The RowHammer Problem
and Other Issues We May Face
as Memory Becomes Denser

Onur Mutlu
omutlu@ethz.ch
http://users.ece.cmu.edu/~omutlu/
June 9, 2016
DAC Invited Talk
Main memory is a critical component of all computing systems: server, mobile, embedded, desktop, sensor.

Main memory system must scale (in size, technology, efficiency, cost, and management algorithms) to maintain performance growth and technology scaling benefits.
The DRAM Scaling Problem

- DRAM stores charge in a capacitor (charge-based memory)
 - Capacitor must be large enough for reliable sensing
 - Access transistor should be large enough for low leakage and high retention time
 - Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

- As DRAM cell becomes smaller, it becomes more vulnerable
Testing DRAM Scaling Issues …

An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study (Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case (Lee et al., HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems (Qureshi et al., DSN 2015)
Repeatedly opening and closing a row enough times within a refresh interval induces disturbance errors in adjacent rows in most real DRAM chips you can buy today.
Most DRAM Modules Are Vulnerable

A company
86% (37/43)
Up to 1.0×10^7 errors

B company
83% (45/54)
Up to 2.7×10^6 errors

C company
88% (28/32)
Up to 3.3×10^5 errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014)
Recent DRAM Is More Vulnerable

All modules from 2012–2013 are vulnerable
A Simple Program Can Induce Many Errors

```
loop:
    mov (X), %eax
    mov (Y), %ebx
    clflush (X)
    clflush (Y)
    mfence
    jmp loop
```

Download from: https://github.com/CMU-SAFARI/rowhammer
A Simple Program Can Induce Many Errors

1. Avoid *cache hits*
 - Flush X from cache

2. Avoid *row hits* to X
 - Read Y in another row

Download from: https://github.com/CMU-SAFARI/rowhammer
A Simple Program Can Induce Many Errors

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer
A Simple Program Can Induce Many Errors

```
loop:
    mov (X), %eax
    mov (Y), %ebx
    clflush (X)
    clflush (Y)
    mfence
    jmp loop
```

Download from: https://github.com/CMU-SAFARI/rowhammer
A Simple Program Can Induce Many Errors

```
loop:
    mov (X), %eax
    mov (Y), %ebx
    clflush (X)
    clflush (Y)
    mfence
    jmp loop
```

Download from: https://github.com/CMU-SAFARI/rowhammer
Observed Errors in Real Systems

<table>
<thead>
<tr>
<th>CPU Architecture</th>
<th>Errors</th>
<th>Access-Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Haswell (2013)</td>
<td>22.9K</td>
<td>12.3M/sec</td>
</tr>
<tr>
<td>Intel Ivy Bridge (2012)</td>
<td>20.7K</td>
<td>11.7M/sec</td>
</tr>
<tr>
<td>Intel Sandy Bridge (2011)</td>
<td>16.1K</td>
<td>11.6M/sec</td>
</tr>
<tr>
<td>AMD Piledriver (2012)</td>
<td>59</td>
<td>6.1M/sec</td>
</tr>
</tbody>
</table>

- A real reliability & security issue
- In a more controlled environment, we can induce as many as ten million disturbance errors

One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)

Project Zero

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)
RowHammer Security Attack Example

- “Rowhammer” is a problem with some recent DRAM devices in which repeatedly accessing a row of memory can cause bit flips in adjacent rows (Kim et al., ISCA 2014).
 - Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)

- We tested a selection of laptops and found that a subset of them exhibited the problem.

