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Abstract

Cache read misses stall the processor if there are no inde-
pendent instructions to execute. In contrast, most cache write
misses are off the critical path of execution, since writes can
be buffered in the cache or the store buffer. With few excep-
tions, cache lines that serve loads are more critical for per-
formance than cache lines that serve only stores. Unfortu-
nately, traditional cache management mechanisms do not take
into account this disparity between read-write criticality. The
key contribution of this paper is the new idea of distinguish-
ing between lines that are reused by reads versus those that
are reused only by writes to focus cache management poli-
cies on the more critical read lines. We propose a Read-Write
Partitioning (RWP) policy that minimizes read misses by dy-
namically partitioning the cache into clean and dirty parti-
tions, where partitions grow in size if they are more likely to
receive future read requests. We show that exploiting the dif-
ferences in read-write criticality provides better performance
over prior cache management mechanisms. For a single-core
system, RWP provides 5% average speedup across the entire
SPEC CPU2006 suite, and 14% average speedup for cache-
sensitive benchmarks, over the baseline LRU replacement pol-
icy. We also show that RWP can perform within 3% of a new
yet complex instruction-address-based technique, Read Refer-
ence Predictor (RRP), that bypasses cache lines which are un-
likely to receive any read requests, while requiring only 5.4%
of RRP’s state overhead. On a 4-core system, our RWP mech-
anism improves system throughput by 6% over the baseline
and outperforms three other state-of-the-art mechanisms we
evaluate.

1. Introduction

The performance gap between the processor and memory is
a major bottleneck in microprocessor design. In today’s high-
performance systems, a memory request may take hundreds of
cycles to complete. This performance gap motivates continued
improvements in cache efficiency. Some prior works focused
on improving cache efficiency by better identifying and ex-
ploiting the natural locality of the working set, relying on im-
proved replacement/insertion algorithms to identify portions
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of the working set most likely to be reused [25, 9, 21, 11, 31].
Other works attempted to differentiate between “critical” and
“non-critical” parts of the working set [32, 7, 28]: using
memory-level-parallelism (MLP) or the likelihood of a pro-
cessor stall as the main criteria, cache efficiency could be im-
proved by prioritizing cache resources based on the criticality
of the data.

The difference in criticality between loads and stores in the
core is well-known. In the processor pipeline, loads and stores
are treated very differently, with great attention paid to the la-
tency of loads, while stores may be buffered for some time be-
fore finally committing to the cache or memory. Although the
treatment of loads and stores in the processor pipeline is dra-
matically different, their associated read and write requests are
not generally distinguished in the cache hierarchy. However,
read and write requests have different characteristics. The la-
tency of read requests is often more critical than the latency
of write requests. In light of this fact, we argue that caches
should be designed to favor critical read requests over less crit-
ical write requests.

In this paper, we propose cache management techniques
that increase the probability of cache hits for critical read re-
quests, potentially at the cost of causing less critical write re-
quests to miss. To accomplish this, we must distinguish be-
tween cache lines that will be read in the future and those that
will not. Prior works sought to distinguish between cache lines
that are reused and those that are not reused, with the intent of
filtering lines that were unlikely to be reused. However, prior
work did not distinguish between reuse due to critical read re-
quests and less critical write requests, hence potentially lead-
ing to additional read misses on the critical path. The key
contribution of this paper is the new idea of distinguishing
between lines that are reused by reads versus those that are
reused only by writes to focus cache management policies on
the more critical read lines. To our knowledge, this is the first
work that uses whether or not a line is written to as an indicator
of future criticality of the cache line.

We also make the following contributions:

o We present data highlighting the criticality and locality dif-
ferences between reads and writes within the cache (i.e.,
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Figure 1: Percentage of dirty cachelines in LLC that are read vs. not read.

cache lines that are read versus cache lines that are only
written).

e To exploit the disparity in read-write criticality, we pro-
pose Read Write Partitioning (RWP), a mechanism that
divides the last-level cache into two logical partitions for
clean and dirty lines. RWP predicts the best partition sizes
to increase the likelihood of future read hits. This could
lead to allocating more lines in the clean partition or the
dirty partition, depending on which partition serves more
read requests.

e To show the potential for favoring lines that serve reads,
we discuss a complex PC-based predictor, Read Reference
Predictor (RRP). RRP uses the PC of the first reference
to identify cache lines likely to service future reads, and
therefore avoids allocating write-only lines and lines that
are unlikely to get reused by reads.

e We show that our RWP mechanism is close in performance
to the more complex RRP with only 5.4% of RRP’s state
overhead. We also show that RWP outperforms prior state-
of-the-art cache management policies.

Our experimental evaluation shows that our cache manage-
ment mechanisms, which take into account read-write critical-
ity, provide better performance by improving cache read hit
rate. RRP provides an average 17.6% speedup while RWP
provides an average 14.6% speedup for memory-intensive
SPEC CPU2006 benchmarks over the baseline LRU replace-
ment policy. Over the entire SPEC CPU2006 suite, RRP/RWP
provide an average 6.2%/5.1% speedup. On a 4-core system,
RRP/RWP improve system throughput by 8.4%/6.2% for a di-
verse set of multi-programmed workloads. In addition, we
show that exploiting read-write criticality provides better per-
formance than three previously proposed cache management
mechanisms [28, 6, 25].

The organization of this paper is follows. Section 2 dis-
cusses the differences between reads and writes and articu-
lates the reasons for distinguishing between them. Sections 3
and 4 highlight two different approaches (RWP, RRP) to ex-
ploit these differences. Sections 5 and 6 present our experi-
mental methodology and results. Section 7 qualitatively com-
pares our work to previous work, and Section 8 provides our
conclusions.

