A Case for Small Row Buffers in Non-Volatile Main Memories

Justin Meza* Jing Li† Onur Mutlu (∗Carnegie Mellon University †IBM T.J. Watson Research Center)

1 Motivation / Background

DRAM devices have destructive reads and buffer large rows of cells to reduce cost

System trends reduce the amount of data accessed from buffer (<10% for some 8-core systems)

- Due to contention among many cores
- Due to data mapping schemes

Buffering large rows is energy-inefficient

2 Enabling Small Row Buffers

Non-volatile memories (NVMs) have non-destructive reads

- Leverage to reduce row buffer size
- We examine the system-level trade-offs of reducing row buffer size in NVMs

Swap row buffer and column mux in NVM datapath

Read an entire NVM row, but select and buffer only a portion of its data

3 Evaluation

8-cores, DDR3-1066 simulator; modified for NVM timing and energy; 31 workloads

<table>
<thead>
<tr>
<th></th>
<th>PCM</th>
<th>STT-RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (Read/Write)</td>
<td>2x/100x</td>
<td>0.5x/1x</td>
</tr>
<tr>
<td>Latency (Read/Write)</td>
<td>5x/10x</td>
<td>1x/1x</td>
</tr>
</tbody>
</table>

4 Results

47/67% less main memory energy for PCM/STT-RAM with 64B row buffer size

Small rows achieve similar performance to large rows due to low system row locality

Better performance with similar technology parameters (STT-RAM) due to relaxed timing constraints compared to DRAM