- We built two working privilege escalation exploits that use this effect.
 - Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

- One exploit uses rowhammer-induced bit flips to gain kernel privileges on x86-64 Linux when run as an unprivileged userland process.
 - When run on a machine vulnerable to the rowhammer problem, the process was able to induce bit flips in page table entries (PTEs).
 - It was able to use this to gain write access to its own page table, and hence gain read-write access to all of physical memory.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)
Security Implications

Rowhammer

It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until the vibrations open the door you were after
Selected Readings on RowHammer (I)

- **Our first detailed study: Rowhammer analysis and solutions** (June 2014)
 - Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
 "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"

- **Our Source Code to Induce Errors in Modern DRAM Chips** (June 2014)
 - https://github.com/CMU-SAFARI/rowhammer

- **Google Project Zero’s Attack to Take Over a System** (March 2015)
 - Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)
 - https://github.com/google/rowhammer-test
 - Double-sided Rowhammer
Remote RowHammer Attacks via JavaScript (July 2015)
- https://github.com/IAIK/rowhammerjs
- Gruss et al., DIMVA 2016.
- CLFLUSH-free Rowhammer
- “A fully automated attack that requires nothing but a website with JavaScript to trigger faults on remote hardware.”
- “We can gain unrestricted access to systems of website visitors.”

ANVIL: Software-Based Protection Against Next-Generation Rowhammer Attacks (March 2016)
- http://dl.acm.org/citation.cfm?doid=2872362.2872390
- Aweke et al., ASPLOS 2016
- CLFLUSH-free Rowhammer
- Software based monitoring for rowhammer detection
Root Causes of Disturbance Errors

- **Cause 1: Electromagnetic coupling**
 - Toggling the wordline voltage briefly increases the voltage of adjacent wordlines
 - Slightly opens adjacent rows → Charge leakage

- **Cause 2: Conductive bridges**

- **Cause 3: Hot-carrier injection**

Confirmed by at least one manufacturer
Experimental DRAM Testing Infrastructure

An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study (Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case (Lee et al., HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems (Qureshi et al., DSN 2015)
Experimental DRAM Testing Infrastructure

RowHammer Characterization Results

1. Most Modules Are at Risk
2. Errors vs. Vintage
3. Error = Charge Loss
4. Adjacency: Aggressor & Victim
5. Sensitivity Studies
6. Other Results in Paper
7. Solution Space
4. Adjacency: Aggressor & Victim

Note: For three modules with the most errors (only first bank)

Most aggressors & victims are adjacent
Note: For three modules with the most errors (only first bank)

Less frequent accesses \Rightarrow Fewer errors
2 Refresh Interval

Note: Using three modules with the most errors (only first bank)

More frequent refreshes \(\Rightarrow\) Fewer errors
3 Data Pattern

Solid

111111
111111
111111
111111

~Solid

000000
000000
000000
000000

RowStripe

111111
000000
111111
000000

~RowStripe

000000
111111
000000
111111

Errors affected by data stored in other cells
6. Other Results (in Paper)

• *Victim Cells ≠ Weak Cells (i.e., leaky cells)*
 – Almost no overlap between them

• *Errors not strongly affected by temperature*
 – Default temperature: 50°C
 – At 30°C and 70°C, number of errors changes <15%

• *Errors are repeatable*
 – Across ten iterations of testing, >70% of victim cells had errors in every iteration
6. Other Results (in Paper) cont’d

• **As many as 4 errors per cache-line**
 – Simple ECC (e.g., SECDED) cannot prevent all errors

• **Number of cells & rows affected by aggressor**
 – Victims cells per aggressor: \(\leq 110 \)
 – Victims rows per aggressor: \(\leq 9 \)

• **Cells affected by two aggressors on either side**
 – Very small fraction of victim cells \((<100) \) have an error when either one of the aggressors is toggled
Some Potential Solutions

- Make better DRAM chips
- Refresh frequently
- Sophisticated ECC
- Access counters

Cost, Power, Performance
Cost, Power
Cost, Power, Complexity
Naive Solutions

1. **Throttle accesses to same row**
 - Limit access-interval: \(\geq 500\text{ns} \)
 - Limit number of accesses: \(\leq 128K \) (=64ms/500ns)

2. **Refresh more frequently**
 - Shorten refresh-interval by \(\sim 7x \)