2. Read Lines vs. Write-only Lines

Ideally, a cache that favors read requests over write requests
could be designed by sorting cache lines into one of two cat-
egories. The first category would consist of lines that ser-
vice read requests (read lines). The second category would
consist of lines that only serve to buffer writes (write-only
lines) and that will not be read. Leveraging this classifica-
tion, the cache replacement algorithm would favor read lines
over write-only lines when making replacement decisions. In
practice, however, classifying cache lines into these two cate-
gories is challenging since it requires future knowledge. One
approach might be to predict future access types based on past
access types, e.g., predict that dirty lines will be written to
and clean lines will be read. A replacement algorithm would
exploit this by simply prioritizing clean lines over dirty lines.
Unfortunately, dirty lines are often requested by reads, and a
replacement algorithm that classifies dirty lines as non-critical
and speeds up their eviction would degrade performance as
the read requests to these lines that are evicted early would be-
come cache misses. To avoid this problem, a cache manage-
ment technique that exploits the criticality gap between reads
and writes would distinguish between dirty lines and write-
only lines. Dirty lines include all lines that have been written
to, regardless of whether they are requested (or not) by fu-
ture reads. Write-only lines are a subset of dirty lines that we
anticipate not to be requested by future reads. To maximize
the number of critical read requests that result in cache hits,
we attempt to minimize the number of write-only lines in the
cache and maximize the number of read lines (both clean and
dirty). To the best of our knowledge, this paper describes the
first cache management policy that draws this distinction and
exploits it to improve cache performance.

We studied the differences between dirty lines and write-
only lines in detail. Figure 1 shows the percentage of total
cache lines that are dirty. On average, almost 46% of lines in
a 4 MB last-level cache (LLC) are dirty lines across all SPEC
CPU2006 benchmarks (the remaining 54% are clean lines).
The dirty cache lines are divided into two sub-categories. The
first sub-category consists of dirty cache lines that are written
to with no subsequent reads before eviction (i.e., write-only
lines), and is depicted by the darker bar at the top. On average,
nearly 37% of all cache lines fit in this category. The second



sub-category, denoted by the gray bar at the bottom, depicts
the subset of dirty lines that are read at least once in addition
to being written to, constituting nearly 9% of all cache lines
on average. In the next two subsections, we discuss both cate-
gories of dirty lines.

2.1. Write-Only Lines

Workloads with write-only lines fall into two categories:
read-intensive, and write-intensive.  483.xalancbmk, and
482.sphinx, for example, are read-intensive benchmarks,
while 481.wrf and 456.hmmer are write-intensive bench-
marks.

Read-Intensive In Figure 1, we show that the majority
of cache lines in the LLC are clean for 483.xalancbmk and
482.sphinx. In 483.xalancbmk, the majority of dirty lines
come from the stack. In fact, 99% of all dynamic writes come
from passing parameters through the stack, primarily in the
function elementAT." The vast majority of dirty lines are also
write-only lines for these benchmarks.

Write-Intensive These workloads produce a large number
of writes, and are distinguished by a large percentage of dirty
lines in the LLC. 481.wrf and 456.hmmer are both good exam-
ples of this type of workloads. 481.wrf uses the Runge-Kutta
numerical method, initializing a large number of 3D arrays to
zero at each step of the numerical analysis. Since the arrays are
very large, the lines are evicted and written back to memory
without being read at all. In 481.wrf, very few read requests
are serviced by dirty lines, and this appears to be true at every
level in the cache hierarchy. 456.hmmer is a write-intensive
workload that exhibits more complex behavior. Writes are of-
ten requested by subsequent reads while still residing in the
L1 cache. After eviction from the L1, however, dirty cache
lines are rarely reused. In the function P7viterbi in 456.hm-
mer, results (tentative pattern matches) are stored in 2D tables,
written back and not reused. For the portions of 456.hmmer
that we evaluated, we found that 90% of the lines in the LLC
are write-only lines that will not be requested by future reads.

2.2. Dirty-Read Lines

A write no-allocate policy can address the problem of
write-only lines by not allocating write lines in the cache.
However, not all dirty lines are write-only lines. On aver-
age across all SPEC CPU2006 workloads, about 20% of all
dirty lines (and 9% of all cache lines) are dirty-read lines.
Some workloads, such as 401.bzip, 435.gromacs, 447.dealll,
471.omnetpp, 473.astar, and 450.soplex frequently read dirty
data. 450.soplex, in particular, often writes intermediate data
to be reused in the immediate future. 450.soplex uses the sim-
plex algorithm to solve linear programs, essentially perform-
ing a series of transformations on a sparse matrix that largely
resides in the LLC. Most reads and writes are produced as loop
iterations examine and manipulate the matrix. Lines that are

'While the stack experiences both reads and writes, this benchmark had
most of the reads filtered by the higher level caches, so the last level cache got
mostly write-only lines.

written to in any particular iteration will be read in the next
iteration as the next iteration re-examines the matrix. In fact,
reads are more likely to request data in dirty lines than in clean
lines. As a result, 450.soplex actually benefits from favoring
those lines that have been written to over those that have not.

As we demonstrate in this section, different workloads ex-
hibit different types of behavior and different mixes of write-
only, dirty-read, and clean lines with different criticality. Sim-
ple mechanisms (such as bypassing one type of lines) would
not lead to good performance across all workloads. We
demonstrate the downside of such simple mechanisms in the
motivating example we present in the next subsection. There-
fore, maximizing performance across a range of workloads re-
quires a more sophisticated approach capable of identifying
write-only lines, or favoring one type of access over another
based on the likelihood of future reads.

