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Modern Memory System: A Shared Resource 
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The Memory System 
n  The memory system is a fundamental performance and 

power bottleneck in almost all computing systems: server, 
mobile, embedded, desktop, sensor 

n  The memory system must scale (in size, performance, 
efficiency, cost) to maintain performance and technology 
scaling 

n  Recent technology, architecture, and application trends lead 
to new requirements from the memory system: 
q  Scalability (technology and algorithm) 
q  Fairness and QoS-awareness 
q  Energy/power efficiency 

3 



Agenda 

n  Technology, Application, Architecture Trends 
n  Requirements from the Memory Hierarchy 
n  Research Challenges and Solution Directions 

q  Main Memory Scalability 
q  QoS support: Inter-thread/application interference 

n  Summary 
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Technology Trends 
n  DRAM does not scale well beyond N nm [ITRS 2009, 2010] 

q  Memory scaling benefits: density, capacity, cost 

 
n  Energy/power already key design limiters 

q  Memory hierarchy responsible for a large fraction of power 
n  IBM servers: ~50% energy spent in off-chip memory hierarchy 

[Lefurgy+, IEEE Computer 2003] 
n  DRAM consumes power when idle and needs periodic refresh 

 

n  More transistors (cores) on chip  
n  Pin bandwidth not increasing as fast as number of transistors 

q  Memory is the major shared resource among cores 
q  More pressure on the memory hierarchy 
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Application Trends 
n  Many different threads/applications/virtual-machines (will) 

concurrently share the memory system 

q  Cloud computing/servers: Many workloads consolidated on-chip to 
improve efficiency 

q  GP-GPU, CPU+GPU, accelerators: Many threads from multiple 
applications 

q  Mobile: Interactive + non-interactive consolidation 

n  Different applications with different requirements (SLAs) 
q  Some applications/threads require performance guarantees 
q  Modern hierarchies do not distinguish between applications 

n  Applications are increasingly data intensive 
q  More demand for memory capacity and bandwidth 
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Architecture/System Trends 
n  Sharing of memory hierarchy 

n  More cores and components 
q  More pressure on the memory hierarchy 

n  Asymmetric cores: Performance asymmetry, CPU+GPUs, 
accelerators, … 
q  Motivated by energy efficiency and Amdahl’s Law 

n  Different cores have different performance requirements 
q  Memory hierarchies do not distinguish between cores 

n  Different goals for different systems/users 
q  System throughput, fairness, per-application performance 
q  Modern hierarchies are not flexible/configurable 
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Summary: Major Trends Affecting Memory 

n  Need for main memory capacity and bandwidth increasing 

n  New need for handling inter-application interference; 
providing fairness, QoS 

n  Need for memory system flexibility increasing  
 
n  Main memory energy/power is a key system design concern 
 
n  DRAM is not scaling well 
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Agenda 
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9 



Requirements from an Ideal Memory System 

n  Traditional 
q  High system performance  
q  Enough capacity 
q  Low cost 

n  New 
q  Technology scalability 
q  QoS support and configurability 
q  Energy (and power, bandwidth) efficiency 
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n  Traditional 
q  High system performance: Need to reduce inter-thread interference 

q  Enough capacity: Emerging tech. and waste management can help 

q  Low cost: Other memory technologies can help 

n  New 
q  Technology scalability 

n  Emerging memory technologies (e.g., PCM) can help 

q  QoS support and configurability 
n  Need HW mechanisms to control interference and build QoS policies 

q  Energy (and power, bandwidth) efficiency 
n  One-size-fits-all design wastes energy; emerging tech. can help? 
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The DRAM Scaling Problem 
n  DRAM stores charge in a capacitor (charge-based memory) 

q  Capacitor must be large enough for reliable sensing 
q  Access transistor should be large enough for low leakage and high 

retention time 
q  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

n  DRAM capacity, cost, and energy/power hard to scale 
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Concerns with DRAM as Main Memory 

n  Need for main memory capacity and bandwidth increasing 
q  DRAM capacity hard to scale  

 
n  Main memory energy/power is a key system design concern 

q  DRAM consumes high power due to leakage and refresh 

 
n  DRAM technology scaling is becoming difficult 

q  DRAM capacity and cost may not continue to scale 
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Possible Solution 1: Tolerate DRAM 

n  Overcome DRAM shortcomings with 
q  System-level solutions 
q  Changes to DRAM microarchitecture, interface, and functions 
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Possible Solution 2: Emerging Technologies 
n  Some emerging resistive memory technologies are more 

scalable than DRAM (and they are non-volatile) 

n  Example: Phase Change Memory 
q  Data stored by changing phase of special material  
q  Data read by detecting material’s resistance 
q  Expected to scale to 9nm (2022 [ITRS]) 
q  Prototyped at 20nm (Raoux+, IBM JRD 2008) 
q  Expected to be denser than DRAM: can store multiple bits/cell 

n  But, emerging technologies have shortcomings as well 
q  Can they be enabled to replace/augment/surpass DRAM? 