Both naive solutions introduce significant overhead in performance and power.
Apple’s Patch for RowHammer

Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5

Impact: A malicious application may induce memory corruption to escalate privileges

Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could have led to memory corruption. **This issue was mitigated by increasing memory refresh rates.**

CVE-ID

CVE-2015-3693: Mark Seaborn and Thomas Dullien of Google, working from original research by Yoongu Kim et al (2014)

HP and Lenovo released similar patches
Our Solution

• PARA: Probabilistic Adjacent Row Activation

• Key Idea
 – After closing a row, we activate (i.e., refresh) one of its neighbors with a low probability: \(p = 0.005 \)

• Reliability Guarantee
 – When \(p=0.005 \), errors in one year: \(9.4 \times 10^{-14} \)
 – By adjusting the value of \(p \), we can vary the strength of protection against errors
Advantages of PARA

- **PARA refreshes rows infrequently**
 - Low power
 - Low performance-overhead
 - Average slowdown: 0.20% (for 29 benchmarks)
 - Maximum slowdown: 0.75%

- **PARA is stateless**
 - Low cost
 - Low complexity

- **PARA is an effective and low-overhead solution to prevent disturbance errors**
Requirements for PARA

• Better coordination between memory controller and DRAM
 – Memory controller should know which rows are physically adjacent
More on RowHammer Analysis

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Yoongu Kim¹ Ross Daly* Jeremie Kim¹ Chris Fallin* Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹
¹Carnegie Mellon University ²Intel Labs

RowHammer: Reliability Analysis and Security Implications

Yoongu Kim¹, Ross Daly, Jeremie Kim¹, Chris Fallin, Ji Hye Lee¹, Donghyuk Lee¹, Chris Wilkerson², Konrad Lai, and Onur Mutlu¹
¹Carnegie Mellon University ²Intel Labs
Future of Main Memory

- DRAM is becoming less reliable \rightarrow more vulnerable
Large-Scale Failure Analysis of DRAM Chips

- Analysis and modeling of memory errors found in all of Facebook’s server fleet

- Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field" Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015. [Slides (pptx) (pdf)] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu* Sanjeev Kumar* Onur Mutlu
Carnegie Mellon University * Facebook, Inc.
DRAM Reliability Reducing

Intuition: quadratic increase in capacity

![Graph showing the relationship between chip density (Gb) and relative server failure rate.](image)
Future of Main Memory

- DRAM is becoming less reliable → more vulnerable
- Due to difficulties in DRAM scaling, other problems may also appear (or they may be going unnoticed)

- Some errors may already be slipping into the field
 - Read disturb errors (Rowhammer)
 - Retention errors
 - Read errors, write errors
 - ...

- These errors can also pose security vulnerabilities
DRAM Data Retention Time Failures

- Determining the retention time of a cell/row is getting more difficult

- Retention failures may already be slipping into the field
An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms

Jamie Liu
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
jamiel@alumni.cmu.edu

Ben Jaiyen
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
bjaiyen@alumni.cmu.edu

Yoongu Kim
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
yoonguk@ece.cmu.edu

Chris Wilkerson
Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95054
chris.wilkerson@intel.com

Onur Mutlu
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
onur@cmu.edu
Two Challenges to Retention Time Profiling

- Data Pattern Dependence (DPD) of retention time

- Variable Retention Time (VRT) phenomenon
Two Challenges to Retention Time Profiling

- Challenge 1: Data Pattern Dependence (DPD)
 - Retention time of a DRAM cell depends on its value and the values of cells nearby it
 - When a row is activated, all bitlines are perturbed simultaneously
Electrical noise on the bitline affects reliable sensing of a DRAM cell. The magnitude of this noise is affected by values of nearby cells via:
- Bitline-bitline coupling → electrical coupling between adjacent bitlines
- Bitline-wordline coupling → electrical coupling between each bitline and the activated wordline

