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Abstract— We investigate the connectivity of wireless sensor
networks secured by the heterogeneous random pairwise key
predistribution scheme. In contrast to the homogeneous scheme
proposed by Chan et al., where each node is paired (offline)
with K other nodes chosen uniformly at random; herein, each
node is classified as class-1 with probability µ or class-2 with
probability 1 − µ, for 0 < µ < 1, independently. Then, each
class-1 (respectively, class-2) node is paired (offline) with K1

(respectively, K2) other nodes selected uniformly at random. We
consider the particular case when K1 = 1 and K2 = K. The
heterogeneous random pairwise scheme induces an inhomoge-
neous random K-out graph H(n;µ,Kn), where n denotes the
number of nodes and Kn denotes a scaling of K with respect
to the network size n. Hence, establishing the connectivity of
wireless sensor networks secured by the heterogeneous random
pairwise scheme maps to deriving conditions on how to scale
Kn with respect to the network size n such that the graph is
connected with high probability as n tends to infinity. With
K1 = 1, we show that i) when Kn = K for all n = 2, 3, . . .
for a positive, finite integer K with K ≥ 2, the resulting graph
is not connected with a positive probability. In this case, we
derive a tight upper bound on the probability of connectivity
and verify the results via simulations. Moreover, ii) we prove
that when Kn is chosen such that limn→∞Kn =∞, the graph
is connected with high probability as n tends to infinity.
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I. INTRODUCTION

Wireless sensor networks (WSNs) provide numerous ap-
plications in diverse areas such as battlefield surveillance,
environmental sensing, health care monitoring, among others
[1]. Such a broad portfolio of applications is possible thanks
to the unique characteristics of WSNs, namely their low cost,
low power consumption, ease of deployment, mobility, and
scalability [2]. Although these characteristics have led to the
widespread adoption of WSNs in multiple contexts, they do,
however, pose a serious concern regarding the security aspect
of the network [3].

WSNs are usually deployed in hostile environments and
left unattended, thus they should be equipped with security
mechanisms to defend against attacks such as node capture
attacks and eavesdropping. The unique characteristics of
WSNs, however, prevent the use of standard cryptosystems
that were developed for more capable networks [3]. For
instance, public-key cryptosystems are deemed too complex
for WSNs as they require excessive energy consumption and
computational overhead [4]. On the other hand, symmetric
cryptosystems were shown to require much less energy,
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but their key distribution mechanisms were inadequate for
WSNs. For instance, using a single-mission key would render
the network extremely vulnerable to node-capture attacks,
while using pairwise keys for each pair of nodes would
require huge memory requirements.

Random key pre-distribution schemes were introduced in
the seminal work of Eschenauer and Gligor [4] with the aim
of establishing lightweight key distribution mechanisms that
are suitable for WSNs, hence allowing symmetric cryptosys-
tems to be utilized in commodity WSNs. Since then, re-
searchers have pushed the frontiers of WSN security research
and come up with a multitude of practical mechanisms for
random key distribution in WSNs. One of these prominent
schemes is the random pairwise key predistribution scheme
proposed by Chan et al. in [5]. The random pairwise pre-
distribution scheme has a number of advantages over the
original scheme of Eschenauer and Gligor: (i) It is perfectly
resilient against node capture attacks [5]; (ii) Unlike earlier
schemes, this pairwise scheme enables both distributed node-
to-node authentication and quorum-based node revocation.

The random pairwise scheme is described as follows:
Before deployment, each of the n sensor nodes is paired
(offline) with K distinct nodes which are randomly selected
from among all other nodes. If nodes i and j were paired
during the node-pairing stage (i.e., which happens if either
node i gets paired with node j, node j gets paired with node
i, or both), a unique (pairwise) key is generated and stored in
the memory modules of each of the paired sensors together
with both their IDs. After deployment, a secure link can be
established between two communicating nodes if they have
at least one pairwise key in common. The random pairwise
scheme gives rise to a class of random graphs denoted by
random K-out graphs [6], [7]. In particular, Let H(n;K)
denote the random graph on the vertex set {1, . . . , n} where
distinct nodes i and j are adjacent if they have at least one
pairwise key in common. This random graph models the ran-
dom pairwise key predistribution scheme under full visibility
(whereby all nodes are within wireless communication range
of each other).

Consider a WSN secured by the random pairwise scheme.
A natural question to ask is: How should the value of K be
selected so that the resulting network is securely connected?,
i.e., there exists a secure communication path between every
pair of nodes. After all, the randomness involved in the node-
pairing process could give rise to isolated components of
nodes that are paired with each others but not to other nodes,
rendering the network disconnected. The connectivity of the
random pairwise scheme was investigated in [8], where it



was shown that

lim
n→∞

P [H(n;K) is connected] =

{
0 if K = 1

1 if K ≥ 2
(1)

In other words, it is sufficient to set K = 2 to obtain
a network that is connected with high probability as the
network size tends to infinity (a tight bound for the case
of finite n was also given in [8]).