2.3. Motivating Example

Figure 2 describes an example to illustrate the benefit of us-
ing read-write information in the cache allocation and replace-
ment policy. Figure 2(a) depicts a loop with a burst of memory
references occurring at four different points in the execution of
the loop. Memory operations in the loop reference a total of
6 cache lines, denoted as A, B, C, D, E, and F. Cache lines A,
D, E, and F are only read, B is read and written to, and C is
only written to. Figure 2(b) shows the state of an LRU replace-
ment algorithm for a fully-associative cache with a total of 4
lines, after each of the 4 bursts of memory references. During
each iteration of the loop, cache lines A-F are all referenced,
however, the latest reference to D (in the third burst), is fol-
lowed by 4 unique references to A, C, E, and F, causing D to
be evicted at the end of each iteration. As a result, the proces-
sor stalls when a load re-references D during the first burst of
the second iteration. In addition, the intermittent accesses to D
and B periodically evict E and F, introducing two more stalls
in each iteration. The problem is that the cache is capable of
storing 4 lines but the loop has a total working set of 6 lines.
As a result, LRU policy leads to thrashing as all 6 working set
lines compete for available cache space, leading to three read
misses (i.e., processor stalls) per iteration.

Our proposal to address this thrashing is to exclude the
write-only-line (C) from allocation, and focus cache resources
only on the 5 critical read-lines, A, B, D, E, and F. With this
approach, we only incur one read miss (i.e., processor stall)
in each loop iteration. Figure 2(c) depicts the same loop, this
time in the context of a read-biased LRU replacement algo-
rithm (i.e., favoring read-lines over write-only-lines). When
the write-only line C is referenced, the replacement algorithm
chooses not to allocate the line, leaving the handling of it to
the store queue. Excluding the write-only line from allocation
reduces the effective size of the working set (from 6 to 5 lines
in this example), which increases read hit rate in the cache,
leading to only one stall per iteration.

While a simple write no-allocate policy would avoid some
of the problems in this example, it misses the impact of writes
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Figure 2: Motivating Example: Drawback of not taking read-write differences into account in cache management. (a) Memory
accesses in a loop; (b) LRU replacement; (c) Read-biased LRU replacement; (d) Write no-allocate policy.

that are followed by reads to the same line. The behavior of a
write no-allocate cache is shown in Figure 2(d). Like our read-
biased replacement algorithm, the write no-allocate cache pro-
vides benefit by excluding the write-only-line C. The two poli-
cies differ in their treatment of line B, which is both read and
written. B is written to in the first burst and read in the sec-
ond burst. Our read-biased replacement algorithm, despite the
first write to B, allocates the line, resulting in a cache hit for
the read request to B. In contrast, the write no-allocate policy
does not allocate B in the cache in the first burst. This causes
the read request to B in the second burst to consistently miss
the cache, leading to two processor stalls per iteration. This is
better than the LRU policy (Figure 2(b)), but not as good as
the read-biased policy that does not allocate write-only lines
(Figure 2(c)).

As this example demonstrates, distinguishing between
reads and writes in the cache can improve execution time
(Figure 2(c)), but simple approaches (such as the one in Fig-
ure 2(d)) could cause undesired side effects that undermine
performance or they do not effectively exploit the potential
of differentiating reads and writes in the cache. We there-
fore need more sophisticated mechanisms to reduce write-only
lines in the cache. In the next two sections, we describe two
mechanisms that exploit the criticality gap between reads and
writes by dynamically dividing up the cache between clean

and dirty lines (Section 3), or by predicting future reads to
a cache line based on the requesting instruction’s PC (Sec-
tion 4).

3. Read-Write Partitioning (RWP)

In this section, we propose a mechanism to exploit the read-
write criticality gap to improve cache performance. The goal
is to maximize the number of read hits in the cache so that
critical read requests can be serviced earlier. To achieve this
goal, we need to effectively identify cache lines that are likely
to service future reads.

We make the observation that some applications have more
read requests to clean lines, whereas other applications have
more read requests to dirty lines. In Figure 3(a-b), we show the
total number of reads in clean and dirty lines logged at every
100 million instructions, normalized to the number of reads
in clean lines at 100 million instructions. Figure 3(a) shows
that the benchmark 483.xalancbmk has more reads in clean
lines than dirty lines. Figure 3(b) shows that the benchmark
450.soplex receives more read requests to dirty lines.

We exploit this behavior in our mechanism, Read-Write
Partitioning (RWP). RWP logically divides the cache into two
partitions, a read (i.e., clean) partition and a write (i.e., dirty)
partition.”> We dynamically adapt partition sizes for different

2We interchangeably use read partition and clean partition. Ditto for write
partition and dirty partition.
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Figure 4: Structure of Read Write Partitioning (RWP).

workloads and phases to maximize read hits and thereby im-
prove performance. RWP is confined to the LLC, and does
not need any additional information from the processor, the
L1 or L2 caches. This is in contrast to the more complex RRP
mechanism we will describe in Section 4.

To motivate our dynamic RWP mechanism, we show that
performance varies differently for different benchmarks based
on partition sizes. Figure 3(c-d) shows the change in perfor-
mance for 483.xalancbmk and 450.soplex when the number of
ways allocated to dirty lines is varied from O to 16 in a 16-way
4MB LLC. 483.xalancbmk has more reads in clean lines. Fig-
ure 3(c) shows that it performs best when all cache lines are
allocated to the clean partition. Conversely, 450.soplex has
more read requests serviced from dirty lines than from clean
lines. However, 450.soplex also has a significant number of
read requests serviced from the clean lines, as shown in Fig-
ure 3(b). Figure 3(d) shows that, while having more dirty lines
than clean lines is beneficial for 450.soplex, allocating more
than 13 ways to dirty lines would hurt performance, so 13 is
the best number of dirty lines per set. Such varying behavior
per workload demonstrates the need for a dynamic cache par-
titioning technique that predicts the best (logical) number of
ways that should be allocated to dirty vs. clean lines. We next
describe the basic framework to implement RWP and explain
the adaptive mechanism to predict best partition size.