Retention time of a cell depends on data patterns stored in nearby cells:
- Need to find the worst data pattern to find worst-case retention time
- Pattern is location dependent
Two Challenges to Retention Time Profiling

- Challenge 2: Variable Retention Time (VRT)
 - Retention time of a DRAM cell changes randomly over time
 - a cell alternates between multiple retention time states
 - Leakage current of a cell changes sporadically due to a charge trap in the gate oxide of the DRAM cell access transistor
 - When the trap becomes occupied, charge leaks more readily from the transistor’s drain, leading to a short retention time
 - Called *Trap-Assisted Gate-Induced Drain Leakage*
 - This process appears to be a random process [Kim+ IEEE TED’11]
 - Worst-case retention time depends on a random process → need to find the worst case despite this
Modern DRAM Retention Time Distribution

Newer device families have more weak cells than older ones
Likely a result of technology scaling
Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

- Refresh
 - Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance

THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng, **John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel

Refresh

tWR

Cell TR leakage

VRT

Time
Mitigation of Retention Issues [SIGMETRICS'14]

The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study

Samira Khan†*
samirakhan@cmu.edu

Donghyuk Lee†
donghyuk1@cmu.edu

Yoongu Kim†
yoongukim@cmu.edu

Alaa R. Alameldeen*
alaa.r.alameldeen@intel.com

Chris Wilkerson*
chris.wilkerson@intel.com

Onur Mutlu†
onur@cmu.edu

†Carnegie Mellon University *Intel Labs
AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems

Moinuddin K. Qureshi†
†Georgia Institute of Technology
{moin, dhkim, pnair6}@ece.gatech.edu

Dae-Hyun Kim†

Samira Khan‡
‡Carnegie Mellon University
{samirakhan, onur}@cmu.edu

Prashant J. Nair†

Onur Mutlu‡
How Do We Keep Memory Secure?

- DRAM
- Flash memory
- Emerging Technologies
 - Phase Change Memory
 - STT-MRAM
 - RRAM, memristors
 - ...

SAFARI
How Do We Keep Memory Secure?

- **Understand**: Solid methodologies for failure modeling and discovery
 - Modeling based on real device data – small scale and large scale

- **Architect**: Principled co-architecting of system and memory
 - Good partitioning of duties across the stack

- **Design & Test**: Principled electronic design, automation, testing
 - High coverage and good interaction with system reliability methods
Understand with Experiments (DRAM)

Understand with Experiments (Flash)

Another Time: NAND Flash Vulnerabilities

- Onur Mutlu, "Error Analysis and Management for MLC NAND Flash Memory"
 Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August 2014. Slides (ppt) (pdf)

Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.
Large-Scale Flash SSD Error Analysis

- First large-scale field study of flash memory errors

Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "A Large-Scale Study of Flash Memory Errors in the Field"

[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register] [Coverage on TechSpot] [Coverage on The Tech Report]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza
Carnegie Mellon University
meza@cmu.edu

Qiang Wu
Facebook, Inc.
qwu@fb.com

Sanjeev Kumar
Facebook, Inc.
skumar@fb.com

Onur Mutlu
Carnegie Mellon University
onur@cmu.edu
Summary

- Memory reliability is reducing
- Reliability issues open up security vulnerabilities
 - Very hard to defend against
- Rowhammer is an example
 - Its implications on system security research are tremendous & exciting

- **Good news: We have a lot more to do.**
- **Understand:** Solid methodologies for failure modeling and discovery
 - Modeling based on real device data – small scale and large scale
- **Architect:** Principled co-architecting of system and memory
 - Good partitioning of duties across the stack
- **Design & Test:** Principled electronic design, automation, testing
 - High coverage and good interaction with system reliability methods
The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
omutlu@ethz.ch
http://users.ece.cmu.edu/~omutlu/
June 9, 2016
DAC Invited Talk
More Detail
RowHammer in Popular Sites and Press