We present a heterogeneous variant of the random pairwise
scheme where nodes are classified into two classes according
to their characteristics as well as their connectivity and
security requirements. In particular, we consider the case
where each node is classified as class-1 with probability µ or
class-2 with probability 1−µ for 0 < µ < 1, independently.
Each of class-1 (respectively, class-2) nodes is paired with
K1 (respectively, K2) other nodes, independently. As with
the original scheme, if nodes i and j were paired in the
(offline) node-pairing process (i.e., which happens when
either node i gets paired with node j, node j gets paired
with node i, or both), a unique (pairwise) key is generated
and stored in the memory modules of nodes i and j together
with both their IDs. After deployment, a secure link can be
established between nodes i and j if they have at least one
pairwise key in common. With µµµ = (µ, 1 − µ) and KKK =
(K1,K2), the heterogeneous random pairwise scheme gives
rise to the inhomogeneous random K-out graph H (n;µµµ,KKK)
where distinct nodes i and j are adjacent if they have at least
one pairwise key in common. Specific details are given in
Section II.

Our paper is motivated by the following question. Con-
sider the particular case when K1 = 1 and K2 = K. How
should the value of K be selected (perhaps as a function
of the network size n) such that the resulting network is
connected with high probability? An appealing answer would
be to draw on the results given in [8] (see (1)), perhaps by
setting K such that E [K] = µ + (1 − µ)K ≥ 2, where
K denotes a random variable that takes the value 1 with
probability µ and the value K with probability 1 − µ. In
other words, E [K] gives the mean number of nodes that
an arbitrary node gets paired with. We show that such an
approach, although appealing, generates networks that are
not connected with positive probability. In particular, we
show that when K1 = 1, choosing any finite integer value of
K (with K ≥ 2) would render the graph not connected with
a positive probability that depends on µ and K. Surprisingly,
we show that for the resulting graph to be connected with
high probability, K has to scale with the network size n
such that limn→∞Kn = ∞. Our results on the one-law of
connectivity do not enforce a particular dependency between
the sequences Kn and n, other than limn→∞Kn = ∞,
hence Kn need only be selected such that it eventually tends
to infinity as n tends to infinity, e.g., Kn = log log . . . log n.

II. SYSTEM MODEL

All statements involving limits, including asymptotic
equivalences, are understood with n going to infinity. The
cardinality of any discrete set S is denoted by |S|. The

random variables (rvs) under consideration are all defined on
the same probability triple (Ω,F ,P). Probabilistic statements
are made with respect to this probability measure P, and we
denote the corresponding expectation operator by E. We say
that an event holds with high probability (whp) if it holds
with probability 1 as n→∞.

A. The heterogeneous random pairwise key predistribution
scheme

The heterogeneous random pairwise key predistribution
scheme builds on the homogeneous scheme of Chan et al. [5].
In particular, we consider a network consisting of n nodes
which are labelled i = 1, . . . , n with unique ids Id1, . . . , Idn.
In contrast to the homogeneous scheme proposed by Chan et
al., where each node is paired (offline) with K other nodes
chosen uniformly at random; herein, each node is classified
as class-1 with probability µ or class-2 with probability
1 − µ, for 0 < µ < 1, independently. Then, each class-
1 (respectively, class-2) node is paired (offline) with K1

(respectively, K2) other nodes selected uniformly at random.
As with the homogeneous scheme, two nodes i and j can
communicate securely after deployment if either i was paired
with j or j was paired with i or both. Throughout, we
focus on the particular case with K1 = 1 and K2 = K,
hence we simplify our notations by writing K instead of
KKK = (1,K) and µ instead of µµµ = (µ, 1−µ). We assume that
the probability µ is fixed and does not scale with n, while K
is assumed to be scaled with n. Write N := {1, . . . n}, and
set N−i := N\{i} for each i = 1, . . . , n. Formally speaking,
with node i we associate a subset Γn,i(µ,K) (whose size
depends on the class of node i) of nodes selected at random
from N−i. Each of the nodes in Γn,i(µ,K) is said to be
paired to node i. Specifically, for any subset A ⊆ N−i, we
require

P
[
Γn,i(µ,K) = A

∣∣ ti = j
]

=


(
n−1
Kj

)−1
if |A| = Kj

0 otherwise
(2)

where ti denotes the class of node i, K1 = 1, and K2 = K.
Thus, the selection of Γn,i(µ,K) is done uniformly among
all subsets of N−i whose sizes depend on the class of node
i. In particular, if node i is class-1 (respectively, class-
2), the selection is done uniformly at random among all
subsets of N−i of size exactly 1 (respectively, K). The
random variables Γn,1(µ,K), . . . ,Γn,n(µ,K) are assumed
to be mutually independent so that

P
[
Γn,i(µ,K) = Ai

∣∣ ti, i = 1, . . . , n
]

=

n∏
i=1

P
[
Γn,i(µ,K) = Ai

∣∣ ti] (3)

for arbitrary A1, . . . , An subsets of N−1, . . . ,N−n, respec-
tively.