3.1. RWP Framework

In this section, we provide an overview of the framework
that support read-write partitioning. Each cache set is logically
divided into two partitions for clean and dirty lines. The per-
line dirty status bit determines if the line belongs to the read
(clean) partition or the write (dirty) partition. Cache lines do
not move between physical ways. On a write to a clean line,

its dirty bit is set and it is logically considered to be part of the
write partition, but no further action is taken even if write par-
tition size exceeds the predicted-best size. We do not strictly
enforce partition sizes on regular cache accesses. Instead, par-
tition sizes are adjusted when a new cache line is allocated.

When a new cache line is allocated, our mechanism first
determines which partition to evict a cache line from to place
the incoming line, and then inserts the new line in the correct
partition based on the Dynamic Insertion Policy (DIP) [28].
This insertion policy decides to put incoming lines in the LRU
position if it detects that the workload is thrashing the cache.
There are three cases that we consider when we choose a re-
placement victim, based on the current number of dirty lines
in a cache set:

o Current number of dirty lines is greater than the predicted-
best dirty partition size. This means that the set currently
has more dirty lines than it should have. In this case, RWP
picks the LRU line from the dirty partition as the replace-
ment victim.

o Current number of dirty lines is smaller than the predicted-
best dirty partition size. This means that the set currently
has more clean lines than it should have. In this case, RWP
picks the LRU line from the clean partition as the replace-
ment victim.

e Current number of dirty lines is equal to the predicted-best
dirty partition size. In this case, the replacement victim
depends on the cache access type. If the access is a read,
RWP picks the replacement victim from the clean parti-
tion. Similarly, a write access triggers a replacement from
the dirty partition.

RWP only enforces partition sizes when a new line is in-
serted, and not when a clean line is written to. We consid-
ered two strategies for eagerly enforcing the predicted parti-
tion sizes on writes to clean lines, but both were worse than
our current mechanism. One option was to write back data
when a clean line is written to. However, this significantly
increases memory bandwidth and power consumption, as we
observed that writes to a clean line are very often followed by
other writes to the same line. Another option was to eagerly
replace a dirty line with the newly modified line, and invalidate
the clean version of the line that is being written to. However,
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this would hurt performance in cases where the replaced dirty
line is re-referenced, since we are wasting the space used by
the invalidated line. Our lazy partition enforcement mecha-
nism outperformed both of these options.

3.2. Predicting Partition Sizes

Since clean and dirty lines exhibit different degrees of read
reuse for different workloads, RWP adjusts the sizes of the par-
titions based on workload behavior. As growing one partition
necessitates shrinking the other, RWP constantly re-evaluates
the benefit of growing one partition against the cost of shrink-
ing the other. To accomplish this, we use a variant of the utility
monitors proposed by Qureshi et al. [27]. The key difference
from [27] is that the monitors in [27] were used to adjust the
number of cache ways allocated to different applications in
a multi-core system, not to different partitions for clean and
dirty lines.

To estimate the partition sizes, RWP compares the read
reuse exhibited by the clean and dirty lines as if each were
given exclusive access to the entire cache. To do this, RWP
employs set sampling [26], extending a small subset (32) of
the total sets with shadow directories as depicted in Figure 5.
Each sampled set is augmented with two shadow directories:
a shadow directory for clean lines (clean shadow directory)
and a second dedicated to dirty lines (dirty shadow directory).
Each read miss allocates a line to the clean shadow directory;
each write miss allocates a line to the dirty shadow directory.
A write request hitting in the clean shadow directory causes
the clean line to become dirty and move to the dirty shadow
directory. The shadow directories are maintained in traditional
LRU (least recently used) order, with new allocations replac-
ing the LRU element and being inserted at the MRU (most
recently used) position.

Since the shadow directories are only intended to provide
guidance for sizing the partitions, the shadow directories do
not require data. Instead, each entry in the shadow directory
merely consists of a tag to indicate the LRU position of the line
had it remained in the cache. RWP maintains two global age
hit counters: a clean age hit counter and a dirty age hit counter.
These hit counters reflect the number of times cache lines were
hit while at various LRU positions in the shadow directory.
For example, each time a clean cache line is requested while
in the MRU position of any of the 32 clean shadow directories,
the MRU counter in the clean age hit counter is incremented.
Similarly each time a dirty cache line is requested while in the

LRU position of the dirty shadow directory, the LRU position
of the dirty age hit counter is incremented.

By comparing the values of the dirty and clean age hit coun-
ters, our mechanism can predict the number of additional hits
and additional misses the cache will incur if one of the ways
currently allocated tot a partition is re-allocated to the other.
We use the same mechanisms proposed by Qureshi et al. [27]
to determine the best partition size from the age hit counters.
This allows RWP to determine the number of ways to allocate
to the clean and dirty partitions.

3.3. Summary

An advantage of RWP is that it is confined to the last-level
cache, and does not require any information from the proces-
sor or higher-level caches. However, RWP does not attempt
to directly identify and deprioritize write-only cache lines.
Write-only cache lines are expected to be eliminated as a by-
product of changing the clean and dirty partition sizes. In the
next section, we discuss a more complex mechanism that at-
tempts to directly identify write-only lines. Our evaluations
show that RWP achieves most of the benefit of such a mecha-
nism at a fraction of the complexity and cost.