- https://twitter.com/hashtag/rowhammer?f=realtime
- https://www.youtube.com/watch?v=H63dUfGBpxE
- http://www.wired.com/2015/03/google-hack-dram-memory-electric-leaks/
Recap: The DRAM Scaling Problem

DRAM Process Scaling Challenges

- Refresh
 - Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance

THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
DRAM Retention Failure Analysis

An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms

Jamie Liu* Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 jamiel@alumni.cmu.edu
Ben Jaiyen* Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 bjaiyen@alumni.cmu.edu
Yoongu Kim Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 yoonguk@ece.cmu.edu
Chris Wilkerson Intel Corporation 2200 Mission College Blvd. Santa Clara, CA 95054 chris.wilkerson@intel.com
Onur Mutlu Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 onur@cmu.edu
Towards an Online Profiling System

Key Observations:

- **Testing alone cannot detect** all possible failures
- **Combination** of ECC and other mitigation techniques is much more **effective**
 - But degrades performance
- **Testing** can help to reduce the **ECC strength**
 - Even when starting with a **higher strength ECC**

Towards an Online Profiling System

1. Initially Protect DRAM with Strong ECC
2. Periodically Test Parts of DRAM
3. Mitigate errors and reduce ECC

Run tests periodically after a short interval at smaller regions of memory
Online Mitigating of DRAM Failures

- Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, and Onur Mutlu,

"The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study"

Memory Errors in Facebook Fleet

- Analysis and modeling of memory errors found in all of Facebook’s server fleet

- Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field" Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015. [Slides (pptx) (pdf)] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu* Sanjeev Kumar* Onur Mutlu
Carnegie Mellon University *Facebook, Inc.
Findings

- Error/failure occurrence
- Page offlineing at scale
- Technology scaling
- New reliability trends
- Modeling errors

Architecture & workload
Findings

Error/failure occurrence

Errors follow a **power-law distribution** and a large number of errors occur due to **sockets/channels**
Findings

We find that newer cell fabrication technologies have higher failure rates.
Findings

Chips per DIMM, transfer width, and workload type (not necessarily CPU/memory utilization) affect reliability.
Findings

We have made publicly available a *statistical model* for assessing server memory reliability.
Findings

Error/failure occurrence

Page offlineing at scale

First large-scale study of page offlineing; real-world limitations of technique
Server error rate

- Correctable errors (CE)
- Uncorrectable errors (UCE)

Fraction of servers

Month

Memory error distribution

Number of logged errors

0.0 0.2 0.4 0.6 0.8 1.0
Normalized device number

10^8
10^7
10^6
10^5
10^4
10^3
10^2
10^1
10^0

Measured
Power law
Memory error distribution

\[\Pr(\text{logged errors} > x) \]

- Measured
- Pareto \((R^2 = 0.97) \)

Decreasing hazard rate
Errors in Flash Memory (I)

1. Retention noise study and management

2. Flash-based SSD prototyping and testing platform
3. **Overall flash error analysis**

4. **Program and erase noise study**

Errors in Flash Memory (III)

5. Cell-to-cell interference characterization and tolerance

6. Read disturb noise study

7. Flash errors in the field

11) Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, A Large-Scale Study of Flash Memory Errors in the Field, SIGMETRICS 2015.
More on Flash Retention Errors

Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery

Yu Cai, Yixin Luo, Erich F. Haratsch*, Ken Mai, Onur Mutlu
Carnegie Mellon University, *LSI Corporation
yucaicai@gmail.com, yixinluo@cs.cmu.edu, erich.haratsch@lsi.com, {kenmai, omutlu}@ece.cmu.edu
More on Flash Read Disturb Errors

Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, and Onur Mutlu,
"Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation"
Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.