Once this offline random pairing has been created, we
construct the key rings Σn,1(µ,K), . . . ,Σn,n(µ,K), in the
memory modules of the corresponding nodes as follows: if

i ∈ Γn,j(µ,K) ∨ j ∈ Γn,j(µ,K)



then, a unique pairwise key ωij is generated and stored
in both Σn,i(µ,K) and Σn,j(µ,K) along with the IDs of
both nodes. Note that the key ωij is assigned exclusively to
the pair of nodes i and j, hence the terminology pairwise
predistribution scheme.

After deployment, each node first broadcasts its ID to
its immediate neighbors. Once a neighbor node receives
the broadcast, it searches its key ring for the ID of the
broadcasting node to tell if they share a common pairwise
key for secure communication. Secure communication can
then take place between key-sharing nodes by means of a
cryptographic handshake [5].

As mentioned earlier, under full visibility, two nodes, say i
and j, can establish a secure link if at least one of the events
i ∈ Γn,j(µ,K) or j ∈ Γn,j(µ,K) is taking place. Note
that both events can take place, in which case the memory
modules of node i and j both contain the distinct keys ωij
and ωji. By construction this scheme supports node-to-node
authentication.

B. Inhomogeneous random K-out graph

Under full visibility the heterogeneous pairwise key pre-
distribution scheme naturally gives rise to the inhomoge-
neous random K-out graph, defined as follows: With n =
2, 3, . . ., 0 < µ < 1 and positive integer K < n, we say that
the distinct nodes i and j are adjacent, written i ∼ j, if and
only if they have at least one key in common in their key
rings, namely

i ∼ j iff Σn,i(µ,K) ∩ Σn,j(µ,K) 6= ∅,

or, equivalently

i ∼ j iff i ∈ Γn,j(µ,K) ∨ j ∈ Γn,j(µ,K). (4)

Let H(n;µ,K) denote the undirected random graph on the
vertex set {1, . . . , n} induced by the adjacency notion (4).
The homogeneous case, when all nodes belong to the same
class and are paired with K other nodes at random reduces
to the homogeneous random K-out graph H(n;K) [6], [7].

III. MAIN RESULTS

We refer to any mapping K : N0 → N0 as a scaling
provided it satisfies the natural conditions

Kn < n, n = 2, 3, . . . .

Our main technical results, given next, characterize the
connectivity of the inhomogeneous random K-out graph
induced by the heterogeneous random pairwise key predis-
tribution scheme. Throughout, it will be convenient to use
the notation

P (n;µ,Kn) := P [H(n;µ,Kn) is connected]

and
C(µ,K) =

1

1 + 2e2

µ2 e2(1−µ)(K−1)
(5)

with 0 < µ < 1 and a positive, finite-integer K.
The following result establishes an upper bound on the

probability of connectivity of inhomogeneous random K-out

graphs when Kn = K for all n = 2, 3, . . ., where K is a
positive, finite integer with K ≥ 2.

Theorem 3.1: Consider a probability distribution µµµ =
(µ, 1 − µ) with µ > 0 such that a vertex is labeled as class-1
with probability µ or class-2 with probability 1−µ. Consider a
scaling K : N0 → N0 such that Kn = K for all n = 2, 3, . . .,
where K is a positive, finite integer with K ≥ 2. It holds that

lim sup
n→∞

P (n;µ,Kn) ≤ 1− C(µ,K)

The following result establishes a one-law for con-
nectivity of inhomogeneous random K-out graphs when
limn→∞Kn =∞.

Theorem 3.2: Consider a probability distribution µµµ =
(µ, 1 − µ) with µ > 0 such that a vertex is labeled as class-1
with probability µ or class-2 with probability 1− µ. Consider
a scaling K : N0 → N0 such that limn→∞Kn =∞. It holds
that

lim
n→∞

P (n;µ,Kn) = 1

Theorems 3.1 and 3.2 state that H (n;µ,Kn) is con-
nected with high probability if Kn is chosen such that
limn→∞Kn =∞. On the other hand, if Kn is chosen such
that Kn = K for all n = 2, 3, . . ., where K is a positive,
finite integer with K ≥ 2, the probability of connectivity
of H (n;µ,Kn) is bounded from above by 1 − C(µ,K)
with C(µ,K) > 0. In other words, any finite choice for
Kn gives rise to a positive probability of H (n;µ,Kn) being
asymptotically not connected.

