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Summary

Random intersection graphs have received much attention

and been used in diverse applications including secure

sensor networks. We discuss the applications of random

intersection graphs to different secure sensor networks in

order to derive the results of network connectivity.

Random Intersection Graphs and Their Applications

Random intersection graphs was introduced by Singer-

Cohen [6]. These graphs have recently received consider-

able attention in the literature and been used in diverse

applications [1,2,7–13]. In a general random intersection

graph, each node is assigned a set of items in some ran-

dom manner, and any two nodes establish an undirected

edge in between if and only if they have at least a cer-

tain number of items in common. In this paper, we con-

sider random s-intersection graphs defined as follows. In

a random s-intersection graph with n nodes, each node

selects Kn distinct items uniformly at random from the

same item pool that has Pn different items, and any two

nodes have an edge in between upon sharing at least s

items, where 1 ≤ s ≤ Kn ≤ Pn holds, and Kn and Pn

are functions of n for generality. We denote a random

s-intersection graph by Gs(n,Kn, Pn).

Random intersection graphs have numerous application

areas including secure wireless sensor networks [8, 10, 11,

13], social networks [1], cryptanalysis [2], and clustering

[12]. We detail the use of random intersection graphs to

model secure sensor networks.

Use of Random Intersection Graphs to Model Secure

Sensor Networks

We first explain that random 1-intersection graphs natu-

rally capture the Eschenauer–Gligor (EG) key predistri-

bution scheme [5], which is a recognized approach to en-
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sure secure communications in wireless sensor networks

(citation: 3700+ as of 01/07/2015). In the EG scheme

for an n-size sensor network, cryptographic keys are pre-

distributed to sensors before sensors get deployed; in par-

ticular, before deployment, each sensor is assigned a set

of Kn distinct cryptographic keys selected uniformly at

random from a key pool containing Pn different keys. Af-

ter deployment, two sensors establish secure communica-

tion over an existing link if and only if they have at least

one common key. We say that a secure sensor network

has full visibility if secure communication between two

sensors only require the key sharing and does not have

link constraints (examples of link constraints include the

links being reliable and the distance between sensors be-

ing small enough). Then the topology of a sensor network

with the EG scheme under full visibility is given by a ran-

dom 1-intersection graph G1(n,Kn, Pn).

The full visibility model explained above does not cap-

ture link constraints, but wireless links in practice might

be unreliable due to the presence of physical barriers in

between or because of harsh environmental conditions

severely impairing transmission. Moreover, in real–world

implementations of sensor networks, two sensors have to

be within a certain distance from each other to communi-

cate. Therefore, in our analysis of secure sensor networks,

we consider two types of link constraints: link unreliabil-

ity and transmission constraints. In the link unreliability

model, each link between two sensors is independently

active with probability tn and inactive with probability

(1− tn). For transmission constraints, we use the widely

adopted disk model: each node’s transmission area is a

disk with a transmission radius rn so two nodes must have

a distance at most rn for direct communication. In terms

of the node distribution, we consider that the n sensors

are independently and uniformly deployed in a region A,

where A is either a torus T without any boundary or a

square S with boundaries, each with a unit area.
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Graphs Results

G1(n,Kn, Pn) k-connectivity [7]

G1(n,Kn, Pn) ∩G(n, tn) k-connectivity [8, 9]

G1(n,Kn, Pn) ∩GA(n, rn) connectivity [10]

Gs(n,Kn, Pn) k-connectivity [11]

Gs(n,Kn, Pn) ∩G(n, tn) k-connectivity [12]

Gs(n,Kn, Pn) ∩GA(n, rn) connectivity [13]

Table 1: Graphs and their results.

Note that tn and rn are functions of n for general-

ity. The link unreliability induces an Erdős–Rényi graph

[4] denoted by G(n, tn), and the model of transmission

constraints yields a random geometric graph denoted by

GA(n, rn). In consideration of the EG scheme and the

link constraints, the topology of a sensor network with

the EG scheme under link unreliability is given by the in-

tersection of a random 1-intersection graph G1(n,Kn, Pn)

and an Erdős–Rényi graph G(n, tn), where for graphs G1

and G2, two nodes have an edge in between in G1 ∩G2 if

and only if these two nodes have an edge in G1 and also

an edge in G2. Similarly, the topology of a sensor network

with the EG scheme under transmission constraints is

given by the intersection of a random 1-intersection graph

G1(n,Kn, Pn) and a random geometric graph GA(n, rn).

The EG scheme was further extended to the Chan–

Perrig–Song (CPS) scheme [3] (citation: 3000+ as of

01/07/2015). The only difference between the two

schemes is that in the CPS scheme, a secure link between

two sensors requires the sharing of at least s different

keys rather than just one key. Then from the analysis

on the EG scheme above and recalling the graph nota-

tion, we immediately obtain that: (i) the topology of a

sensor network with the CPS scheme under full visibility

is given by Gs(n,Kn, Pn); (ii) the topology of a sensor

network with the CPS scheme under link unreliability is

given by Gs(n,Kn, Pn) ∩G(n, tn); and (iii) the topology

of a sensor network with the CPS scheme under transmis-

sion constraints is given by Gs(n,Kn, Pn) ∩GA(n, rn).

We have derived (k-)connectivity results of the afore-

mentioned graphs, as summarized in Table 1, where a

graph is k-connected if each pair of nodes has at least k

internally node-disjoint path(s) between them, and con-

nectivity just means 1-connectivity. As an example, we

present the following theorem for k-connectivity results

of a random s-intersection graph Gs(n,Kn, Pn).

Theorem 1 For a random s-intersection graph

Gs(n,Kn, Pn) which models a secure sensor network with

the CPS scheme under full visibility, under Pn =Ω(n), if

1

s!
·
Kn

2s

Pn
s

=
lnn+ (k − 1) ln lnn+ αn

n
(1)

for a sequence αn with lim
n→∞

αn = α∗ ∈ [−∞,∞], then

lim
n→∞

P[Graph Gs(n,Kn, Pn) is k-connected. ] = e
− e

−α
∗

(k−1)! .

In Theorem 1 above, the term 1
s! ·

Kn
2s

Pn
s in Equation (1)

is an asymptotics of the edge probability (i.e., the proba-

bility for the existence of an edge between two nodes).

If we replace (1) by the condition of the edge proba-

bility being lnn+(k−1) ln lnn+αn

n
, Theorem 1 still follows.

Theorem 1 shows that random s-intersection graphs ex-

hibit a phase transition for k-connectivity, and in view

of the above, a critical threshold of the edge probability

for k-connectivity is lnn+(k−1) ln lnn

n
, which is the same as

Erdős–Rényi graphs [4].
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