Read Disturb Errors in MLC NAND Flash Memory: Characterization, Mitigation, and Recovery

Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch*, Ken Mai, Onur Mutlu
Carnegie Mellon University, *Seagate Technology
yucaicai@gmail.com, {yixinluo, ghose, kenmai, onur}@cmu.edu
More on Flash Error Analysis

More Detail on Flash Error Analysis

Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai,
"Error Analysis and Retention-Aware Error Management for NAND Flash Memory"
Google’s RowHammer Attack

The following slides are from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

Kernel exploit

- x86 page tables entries (PTEs) are **dense and trusted**
 - They control access to physical memory
 - A bit flip in a PTE’s physical page number can give a process access to a different physical page
- Aim of exploit: Get access to a page table
 - Gives access to all of physical memory
- Maximise chances that a bit flip is useful:
 - Spray physical memory with page tables
 - Check for useful, repeatable bit flip first
x86-64 Page Table Entries (PTEs)

- Page table is a 4k page containing array of 512 PTEs
- Each PTE is 64 bits, containing:

![Figure 5-21. 4-Kbyte PTE—Long Mode](image)

- Could flip:
 - “Writable” permission bit (RW): 1 bit → 2% chance
 - Physical page number: 20 bits on 4GB system → 31% chance
What happens when we map a file with read-write permissions?
What happens when we map a file with read-write permissions? Indirection via page tables.
What happens when we repeatedly map a file with read-write permissions?
What happens when we repeatedly map a file with read-write permissions?

PTEs in physical memory help resolve virtual addresses to physical pages.
What happens when we repeatedly map a file with read-write permissions?

PTEs in physical memory help resolve virtual addresses to physical pages.

We can fill physical memory with PTEs.
What happens when we repeatedly map a file with read-write permissions?

PTEs in physical memory help resolve virtual addresses to physical pages.

We can fill physical memory with PTEs.

Each of them points to pages in the same physical file mapping.
What happens when we repeatedly map a file with read-write permissions?

PTEs in physical memory help resolve virtual addresses to physical pages.

We can fill physical memory with PTEs.

Each of them points to pages in the same physical file mapping.

If a bit in the right place in the PTE flips ...
What happens when we repeatedly map a file with read-write permissions?

PTEs in physical memory help resolve virtual addresses to physical pages.

We can fill physical memory with PTEs.

Each of them points to pages in the same physical file mapping.

If a bit in the right place in the PTE flips …

… the corresponding virtual address now points to a wrong physical page - with RW access.
What happens when we repeatedly map a file with read-write permissions?

PTEs in physical memory help resolve virtual addresses to physical pages.

We can fill physical memory with PTEs.

Each of them points to pages in the same physical file mapping.

If a bit in the right place in the PTE flips …

… the corresponding virtual address now points to a wrong physical page - with RW access.

Chances are this wrong page contains a page table itself.
What happens when we repeatedly map a file with read-write permissions?

PTEs in physical memory help resolve virtual addresses to physical pages.

We can fill physical memory with PTEs.

Each of them points to pages in the same physical file mapping.

If a bit in the right place in the PTE flips …

… the corresponding virtual address now points to a wrong physical page - with RW access.

Chances are this wrong page contains a page table itself.

An attacker that can read / write page tables …
What happens when we repeatedly map a file with read-write permissions?

PTEs in physical memory help resolve virtual addresses to physical pages.

We can fill physical memory with PTEs.

Each of them points to pages in the same physical file mapping.

If a bit in the right place in the PTE flips ...

... the corresponding virtual address now points to a wrong physical page - with RW access.

Chances are this wrong page contains a page table itself.

An attacker that can read / write page tables can use that to map any memory read-write.
Exploit strategy

Privilege escalation in 7 easy steps …

1. Allocate a large chunk of memory
2. Search for locations prone to flipping
3. Check if they fall into the “right spot” in a PTE for allowing the exploit
4. Return that particular area of memory to the operating system
5. Force OS to re-use the memory for PTEs by allocating massive quantities of address space
6. Cause the bitflip - shift PTE to point into page table
7. Abuse R/W access to all of physical memory

In practice, there are many complications.