Our results reveal the striking differences between the
homogeneous and the inhomogeneous random K-out graphs.
In particular, setting Kn = 2 for all n = 2, . . . is sufficient to
ensure that the homogeneous random K-out graph H (n;Kn)
is connected with high probability (see [8, Theorem 3.2]).
However, when a positive fraction of the nodes get paired,
each, with only one node, the network will be not connected
with a positive probability if each of the remaining nodes
is paired with Kn other nodes, when Kn = K for all
n = 2, 3, . . ., where K is a positive, finite integer with
K ≥ 2.

Although we show that the connectivity of H (n;µ,Kn)
requires limn→∞Kn = ∞, our results do not enforce
any particular relationship between the behavior of Kn and
n, other than limn→∞Kn = ∞. For example, setting
Kn = log log . . . log n would be sufficient to ensure that
limn→∞Kn =∞, hence guarantees the connectivity of the
resulting network. Remarkably, the graph can be connected
with order of magnitude fewer links, in total, compared to
most other random graph models such as Erdős-Rényi graphs
[9], random key graphs [10], and inhomogeneous random
key graphs [11], where the mean degree (respectively, the
minimum mean degree in the inhomogeneous random key
graphs) has to be on the order of log n to ensure connectivity.
In contrast, the mean degree of H (n;µ,Kn) is of order 2Kn,
where the only requirement on Kn is to have limn→∞Kn =
∞, e.g., Kn = log log . . . log n.



In comparing with other models, we find it relevant to
draw parallels between the practical requirements of the het-
erogeneous random pairwise key predistribution scheme, pre-
sented here, and other random key predistribution schemes.
We focus on the classical random key predistribution scheme
proposed by Eschenauer and Gligor [4] as well as the
heterogeneous random key predistribution scheme proposed
recently by Yağan [11]. As for Eschenauer and Gligor
scheme, Di Pietro et al. [12] showed that for practical con-
sideration, the universal key ring size has to be on the order
of log n (with the key pool size being of order n log n) such
that the resulting network is both connected and resilient
to node capture attacks1. As for the heterogeneous random
key predistribution scheme, the requirements on the key ring
sizes may increase by orders of magnitude depending on the
smallest key ring size, see [11] for details. Conversely, the
heterogeneous random pairwise key predistribution scheme
requires much less average key ring size to ensure both con-
nectivity and resiliency2, i.e., order of 2Kn with Kn being
any sequence that satisfies limn→∞Kn =∞. One example
of such a sequence is Kn = log log . . . log n. Hence, from
a practical standpoint, the heterogeneous random pairwise
key distribution requires orders of magnitude less memory
requirements to establish both connectivity and resiliency.

Numerical Study

We explore the validity of Theorem 3.1 via computer
simulations. We look at the probability that H(n;µ,Kn) is
connected when µ = 0.9 and as the parameter Kn varies
from Kn = 2 to Kn = 20. We set n = 3000 and generate
3000 independent samples of the graph H(n;µ,Kn) and
count the number of times (out of a possible 3000) that the
obtained graph is connected. Dividing this count by 3000,
we obtain the (empirical) probability that H(n;µ,Kn) is
connected. The results, depicted in Figure 1, readily confirm
Theorem 3.1 and the bound (5).

In Figure 2, we recall (5) and explore the interplay be-
tween µ and K as governed by C(µ,K). Our objective is to
show the effect of increasing µ on the minimum value of K
required to achieve a target bound on the probability of con-
nectivity. More precisely, we set C(µ,K) = 0.001 (implying
that the probability of connectivity is upper bounded by
0.999), and vary µ from 0.05 to 0.95. For each value of µ, we
compute the corresponding value of K, theoretically from (5)
and empirically via simulations, that would achieve the target
bound, i.e., C(µ,K) = 0.001. Observe that as µ increases,
more nodes get classified as class-1, hence a higher value of
K is needed to increase the probability of connectivity. We
set n = 3000 and perform 3000 independent simulations for
each data point.

1A network is said to be resilient to node capture attacks if the adversary
needs to capture a large number of nodes to compromise the confidentiality
of the network [12].

2Recall that nodes which were paired to one another have a unique
key in the heterogeneous random pairwise scheme, hence capturing a node
only compromises the links corresponding to this node, leading to perfect
resiliency.
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Fig. 1. The empirical probability P (n;µ,Kn) vs. Kn for n = 3000
and µ = 0.9, along with the theoretical upper bound given by Theorem 3.1.
Empirical probabilities approach the upper bound as Kn increases.
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Fig. 2. The theoretical as well as empirical values of K corresponding to
C(µ,K) = 0.001 as µ varies from 0.05 to 0.95. The network size n is set
to 3000.

IV. PRELIMINARIES

Throughout, we will make use of the following results.
Fact 4.1: For r = 1, . . . , bn2 c and n = 1, 2, . . ., we have(

n

r

)
≤
(n
r

)r ( n

n− r

)n−r
(6)

Due to space limitations, we give the proof of Fact 4.1 in
[15, Fact 4.1].

