) + 1
2

2 log(r) + 5
2 + log(2)

)]])
(27)

Substituting for Kn via (22) and taking the limit as n→∞
it can be seen that limn→∞An,m,r = 0 upon noting that
log(Kn) = log(r) + log(2) + log(Kn

2r ) and
(r − 1) log

(
t(r)
2r

)
≤ 2r log(log(r)) + r − log(2).

Similar to the case in Q1, we have:

Q2 ≤
bn2 c∑

m=log(n)

(An,r,m)
r ≤ (An,r,m)log(n)

1−An,r,m
(28)

where the geometric sum converges by virtue of
limn→∞An,r,m = 0, leading to Q2 converging to
zero as n gets large.

We establish that PZ converges to zero as n goes to
infinity, since PZ ≤ Q1 +Q2, and both Q1 and Q2 converge
to zero when n is large. Since PZ = P [(Z(Kn, r))

c
] =

1 − P (n,Kn, r), this result yields the desired conclusion
limn→∞ P (n,Kn, r) = 1 when Kn > t(r), ∀n and r ∈ Z+

satisfying r ≥ 3 and r2 = o(n) as in Theorem 3.1. This
concludes the proof of Theorem 3.1.

V. CONCLUSIONS

In this work, we provide a set of results for Kn and
n that ensure, with high probability, the r-robustness of
the random K-out graph H(n;Kn). Using our result, we
compare the mean node degree of a random K-out graph
with the mean node degree of an Erdős-Rényi graph at the
threshold value required to ensure r-robustness whp, and
determine that random K-out graphs attain r-robustness at
a significantly lower mean node degree value compared to
Erdős-Rényi graphs. This result reinforces the usefulness of
random K-out graphs in applications that require a certain
degree of robustness such as federated learning, consensus
dynamics, robust control of multi-agent systems and wireless
sensor networks.
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[2] O. Yağan and A. M. Makowski, “On the connectivity of sensor net-
works under random pairwise key predistribution,” IEEE Transactions
on Information Theory, vol. 59, no. 9, pp. 5754–5762, Sept 2013.

[3] ——, “Modeling the pairwise key predistribution scheme in the pres-
ence of unreliable links,” IEEE Transactions on Information Theory,
vol. 59, no. 3, pp. 1740–1760, March 2013.
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