4. Read Reference Predictor

The key argument we make in earlier sections is that read-
reuse, as opposed to write-reuse, is the critical value provided
by the cache. An ideal mechanism could categorize cache
lines before they are allocated based on their likelihood to
be subsequently read. Write-only cache lines and those not
reused at all should then bypass the cache to allow cache re-
sources to be allocated to lines likely to service future reads.
Prior work offers guidance on how we might accomplish this.
Piquet et al. [25], building upon Tyson’s past work [34], ob-
served that some memory reference instructions request cache
lines that would subsequently see no reuse, while others re-
quest cache lines that would be reused. They exploited this
observation by using the PC of the memory instruction to pre-
dict the level of reuse its memory requests would exhibit.

We modify the approach in [25], using the PC of the mem-
ory instruction not to predict general reuse by all memory in-
structions, but instead focusing only on reuse by subsequent
reads. In contrast to [25] which predicted general-reuse in
cache lines to guide the replacement algorithm, we predict
only read-reuse. Instead of allocating only those cache lines
likely to service any reference (reads or writes), we allocate
only those cache lines likely to service reads and bypass those
likely to be only written to or not referenced at all. We note
that our goal is to identify cache lines that are likely to be read
as opposed to written to. Both load and store instructions may
allocate lines that are likely to be read.

4.1. RRP Framework

Similar to RWP (Section 3), RRP relies on shadow direc-
tories added to a few sample sets to measure the read reuse of
lines. Figure 6 illustrates how locality is tracked in a hypothet-
ical 8-way set associative cache. A small number of the sets
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Figure 6: Sample sets in Read-Reference Predictor (RRP).

are augmented with an 8-way shadow directory. The shadow
directory consists of a cache line tag, a critical bit (indicating
read reuse), and a hashed value of the PC of the instruction
responsible for allocating the cache line (hashed-PC).

On the left we show a sample reference stream consisting of
a number of reads and writes, with the PC, the reference type,
and the cache line tag address of the request. The reference
stream begins with an instruction A writing to data address
0z8000. The initial write allocates an entry for the cache line
028000 in the shadow directory with the critical bit initially
set to 0. A second reference, a read to 0z8000 by instruc-
tion D causes the critical bit to be set. A subsequent write
by A to the address 024000 follows the same pattern. There
are two key points we highlight with this example. First, the
critical bits for both 024000 and 028000 are set, not because
the allocating instruction was a read, but because both cache
lines were reused by subsequent reads. The key behavior we
would like to capture is not whether or not A itself is a read or
write, but whether or not the cache lines A allocates are sub-
sequently used by reads. Later in the reference stream we can
see a contrasting example when instruction C reads cache line
023000. Although cache line 023000 is subsequently written
by instruction E, the critical bit is not set because the critical
bit is intended to capture only read reuse not write reuse. The
distinction between read reuse and write reuse is what distin-
guishes our work from prior work on general reuse prediction,
e.g., [34, 25]. While Piquet er al. [25] treated all references
equally for the purposes of reuse prediction; RRP differenti-
ates between read reuse and write reuse, effectively classifying
write reuse as no reuse.

As cache lines are evicted from the shadow directories, the
PC and critical bit of each evicted line are used to update a
table of 2-bit saturating counters. As in [25], the table of 2-bit
saturating counters, i.e., the RRP predictor table, lacks tags.
The PC is used to index into the table and select the 2-bit
counter, and the counter is incremented if the critical bit is
set to 1 and decremented if the critical bit is set to 0. All sub-
sequent memory instructions that perform allocations will first
query the RRP predictor table. Instructions that map to a 2-bit
counter set to 0 will bypass the cache, all other instructions
will result in cache allocations.

4.2. RRP Implementation Issues

The key advantage of RRP over RWP is that it explicitly
classifies memory requests as exhibiting read or write reuse.

In that sense, RRP is a more pure implementation of what
RWP attempts to do conceptually. In practice, however, the
implementation of RRP is quite complex in a last level cache.

The biggest issue that complicates RRP is that writeback
requests are not associated with any program counter. How-
ever, we want to predict if a writeback would be followed by
a read request to the same cache line. To achieve this goal,
we record the first PC that brought each line into the L1 cache
and supply this PC to the L2 and LLC when the line is writ-
ten back from L1 and L2. This requires additional storage and
logic complexity in core caches (L1, L2) to store and update
the hashed-PC value with the cache line tags.

Providing PC information to the LLC has been proposed
earlier (e.g., [36, 34, 15, 10]). This information is critical
to provide good prediction accuracy at the LLC. However,
providing PC information to the LLC consumes more on-die
bandwidth, and would require the on-die interconnect to han-
dle a different transaction type than just address and data trans-
actions. As we show in our results, our simpler RWP mech-
anism, which is confined to the LLC, has competitive perfor-
mance with the more complex RRP mechanism.

5. Evaluation Methodology
5.1. Baseline Configuration

We use CMP$im [5], a Pin-based [20] x86 simulator. We
use a framework similar to the Cache Replacement Champi-
onship [4]. Our baseline processor is a 4-wide out-of-order
processor with a 128-entry reorder buffer and a three-level
cache hierarchy, similar to many of Intel'®’s mainline cores.
We use a 32KB, 4-way L1 instruction cache, a 32KB, 8-way
L1 data cache, a 256KB 8-way L2 cache, and a 4MB, 16-
way shared non-inclusive/non-exclusive last-level cache. All
caches use 64-byte lines, and implement the LRU replacement
policy as the baseline. The load-to-use latencies for the L1,
L2, and LLC caches are 1, 10, and 30 cycles, respectively. In
our model, the core does not stall for write requests to bring
data into the cache. Only a subsequent load hitting on an un-
filled line stalls if the store has not yet returned from the mem-
ory. We assume on-die interconnects can transfer 32-bytes
per cycle between the L1 and L2, and between the L2 and
the LLC. This increases network congestion and latency when
writeback traffic contends with cache misses for the shared in-
terconnect. We model a 200-cycle latency to main memory,
and support a maximum of 32 outstanding misses to memory.
We implement four memory controllers, each with a 6GB/sec
bandwidth to memory, for a total of 24GB/sec memory band-
width. Our simulation methodology is similar to prior cache
studies [28, 6, 10, 11].