For 0 ≤ K ≤ x ≤ y, we have(
x
K

)(
y
K

) =

K−1∏
`=0

(
x− `
y − `

)
≤
(
x

y

)K
(7)

since x−`
y−` decreases as ` increases from ` = 0 to ` = K−1.

Moreover, we have

1± x ≤ e±x, 0 ≤ x ≤ 1 (8)

and
1− e−x ≥ x

2
, 0 ≤ x ≤ 1 (9)



Fig. 3. A realization of the inhomogeneous random K-out graph
H(n;µ,Kn) with K1 = 1 and K2 = 3. The graph is clearly disconnected
as it contains an isolated component of two class-1 nodes, highlighted in blue.
We set n = 75 and µ = 0.5.

Throughout, we set(
x

y

)
= 0, whenever x < y. (10)

V. A PROOF OF THEOREM 3.1

In what follows, we establish that

lim sup
n→∞

P (n;µ,Kn) ≤ 1− C(µ,K) (11)

whenever Kn = K for all n = 2, 3, . . ., where K is a
positive, finite integer satisfying K ≥ 2. In particular, with
class-1 nodes, each, being paired with only one node, we
will show that whenever class-2 nodes, each, gets paired with
Kn other nodes for Kn = K for all n = 2, 3, . . . and with
K ≥ 2, there will be a positive probability that the graph is
not connected.

Observe that when a positive fraction of the nodes, each,
gets paired with only one node, the graph may contain
isolated components consisting of two class-1 nodes, say i
and j, that were paired with each other, i.e., Γn,i(µ,Kn) =
{j}, Γn,j(µ,Kn) = {i}, and Γn,`(µ,Kn) ⊆ N \{i, j, `} for
all ` ∈ N \ {i, j}. Indeed, these isolated components render
the graph disconnected. A graphical illustration is given in
Figure 3. Our approach in establishing Theorem 3.1 relies
on the method of second moment applied to a variable that
counts the number of isolated components that contain two
vertices of class-1.

Recall that ti denotes the class of node i. Let
Uij(n;µ,Kn) denote the event that nodes i and j are both
class-1 and are forming an isolated component, i.e.,

Uij(n;µ,Kn) (12)

=

 ⋂
`∈N\{i,j}

[Γn,`(µ,Kn) ⊆ N \ {i, j, `}]


∩ [Γn,i(µ,Kn) = {j}] ∩ [Γn,j(µ,Kn) = {i}]
∩ [t1 = 1] ∩ [t2 = 1]

Next, let

χij(n;µ,Kn) = 111 [Uij(n;µ,Kn)]

and
Y (n;µ,Kn) =

∑
1≤i<j≤n

χij(n;µ,Kn)

Clearly, Y (n;µ,Kn) gives the number of isolated com-
ponents in H(n;µ,Kn) that contain two vertices of class-1.
We will show that with Kn = K for n = 2, 3, . . ., for a
positive, finite integer K with K ≥ 2, we have

lim sup
n→∞

P [Y (n;µ,Kn) = 0] ≤ 1− C(µ,K)

Recall that if H(n;µ,Kn) is connected, then it does not
contain any isolated component. However, H(n;µ,Kn) may
or may not be connected if it does not contain an isolated
component consisting of two nodes of class-1. It follows that

P (n;µ,Kn) ≤ P [Y (n;µ,Kn) = 0]

Hence, establishing (11) is equivalent to establishing

lim sup
n→∞

P [Y (n;µ,Kn) = 0] ≤ 1− C(µ,K) (13)

where C(µ,Kn) is given by (5).
By applying the method of second moments [14, Remark

3.1, p. 55] on Y (n;µ,Kn), we get

P[Y (n;µ,Kn) = 0] ≤ 1− (E[Y (n;µ,Kn)])
2

E[Y 2(n;µ,Kn)]
(14)

where

E[Y (n;µ,Kn)] =
∑

1≤i<j≤n

E [χij(n;µ,Kn)]

=

(
n

2

)
E[χ12(n;µ,Kn)] (15)

and

E[Y 2(n;µ,Kn)]

= E

 ∑
1≤i<j≤n

∑
1≤`<m≤n

χij(n;µ,Kn)χ`m(n;µ,Kn)


=

(
n

2

)
E [χ12(n;µ,Kn)]

+

(
n

2

)(
2

1

)(
n− 2

1

)
E [χ12(n;µ,Kn)χ13(n;µ,Kn)]

+

(
n

2

)(
2

2

)(
n− 2

2

)
E [χ12(n;µ,Kn)χ34(n;µ,Kn)]

by exchangeability and the binary nature of the random
variables {χij(n;µ,Kn)}1≤i<j≤n. Observe that