16 



Phase Change Memory: Pros and Cons 
n  Pros over DRAM 

q  Better technology scaling (capacity and cost) 
q  Non volatility 
q  Low idle power (no refresh) 

n  Cons 
q  Higher latencies: ~4-15x DRAM (especially write) 
q  Higher active energy: ~2-50x DRAM (especially write) 
q  Lower endurance (a cell dies after ~108 writes) 

n  Challenges in enabling PCM as DRAM replacement/helper: 
q  Mitigate PCM shortcomings 
q  Find the right way to place PCM in the system 
q  Ensure secure and fault-tolerant PCM operation 
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PCM-based Main Memory (I) 
n  How should PCM-based (main) memory be organized? 

 

n  Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:  
q  How to partition/migrate data between PCM and DRAM 

n  Energy, performance, endurance 

q  Is DRAM a cache for PCM or part of main memory? 
q  How to design the hardware and software 

n  Exploit advantages, minimize disadvantages of each technology 
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PCM-based Main Memory (II) 
n  How should PCM-based (main) memory be organized? 

 
n  Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:  

q  How to redesign entire hierarchy (and cores) to overcome 
PCM shortcomings 
n  Energy, performance, endurance 
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PCM-Based Memory Systems: Research Challenges  

n  Partitioning 
q  Should DRAM be a cache or main memory, or configurable? 
q  What fraction? How many controllers? 

n  Data allocation/movement (energy, performance, lifetime) 
q  Who manages allocation/movement? 
q  What are good control algorithms? 

n  Latency-critical, heavily modified à DRAM, otherwise PCM? 
n  Preventing denial/degradation of service 

n  Design of cache hierarchy, memory controllers, OS 
q  Mitigate PCM shortcomings, exploit PCM advantages 

n  Design of PCM/DRAM chips and modules 
q  Rethink the design of PCM/DRAM with new requirements 
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An Initial Study: Replace DRAM with PCM 
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 

Memory as a Scalable DRAM Alternative,” ISCA 2009. 
q  Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC) 
q  Derived “average” PCM parameters for F=90nm 
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Results: Naïve Replacement of DRAM with PCM 
n  Replace DRAM with PCM in a 4-core, 4MB L2 system 
n  PCM organized the same as DRAM: row buffers, banks, peripherals 
n  1.6x delay, 2.2x energy, 500-hour average lifetime 

 
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 

Scalable DRAM Alternative,” ISCA 2009. 
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Architecting PCM to Mitigate Shortcomings 
n  Idea 1: Use narrow row buffers in each PCM chip 

à Reduces write energy, peripheral circuitry 

n  Idea 2: Use multiple row buffers in each PCM chip 
à Reduces array reads/writes à better endurance, latency, energy 

n  Idea 3: Write into array at 
    cache block or word  
    granularity 

 à Reduces unnecessary wear    
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Results: Architected PCM as Main Memory  
n  1.2x delay, 1.0x energy, 5.6-year average lifetime 
n  Scaling improves energy, endurance, density 

n  Caveat 1: Worst-case lifetime is much shorter (no guarantees) 
n  Caveat 2: Intensive applications see large performance and energy hits 
n  Caveat 3: Optimistic PCM parameters? 
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PCM as Main Memory: Research Challenges  
n  Many research opportunities from 

technology layer to algorithms layer 

n  Enabling PCM/NVM 
q  How to maximize performance? 
q  How to maximize lifetime? 
q  How to prevent denial of service? 

n  Exploiting PCM/NVM 
q  How to exploit non-volatility? 
q  How to minimize energy consumption? 
q  How to minimize cost? 
q  How to exploit NVM on chip? 
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Memory System is the Major Shared Resource 
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Inter-Thread/Application Interference 

n  Problem: Threads share the memory system, but memory 
system does not distinguish between threads’ requests 

n  Existing memory systems  
q  Free-for-all, shared based on demand 
q  Control algorithms thread-unaware and thread-unfair 
q  Aggressive threads can deny service to others 
q  Do not try to reduce or control inter-thread interference 
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Uncontrolled Interference: An Example 

CORE 1 CORE 2 

    L2  
CACHE 

    L2  
CACHE 

DRAM MEMORY CONTROLLER 

DRAM  
Bank 0 

DRAM  
Bank 1 

DRAM  
Bank 2 

Shared DRAM 
Memory System 

Multi-Core 
Chip 

unfairness 
INTERCONNECT 

stream random 

DRAM  
Bank 3 



// initialize large arrays A, B 
 
for (j=0; j<N; j++) { 
     index = rand(); 
     A[index] = B[index]; 
     … 
} 
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A Memory Performance Hog 