5.2. Benchmarks

We simulate benchmarks from the SPEC CPU2006 suite
with the reference input set. For SPEC benchmarks, we use
SimPoint [24] to identify a single characteristic interval (i.e.,
simpoint) of each benchmark. We first run 50 million in-
structions to warm up the internal structures and then run
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Figure 7: Speedup over baseline LRU.

the simulation for 500 million instructions. For most results
in Section 6, we use a cache-sensitive subset of the SPEC
CPU2006 benchmarks. The benchmarks that have more than
5% speedup when LLC size is increased from 4MB to SMB
are considered as cache-sensitive applications. We also report
average results from the entire SPEC suite.

In our multi-core analysis, we use 35 randomly picked
multi-programmed workloads from SPEC running on a 4-
core configuration. Our workloads include five homogeneous
workloads (with four instances from 429.mcf, 434.zeusmp,
456.hmmer, 462.libquantum and 482.sphinx3) while the re-
maining thirty were heterogeneous workloads. Each bench-
mark runs simultaneously with the others, restarting after 250
million instructions, until all of the benchmarks have exe-
cuted at least 250 million instructions. We report the weighted
speedup normalized to LRU. That is, for each thread ¢ shar-
ing the last-level cache, we compute / PC;. Then we find
Singlel PC; as the IPC of the same program running in iso-
lation with LRU replacement. Then we compute the weighted
IPC as 3 IPC;/SingleIPC,. We then normalize this weighted
IPC with the weighted IPC using the LRU replacement policy.

5.3. Simulated Cache Configurations

We compared RRP and RWP to the following configura-
tions, none of which takes into account read-write criticality.
Baseline. We use LRU as our baseline policy.

Dynamic Insertion Policy (DIP). DIP is an insertion pol-
icy that can dynamically choose to insert cache lines either at
MRU or LRU position [28] in order to eliminate cache thrash-
ing. It protects a portion of the working set of a thrashing
workload by inserting lines at the LRU position in the LRU
stack, and protects recently-used lines in LRU-friendly work-
loads by inserting lines at the MRU position.

Re-Reference Interval Predictor (RRIP). RRIP is another
insertion policy that avoids thrashing and scanning by insert-
ing cache lines either at the end of the recency stack or the
middle of the recency stack [6]. We compare with the best
performing version of DRRIP in our simulation environment.
Single-Use Predictor (SUP). SUP uses a PC-based predic-
tor to identify cache lines that are referenced only once [25].
However this work does not describe how to associate a write-
back with a PC. Other PC-based predictors [10, 36] also by-
pass this issue by excluding writebacks from the prediction
mechanism. SUP counts write accesses as references, and

does not take advantage of non-criticality of some dirty lines.
In addition, SUP does not have a feedback mechanism to adapt
to workload changes. For a fair comparison, we add the sam-
pling based feedback loop to this mechanism. We call this
mechanism SUP+.

6. Results

In this section, we compare our two mechanisms, RRP
and RWP, to a variety of alternative configurations, enumer-
ated in Section 5.3. We focus mainly on memory-intensive
workloads, whose geometric mean performance is denoted as
GmeanMem. The geometric mean performance of all SPEC
benchmarks, denoted as GmeanAll, is included with our per-
formance results to show the effect of our algorithms on all
workloads.

6.1. Single Core

Speedup. Figure 7 shows the speedups for the cache sensi-
tive workloads for a variety of replacement algorithms com-
pared to a baseline cache with LRU. On average (Gmean-
Mem), RRP improves performance by 17.6% and RWP im-
proves performance by 14.6%, when compared to the base-
line. Our worst-case performance occurs when running
471.omnetpp. We lose less than 3% performance, largely due
to sampling error in our sampling-based predictors. Our best
case performance comes from 483.xalancbmk, where we im-
prove performance by 88% relative to the baseline. When con-
sidering all SPEC CPU2006 workloads (GmeanAll), RRP and
RWP provide 6.2% and 5.1% speedup over the baseline. We
note that RRP and RWP also deliver substantial performance
gains when compared to three state-of-the-art replacement al-
gorithms. For memory-intensive workloads, RRP achieves
7.9%, 7.4%, and 5% performance gains over DIP, RRIP, and
SUP+ respectively; while RWP delivers speedups of 6.8%,
6.3%, and 3.9% over DIP, RRIP, and SUP+.

Effect on Load Misses and Write Traffic. One of the
key attributes of our approach is that read misses will some-
times get reduced at the expense of increased write misses.
In Figure 8, we show LLC load misses normalized to the LRU
baseline. Our mechanisms reduce load misses for most bench-
marks since they favor lines likely to be read. On average,
RRP/RWP reduce load misses by 30%/29% relative to the
baseline. RRP and RWP achieve 15%, 15%, 10% reduction in
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Figure 10: Memory traffic over baseline LRU.

load misses over DIP, RRIP, and SUP+. However, the reduc-
tion in load misses comes at the expense of an increase in write
traffic. Figure 9 shows the writeback traffic to main memory
for RWP and RRP normalized to the baseline LRU. The in-
crease in write traffic is significant (17%) for RWP. RRP actu-
ally manages to reduce write traffic by 9% overall. This is be-
cause RRP bypasses any line that is unlikely to be read, result-
ing in bypassing clean lines that are unlikely to be reused at all,
and provides extra space for read lines. Therefore, more read-