E [χ12(n;µ,Kn)χ13(n;µ,Kn)] = 0,

since [U12(n;µ,Kn) ∩ U13(n;µ,Kn)] = ∅ by definition.
Hence,

E[Y 2(n;µ,Kn)] (16)

=

(
n

2

)
E [χ12(n;µ,Kn)]



+

(
n

2

)(
n− 2

2

)
E [χ12(n;µ,Kn)χ34(n;µ,Kn)]

Using (15) and (16), we get

E[Y 2(n;µ,Kn)]

(E[Y (n;µ,Kn)])
2 =

1(
n
2

)
E[χ1,2(n;µ,Kn)]

(17)

+

(
n
2

)(
n−2
2

)
E[χ1,2(n;µ,Kn)χ3,4(n;µ,Kn)]((
n
2

)
E[χ1,2(n;µ,Kn)]

)2
The next two results will help establish (13).
Proposition 5.1: Consider a probability distribution µµµ =

(µ, 1 − µ) with µ > 0 such that a vertex is labeled as class-
1 with probability µ or class-2 with probability 1 − µ. Let
Kn = K for all n = 2, 3, . . ., where K is a positive, finite
integer with K ≥ 2, it holds that

lim
n→∞

(
n

2

)
E [χ12(n;µ,Kn)] = (18)

µ2

2
exp

(
− 2− 2(1− µ)(K − 1)

)

Due to space limitations, we give the proof of Proposi-
tion 5.1 in [15, Proposition 5.1].

Proposition 5.2: Consider a probability distribution µµµ =
(µ, 1 − µ) with µ > 0 such that a vertex is labeled as class-
1 with probability µ or class-2 with probability 1 − µ. Let
Kn = K for all n = 2, 3, . . ., where K is a positive, finite
integer with K ≥ 2, it holds that

lim
n→∞

((
n
2

)(
n−2
2

)
E [χ12(n;µ,Kn)χ34(n;µ,Kn)]((
n
2

)
E [χ12(n;µ,Kn)]

)2
)

= 1

(19)

Due to space limitations, we give the proof of Proposi-
tion 5.2 in [15, Proposition 5.2].

The main result (11) now follows by virtue of (13) and
(14) as we combine (17), (18), and (19).

VI. A PROOF OF THEOREM 3.2

In what follows, we establish that

lim
n→∞

P (n;µ,Kn) = 1 (20)

whenever limn→∞Kn =∞.
Observe that when limn→∞Kn = ∞, the upper bound

given in (5) becomes zero, hence Theorem 3.1 gives

lim
n→∞

P (n;µ,Kn) ≤ 1

which sheds some light on the possibility that Theorem 3.2
could be established when limn→∞Kn =∞. However, the
given bound is trivial, hence a rigorous proof is needed to
show that when limn→∞Kn =∞, we precisely have

lim
n→∞

P (n;µ,Kn) = 1

In what follows, we give our proof for Theorem 3.2.
Observe that for any non-empty subset S of nodes, i.e.,
S ⊆ N , we say that S is isolated in H(n;µ,Kn) if there
are no edges in H(n;µ,Kn) between the nodes in S and the

nodes in the complement Sc = N −S. This is characterized
by the event Bn(µ,Kn;S) given by

Bn(µ,Kn;S)

=
⋂
i∈S

⋂
j∈Sc

([i 6∈ Γn,j(µ,Kn)] ∩ [j /∈ Γn,i(µ,Kn)]) .

Note that if H(n;µ,Kn) is not connected, then there must
exist a non-empty subset S of nodes which is isolated. Recall
that each node in H(n;µ,Kn) is either class-1 (hence, gets
paired with 1 other node) with probability µ or class-2
(hence, gets paired with Kn other node) with probability
1 − µ. Thus, we may observe isolated sets in H(n;µ,Kn)
of cardinality r = 2, 3, . . . , bn2 c

3. Thus, with Dn(µ,Kn)
denoting the event that H(n;µ,Kn) is connected, we have
the inclusion

Dn(µ,Kn)c ⊆ ∪S∈Pn: 2≤|S|≤bn2 c Bn(µ,Kn;S) (21)

where Pn stands for the collection of all non-empty subsets
of N . A standard union bound argument immediately gives

P [Dn(µ,K)c] ≤
∑

S∈Pn:2≤|S|≤bn2 c

P [Bn(µ,Kn;S)]

=

bn2 c∑
r=2

 ∑
S∈Pn,r

P [Bn(µ,Kn;S)]

 (22)

where Pn,r denotes the collection of all subsets of N with
exactly r elements.