STREAM 

-  Sequential memory access  
-  Very high row buffer locality (96% hit rate) 
-  Memory intensive 

RANDOM 

-  Random memory access 
-  Very low row buffer locality (3% hit rate) 
-  Similarly memory intensive 

// initialize large arrays A, B 
 
for (j=0; j<N; j++) { 
     index = j*linesize; 
     A[index] = B[index]; 
     … 
} 

streaming random 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
 



31 

What Does the Memory Hog Do? 

Row Buffer 

R
ow
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ec

od
er

 
Column mux 

Data 

Row 0 

T0: Row 0 

Row 0 

T1: Row 16 
T0: Row 0 T1: Row 111 

T0: Row 0 T0: Row 0 T1: Row 5 

T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 

Memory Request Buffer 

T0: STREAM 
T1: RANDOM 

Row size: 8KB, cache block size: 64B 
128 (8KB/64B) requests of T0 serviced before T1 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
 



Effect of the Memory Performance Hog 
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1.18X slowdown 

2.82X slowdown 

Results on Intel Pentium D running Windows XP 
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)  
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Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
 



Problems due to Uncontrolled Interference 
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n  Unfair slowdown of different threads [MICRO’07, ISCA’08, ASPLOS’10] 

n  Low system performance [MICRO’07, ISCA’08, HPCA’10, MICRO’10] 

n  Vulnerability to denial of service [USENIX Security’07] 

n  Priority inversion: unable to enforce priorities/SLAs [MICRO’07] 

n  Poor performance predictability (no performance isolation) 

Cores make  
very slow  
progress 

Memory performance hog Low priority 

High priority 
Sl

ow
do

w
n 

Main memory is the only shared resource 



Problems due to Uncontrolled Interference 
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n  Unfair slowdown of different threads [MICRO’07, ISCA’08, ASPLOS’10] 

n  Low system performance [MICRO’07, ISCA’08, HPCA’10, MICRO’10] 

n  Vulnerability to denial of service [USENIX Security’07] 

n  Priority inversion: unable to enforce priorities/SLAs [MICRO’07] 

n  Poor performance predictability (no performance isolation) 



How Do We Solve The Problem? 

n  Inter-thread interference is uncontrolled in all memory 
resources 
q  Memory controller 
q  Interconnect 
q  Caches 

n  We need to control it 
q  i.e., design an interference-aware (QoS-aware) memory system 
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QoS-Aware Memory Systems: Challenges 

n  How do we reduce inter-thread interference? 
q  Improve system performance and core utilization 
q  Reduce request serialization and core starvation 
 

n  How do we control inter-thread interference? 
q  Provide mechanisms to enable system software to enforce 

QoS policies  
q  While providing high system performance 

n  How do we make the memory system configurable/flexible?  
q  Enable flexible mechanisms that can achieve many goals 

n  Provide fairness or throughput when needed 
n  Satisfy performance guarantees when needed 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix 

Security’07] [Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top 
Picks’11] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ 
MICRO’09, ISCA’11] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ 

ASPLOS’10, ISCA’11] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ CMU TR’11] 
q  QoS-aware thread scheduling to cores 
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QoS-Aware Memory Scheduling 

n  How to schedule requests to provide 
q  High system performance 
q  High fairness to applications 
q  Configurability to system software  

n  Memory controller needs to be aware of threads 
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QoS-Aware Memory Scheduling: Evolution 
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

q  Idea: Estimate and balance thread slowdowns 

q  Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive) 

n  Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09] 

q  Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation 

n  ATLAS memory scheduler [Kim+ HPCA’10] 
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Within-Thread Bank Parallelism	
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QoS-Aware Memory Scheduling: Evolution 
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

q  Idea: Estimate and balance thread slowdowns 

q  Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive) 

n  Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09] 

q  Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation 

q  Takeaway: Preserving within-thread bank-parallelism improves 
performance; request batching improves fairness 

n  ATLAS memory scheduler [Kim+ HPCA’10] 

q  Idea: Prioritize threads that have attained the least service from the 
memory scheduler  

q  Takeaway: Prioritizing “light” threads improves performance 
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Achieving the Best of Both Worlds 
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Thread Cluster Memory Scheduling [Kim+ MICRO’10] 

1.   Group	
  threads	
  into	
  two	
  clusters	
  
2.   PrioriDze	
  non-­‐intensive	
  cluster	
  
3.   Different	
  policies	
  for	
  each	
  cluster	
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TCM: Fairness-Throughput Tradeoff 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix 