Importance of the Dynamic Partitioning Policy. One key
mechanism of RWP is that it dynamically resizes the clean and
dirty partitions based on which is expected to get more read
reuse. Figure 11 illustrates the impact of our dynamic parti-
tioning policy. For each benchmark, we show two data points:
(1) the natural dirty partition size at the end of benchmark run
with traditional LRU replacement; (2) The predicted dirty par-
tition size from RWP at the end of the simulation. While both
data points are similar for some benchmarks, there are wide
differences for a significant number of benchmarks. For exam-
ple, 462.libquantum sees almost no dirty blocks in the cache
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with LRU, while the predicted dirty partition size is 15 out of
16 lines in each cache set. That is, RWP protects dirty lines
from eviction in 462.libquantum since they get a large fraction
of read hits. Conversely, 470.lbm has dirty lines filling three
quarters of the cache with LRU, while the predicted dirty par-
tition size is 1 out of 16 lines in each cache set. That is, RWP
protects clean lines from eviction in 470.1bm since they get a
large fraction of read hits. However, we need a dynamic pol-
icy since the best partition size changes significantly for many
workloads during their execution. The ranges (drawn as error
bars) shown for each bar presents the minimum and maximum
dirty partition size out of all partition sizes logged every 100
million instructions. For example, 470.1bm’s predicted dirty
partition size varies between O and 16 (i.e., either no dirty
lines or all lines are in the dirty partition). Most of the ap-
plications exhibit large differences in partition size during dif-
ferent phases of their execution (e.g., 429.mcf, 435.gromacs,
481.wrf, 433.milc, 350.soplex). However, a smaller number
of workloads have less variation across their execution (e.g.,
416.gamess, 483.xalancbmk). We conclude that RWP’s parti-
tioning scheme is effective at adjusting the partition size dy-
namically to maximize read hits.

6.2. Multi-Core

We evaluated a 4-core system and 35 multi-programmed
workloads, each consisting of a random mix of SPEC work-
loads. These workloads include both memory-intensive and
non-memory-intensive applications. They also include write-
sensitive and non-write-sensitive applications. Figure 12
shows the weighted speedup improvement over LRU for RRP
and RWP across all the workloads, denoted as a curve sorted
based on the improvement obtained with RRP. On average,
RRP improves system throughput by 8.4% and RWP improves
system throughput by 6.2%. The performance improvement
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of DIP, RRIP, and SUP+ (not shown in the figure) is 3.9%,
4.2%, and 2.0%, respectively over the baseline LRU. Al-
though SUP+ performed well in our single core experiments
compared to DIP and RRIP, it performs poorly in our multi-
core configuration compared to these two schemes. SUP+ suf-
fers from its inability to characterize and predict the behavior
of writeback requests; and therefore writeback requests are al-
ways allocated in the LLC. In multi-core systems, writebacks
have a greater impact on cache capacity due to increased con-
tention in the cache.

We analyzed the sensitivity of performance gains to
the number of memory-intensive workloads in 35 multi-
programmed workload mixes. Figure 13 shows the aver-
age speedup (over LRU) for different mechanisms when the
number of memory-intensive applications in a mix grows
from zero to four. In general, both RRP and RWP outper-
form all other mechanisms in all configurations. The perfor-
mance benefit for RWP and RRP grows when the number of
memory-intensive applications in a workload increases. With
no memory-intensive applications in the mix, RWP/RRP has a
4.5%/6% gain over LRU. However, with all memory-intensive
applications in the mix, the performance advantage grows to
8%/12% for RWP/RRP. This is due to the success of RWP
and RRP in eliminating less-critical write-only lines from the
cache, leaving more room for critical read lines.

6.3. Storage Overhead

Table 1 compares the storage overhead of RRP and RWP
mechanisms. The overhead can be categorized into three
types: sampled sets, counters, and core cache overhead.
Sampled Sets. RRP/RWP has 512/32 sampled sets for train-
ing the predictor; there are 16 lines in each of the sampled sets.
The number of sampled sets for RRP is higher than RWP, as
PC-based sampling predictors require more sets to learn the
behavior of accesses brought by a PC [10, 35]. Each line in
the sampled sets in RRP has partial PC (15 bits), partial tag
(15 bits), a critical bit, a valid bit, and LRU states (4 bits), a
total of 36 bits. On the other hand, RWP does not require PC
information, so the sampled lines require only 21 bits each (15
bits for tag, a valid bit, a dirty bit, and 4 bits for LRU states).
Counters. The predictor table in RRP has 2-bit saturating
counters, where RWP age hit counters are 12 bits long. How-
ever, RWP has only 32 counters to track the read hits, but the
predictor table of RRP consists of 16384 counters.

Core Cache Overhead. RRP keeps PC information in the L1
and L2 caches, which adds significant cost (15 bits for each
line). However, there is no such overhead in RWP.

The RRP mechanism requires nearly 49KB of state over-
head, where RWP uses only 2.67KB of state, amounting to
only 5.4% of RRP’s state overhead. RWP’s additional state
corresponds to only 0.06% of the total LLC capacity.

6.4. Summary

In this section, we showed that our RWP and RRP predic-
tors outperform the baseline LRU and three state-of-the-art
cache management mechanisms. RRP slightly outperforms



Type RRP RWP
Each line in sample sets 36 bits 21 bits
Number of sample sets 512 32
Types of sample sets 1 2
Sampled set overhead 36KB 2.62KB
Counter size 2 bits 12 bits
Number of counters 16384 32
Counter overhead 4KB 0.05KB
PC overheadin L1 and L2  8.43KB 0
Total overhead 48.43KB 2.67KB

Table 1: Storage overhead of RRP and RWP.

RWP for single-core and multi-core workloads. However,
RRP requires changes to the core caches to store program
counter information, passing information from the processor
and L1 and L2 caches to the LLC. RWP, on the other hand, re-
quires changes to only the LLC, while delivering close-enough
performance to RRP. We conclude that RWP is an efficient
mechanism that can exploit the read-write criticality differ-
ences to minimize read misses in caches.