For each r = 1, . . . , n, we simplify the notation by writing
Bn,r(µ,Kn) = Bn(µ,Kn; {1, . . . , r}). Under the enforced
assumptions, exchangeability implies

P [Bn(µ,Kn;S)] = P [Bn,r(µ,Kn)] , S ∈ Pn,r

and the expression∑
S∈Pn,r

P [Bn(µ,Kn;S)] =

(
n

r

)
P [Bn,r(µ,Kn)] (23)

follows since |Pn,r| =
(
n
r

)
. Substituting into (22) we obtain

the bounds

P [Dn(µ,Kn)c] ≤
bn2 c∑
r=2

(
n

r

)
P [Bn,r(µ,Kn)] . (24)

For each r = 2, . . . , bn2 c, it is easy to check that

P [Bn,r(µ,Kn)]

=

(
µ

(
r−1
1

)(
n−1
1

) + (1− µ)

(
r−1
Kn

)(
n−1
Kn

))r ·
·

(
µ

(
n−r−1

1

)(
n−1
1

) + (1− µ)

(
n−r−1
Kn

)(
n−1
Kn

) )n−r (25)

To see why this last relation holds, recall that for nodes
{1, . . . , r} to be isolated in H(n;µ,Kn), we need that (i)
none of the sets Γn,1(µ,Kn), . . . ,Γn,r(µ,Kn) contains an

3Note that if vertices S form an isolated set then so do vertices N − S,
hence the sum need to be taken only until bn

2
c.



element from the set {r+1, . . . , n}; and (ii) none of the sets
Γn,r+1(µ,Kn), . . . ,Γn,n(µ,Kn) contains an element from
{1, . . . , r}. More precisely, we must have

Γn,i(µ,Kn) ⊆ {1, . . . , r} \ {i}, i = 1, . . . , r

and

Γn,j(µ,Kn) ⊆ {r + 1, . . . , n} \ {j}, j = r + 1, . . . , n.

Hence, the validity of (25) is now immediate
from (2) and the mutual independence of the rvs
Γn,1(µ,Kn), . . . ,Γn,n(µ,Kn). Observe that on the range
r = 2, . . . ,Kn, the set {1, . . . , r} can not contain any
class-2 nodes, but (25) still holds (as an upper bound) by
virtue of (10).

We now show that under the enforced assumptions of
Theorem 3.2, we have

lim
n→∞

bn2 c∑
r=2

(
n

r

)
P [Bn,r(µ,Kn)] = 0

which in turn establishes Theorem 3.2 by virtue of (24).
We use (7), (8), and (25) to get

P [Bn,r(µ,Kn)]

≤

(
µ

(
r−1
1

)(
n−1
1

) + (1− µ)

(
r−1
Kn

)(
n−1
Kn

))r ·
·

(
µ

(
n−r−1

1

)(
n−1
1

) + (1− µ)

(
n−r−1
Kn

)(
n−1
Kn

) )n−r

≤

(
µ

(
r − 1

n− 1

)
+ (1− µ)

(
r − 1

n− 1

)Kn
)r
·

·

(
µ

(
n− r − 1

n− 1

)
+ (1− µ)

(
n− r − 1

n− 1

)Kn
)n−r

≤
(
µ
( r
n

)
+ (1− µ)

( r
n

)Kn
)r
·

·
(
µ
(

1− r

n

)
+ (1− µ)

(
1− r

n

)Kn
)n−r

= µr
( r
n

)r (
1 +

1− µ
µ

( r
n

)Kn−1
)r (

1− r

n

)n−r
·

·
(

1− (1− µ)

(
1−

(
1− r

n

)Kn−1
))n−r

≤ µr
( r
n

)r (
1− r

n

)n−r (
1 +

1− µ
µ

( r
n

)Kn−1
)r
·

·
(

1− (1− µ)
(

1− e−r(
Kn−1

n )
))n−r

≤ µr
( r
n

)r (
1− r

n

)n−r
exp

(
1− µ
µ

r
( r
n

)Kn−1
(26)

− (1− µ) (n− r)
(

1− e−r(
Kn−1

n )
))

Combining (6) with (26), we conclude that

P [Dn(µ,Kn)c] ≤
bn2 c∑
r=2

(
n

r

)
P [Bn,r(µ,Kn)]

≤
bn2 c∑
r=2

µrAn,r (27)

where we define

An,r := exp

(
1− µ
µ

r
( r
n

)Kn−1
(28)

− (1− µ) (n− r)
(

1− e−r(
Kn−1

n )
))

with 2 ≤ r ≤ n/2.
Next, our goal is to derive an upper bound on An,r that

is valid for all n sufficiently large and r = 2, . . . , bn2 c, and
show that this bound tends to zero as n gets large. Fix n =
2, 3, sufficiently large. For each r = 2, . . . , bn2 c, either one
of the following should hold

r(Kn − 1)

n
≤ 1 and

r(Kn − 1)

n
> 1.