Security’07] [Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top 
Picks’11] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ 
MICRO’09, ISCA’11] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ 

ASPLOS’10, ISCA’11] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ CMU TR’11] 
q  QoS-aware thread scheduling to cores 
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Many Shared Resources 
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The Problem with “Smart Resources” 

n  Independent interference control mechanisms in 
caches, interconnect, and memory can contradict 
each other 

n  Explicitly coordinating mechanisms for different 
resources requires complex implementation 

n  How do we enable fair sharing of the entire 
memory system by controlling interference in a 
coordinated manner? 
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An Alternative Approach: Source Throttling 

n  Manage inter-thread interference at the cores, not at the 
shared resources 

n  Dynamically estimate unfairness in the memory system  
n  Feed back this information into a controller 
n  Throttle cores’ memory access rates accordingly 

q  Whom to throttle and by how much depends on performance 
target (throughput, fairness, per-thread QoS, etc) 

q  E.g., if unfairness > system-software-specified target then 
throttle down core causing unfairness &  
throttle up core that was unfairly treated 

n  Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10. 
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System Software Support 
 
n  Different fairness objectives can be configured by       

system software 
q  Keep maximum slowdown in check 

n  Estimated Max Slowdown < Target Max Slowdown 

q  Keep slowdown of particular applications in check to achieve a 
particular performance target 
n  Estimated Slowdown(i) < Target Slowdown(i) 

n  Support for thread priorities 
q  Weighted Slowdown(i) =  

        Estimated Slowdown(i) x Weight(i) 
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Source Throttling Results: Takeaways 

n  Source throttling alone provides better performance than a 
combination of “smart” memory scheduling and fair caching 
q  Decisions made at the memory scheduler and the cache 

sometimes contradict each other 

n  Neither source throttling alone nor “smart resources” alone 
provides the best performance 

n  Combined approaches are even more powerful  
q  Source throttling and resource-based interference control 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix 

Security’07] [Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top 
Picks’11] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ 
MICRO’09, ISCA’11] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ 

ASPLOS’10, ISCA’11] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ CMU TR’11] 
q  QoS-aware thread scheduling to cores 
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Another Way of Reducing Interference 
n  Memory Channel Partitioning 

q  Idea: Map badly-interfering applications’ pages to different 
channels [Muralidhara+ CMU TR’11] 

 

n  Separate data of low/high intensity and low/high row-locality applications 
n  Especially effective in reducing interference of threads with “medium” and 

“heavy” memory intensity  
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Summary: Memory QoS Approaches and Techniques 

n  Approaches: Smart vs. dumb resources 
q  Smart resources: QoS-aware memory scheduling 
q  Dumb resources: Source throttling; channel partitioning 
q  Both approaches are effective in reducing interference 
q  No single best approach for all workloads 

n  Techniques: Request scheduling, source throttling, memory 
partitioning 
q  All approaches are effective in reducing interference 
q  Can be applied at different levels: hardware vs. software 
q  No single best technique for all workloads 

n  Combined approaches and techniques are the most powerful 
q  Integrated Memory Channel Partitioning and Scheduling 
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Two Related Talks at ISCA 

n  How to design QoS-aware memory systems (memory 
scheduling and source throttling) in the presence of prefetching 
q  Ebrahimi et al., “Prefetch-Aware Shared Resource Management for 

Multi-Core Systems,” ISCA’11.  
q  Monday afternoon (Session 3B) 

n  How to design scalable QoS mechanisms in on-chip 
interconnects 
q  Idea: Isolate shared resources in a region, provide QoS support only 

within the region, ensure interference-free access to the region  
q  Grot et al., “Kilo-NOC: A Heterogeneous Network-on-Chip Architecture 

for Scalability and Service Guarantees,” ISCA’11. 
q  Wednesday morning (Session 8B) 
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Agenda 

n  Technology, Application, Architecture Trends 
n  Requirements from the Memory Hierarchy 
n  Research Challenges and Solution Directions 

q  Main Memory Scalability 
q  QoS support: Inter-thread/application interference 

n  Smart Resources: Thread Cluster Memory Scheduling 
n  Dumb Resources: Fairness via Source Throttling 

n  Conclusions 
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Conclusions 

n  Technology, application, architecture trends dictate            
new needs from memory system 

n  A fresh look at (re-designing) the memory hierarchy 
q  Scalability: Enabling new memory technologies 
q  QoS, fairness & performance: Reducing and controlling inter-

application interference: QoS-aware memory system design 
q  Efficiency: Customizability, minimal waste, new technologies 

n  Many exciting research topics in fundamental areas across 
the system stack 
q  Hardware/software/device cooperation essential 

62 



Thank you. 
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