7. Qualitative Comparison to Prior Work
7.1. Cache Management

There has been a significant amount of work on last-level
cache replacement policies [23, 2, 6, 10, 28, 37, 26, 22]. How-
ever, none of these prior proposals takes into account the crit-
icality difference between reads and writes. We briefly de-
scribe some of the prior works in cache replacement policies.
Recent replacement policies can be broadly divided into two
categories: insertion-based and partition-based. The insertion-
based mechanisms dynamically insert incoming lines at dif-
ferent stack positions based on their reuse [28, 6, 31, 37].
Dynamic Insertion Policy (DIP) places incoming lines at
LRU/MRU position [28]. Re-Reference Interval Prediction
(RRIP) dynamically inserts lines near the end of the recency
stack or at the end of the stack [6]. The Evicted-Address Filter
predicts the reuse behavior of cache lines by keeping track of
their recency or reuse after eviction and modifies the replace-
ment and insertion policies based on that prediction [31]. The
partition-based mechanisms partition the cache lines based on
recency, frequency and/or locality [23, 2, 19, 8, 23]. Adaptive
tuning policies like ARC [23] and CAR [1] divide the cache
into non-referenced and re-referenced lines protecting the re-
referenced lines. Other works propose to divide the cache lines
into different partitions according to temporal locality to pro-
tect lines with higher locality [19, 8].

Another area of research predicts the last touch of cache
lines [14, 15, 34]. Dead block predictors can detect when a
block is accessed for the last time and evict them to make room
for useful lines [10, 12, 36]. Some replacement algorithms
take into account the reuse behavior of blocks [9, 21, 11],
but these mechanisms do not differentiate between read and
write-only lines. Piquet et al. proposed a PC-based prediction
mechanism [25] that is similar to our read reference predic-
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tor. However, they do not exploit the fact that write requests
are not on the critical path, and consider both read and write
requests as re-references.

Utility-based cache partitioning (UCP) partitions the cache
ways among the cores according to the usage of each core [27].
We have used a similar technique to determine the best pos-
sible partitioning for reads and writes. Our mechanism also
takes advantage of cache set sampling to approximate the
cache behavior from a few sets [26]. Qureshi et al. [26] first
showed data indicating that cache behavior is more or less uni-
form across all sets, on average.

7.2. Mechanisms Exploiting Writes

Though no work has explicitly exploited the differences be-
tween reads and writes in caches, reads and writes are treated
differently in the memory controller due to the physical tim-
ing constraints of DRAM read, write and read-to-write turn
around cycles [18, 17, 33, 35]. Recent works in phase-change
memory (PCM) and spin-transfer torque memory (STT-RAM)
also try to reduce the number of writes to tolerate the higher
write latency [16, 29, 30, 38, 13].

Some mechanisms [17, 33, 35] evict dirty lines proactively
from the cache to increase DRAM row buffer hit rate. These
mechanisms focus on exploiting spatial locality in DRAM as
opposed to improving cache performance.

7.3. Mechanisms Exploiting Critical Loads

There are prior works exploiting the criticality differences
among loads. A prior work proposed to dynamically deter-
mine the criticality of loads and prioritize them over non-
critical ones [32]. Cost-sensitive cache replacement policies
try to take into account the cost associated with misses and
protects cache lines with high cost [7]. Memory-level par-
allelism (MLP)-aware cache showed that isolated misses are
costlier than parallel misses and proposed a mechanism that
tries to minimize costly isolated misses [28]. Another work
characterized the static stores that can indicate criticality of
future loads and proposed a prefetching mechanism to exploit
this behavior [3]. These works do not exploit the criticality
gap between read and write-only lines in the cache hierarchy.

8. Conclusions and Future Directions

In this paper, we exploit the observation that cache read re-
quests are frequently on the critical path whereas cache writes
are not, to design better cache management techniques that
improve system performance. We propose cache management
mechanisms to increase the probability of cache hits for crit-
ical reads, potentially at the expense of less-critical write re-
quests, by allocating more cache resources to lines that are
reused by reads than to lines that are reused only by writes.
The key contribution of this paper is the new idea of dis-
tinguishing between read lines vs. write-only lines to de-
sign cache management policies that favor read lines. Our
Read-Write Partitioning (RWP) mechanism dynamically par-
titions the cache into clean and dirty partitions to maximize



read hits. It protects the partition that receives more read re-
quests by evicting lines from the other partition that exhibits
less read reuse. We discuss a more complex yet more effec-
tive mechanism, Read Reference Predictor (RRP), which uses
program counter information to directly predict cache lines
that are reused by reads. Our mechanisms provide better per-
formance over several prior cache management mechanisms.
For a single-core system, RWP has an average speedup of
14.6%/6.3% over LRU/RRIP for cache-sensitive workloads.
On a 4-core system, RWP improves average system through-
put by 6.2%/2% over LRU/RRIP, across a wide set of multi-
programmed workloads. We show that RWP performs within
3% of RRP but requires only 5.4% of RRP’s state overhead.

A limitation of our proposal that future work can address is
that it does not specifically address multi-threaded workloads
that share LLC lines or workloads where different threads have
different requirements for read vs. write partition sizes. An-
other future research direction is analyzing the trade-off be-
tween read and write-only lines in systems with non-volatile
cache or memory. Write operations in emerging non-volatile
memory technologies have limited endurance and/or require
high energy and latency [16, 13]. A read-write partitioning
mechanism can dynamically adjust the write partition consid-
ering the write latency, energy, endurance, and performance.
We hope that the distinction between read and write-only lines
drawn in this paper will enable other future mechanisms that
can exploit this distinction.
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