If it holds that r(Kn−1)
n ≤ 1, then we use (9) to get 1 −

e−r(
Kn−1

n ) ≥ r(Kn−1)
2n . Using this in (28) yields

An,r

≤ exp

(
1− µ
µ

r
( r
n

)Kn−1
− (1− µ) (n− r)r(Kn − 1)

2n

)
≤ exp

(
1− µ
µ

r

(
1

2

)Kn−1

− (1− µ)
r(Kn − 1)

4

)
(29)

= exp

(
− (1− µ) r

(
(Kn − 1)

4
− (0.5)

Kn−1

µ

))

≤ exp

(
−2 (1− µ)

(
(Kn − 1)

4
− (0.5)Kn−1

µ

))
(30)

where (29) follows from the facts that n−r ≥ n/2 and r/n ≤
0.5 on the specified range for r, and (30) follows for all Kn

sufficiently large such that Kn >
⌈
4
(

(0.5)Kn−1

µ

)
+ 1
⌉

upon
noting that r ≥ 2.

If, on the other hand, it holds that r(Kn−1)
n > 1, we see

that 1− e−r(
Kn−1

n ) ≥ 1− e−1. Reporting this into (28) and
using r ≤ n/2, we get

An,r

≤ exp

(
1− µ
µ

r
( r
n

)Kn−1
− (1− µ) (n− r)

(
1− e−1

))
≤ exp

(
1− µ
µ

n

2
(0.5)Kn−1 − (1− µ)

n

2

(
1− e−1

))
= exp

(
− (1− µ)

n

2

(
1− e−1 − (0.5)Kn−1

µ

))
. (31)

Combining (30) and (31) we see that

An,r ≤ max

{
exp

(
−2 (1− µ)

(
Kn − 1

4
− (0.5)Kn−1

µ

))
,

exp

(
− (1− µ)

n

2

(
1− e−1 − (0.5)Kn−1

µ

))}
.

(32)



holds for all n sufficiently large and all r = 2, . . . , bn2 c.
Letting n go to infinity, it is now easy to see that

lim
n→∞

An,r = 0, 2 ≤ r ≤ n/2

under the enforced assumption that limn→∞Kn = ∞.
Observing that the bound derived on An,r is independent
on r, we get from (27)

bn2 c∑
r=2

(
n

r

)
P [Bn,r(µ,Kn)] ≤ o(1)

∞∑
r=2

µr = o(1)
µ2

1− µ

and the conclusion

lim
n→∞

bn2 c∑
r=2

(
n

r

)
P [Bn,r(µ,Kn)] = 0

immediately follows since 0 < µ < 1.

VII. CONCLUSION

We consider a wireless sensor networks secured by the
heterogeneous random pairwise key predistribution scheme,
where each node is classified as class-1 with probability µ or
class-2 with probability 1−µ, for 0 < µ < 1, independently.
We consider the particular case when class-1 (respectively,
class-2) node is paired (offline) with 1 (respectively, K)
other nodes selected uniformly at random. Our objective is
to characterize the connectivity of the resulting network as
a function of K. The scheme induces an inhomogeneous
random K-out graph H(n;µ,Kn), where n denotes the
number of nodes and Kn denotes a scaling of K with respect
to the network size n. With K1 = 1, we show that i)
when Kn = K for all n = 2, 3, . . . for a positive, finite
integer K with K ≥ 2, the resulting graph is not connected
with a positive probability. In this case, we derive a tight
upper bound on the probability of connectivity and verify the
results via simulations. Moreover, ii) we prove that when Kn

is chosen such that limn→∞Kn =∞, the graph is connected
with high probability as n tends to infinity.

As for future work, we plan to investigate the k-
connectivity [16], [17] and k-robustness [18], [19], [20]
of the network, owing to their significant importance in
designing reliable wireless sensor networks. In particular,
our results on the 1-connectivity of the network do not
provide any guarantees on whether or not the network will
remain connected upon the failure (or perhaps, capture)
of some sensor nodes. Establishing k-connectivity result
would provide reliability guarantees as to what extent the
network could remain connected despite the failure of some
nodes. In addition, the property of k-robustness plays a key
role in various dynamical processes over networks; such as
quantifying how resilient message dissemination is against
node misbehavior when only local information is used [18].
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[15] R. Eletreby and O. Yağan, “Connectivity of wireless sensor networks
secured by the heterogeneous random pairwise key predistribution
scheme,” full version available online at
https://www.andrew.cmu.edu/user/reletreb/papers/cdc2018full.pdf.
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[17] F. Yavuz, J. Zhao, O. Yağan, and V. Gligor, “Toward k-connectivity of
the random graph induced by a pairwise key predistribution scheme
with unreliable links,” IEEE Transactions on Information Theory,
vol. 61, no. 11, pp. 6251–6271, 2015.

[18] H. Zhang and S. Sundaram, “Robustness of complex networks with
implications for consensus and contagion,” in Proc. of IEEE CDC
2012, 2012, pp. 3426–3432.
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