
Memory Systems in the Many-Core Era:
Some Challenges and Solution Directions

Onur Mutlu
http://www.ece.cmu.edu/~omutlu

June 5, 2011
ISMM/MSPC

Modern Memory System: A Shared Resource

2

The Memory System
n  The memory system is a fundamental performance and

power bottleneck in almost all computing systems: server,
mobile, embedded, desktop, sensor

n  The memory system must scale (in size, performance,
efficiency, cost) to maintain performance and technology
scaling

n  Recent technology, architecture, and application trends lead
to new requirements from the memory system:
q  Scalability (technology and algorithm)
q  Fairness and QoS-awareness
q  Energy/power efficiency

3

Agenda

n  Technology, Application, Architecture Trends
n  Requirements from the Memory Hierarchy
n  Research Challenges and Solution Directions

q  Main Memory Scalability
q  QoS support: Inter-thread/application interference

n  Summary

4

Technology Trends
n  DRAM does not scale well beyond N nm [ITRS 2009, 2010]

q  Memory scaling benefits: density, capacity, cost

n  Energy/power already key design limiters

q  Memory hierarchy responsible for a large fraction of power
n  IBM servers: ~50% energy spent in off-chip memory hierarchy

[Lefurgy+, IEEE Computer 2003]
n  DRAM consumes power when idle and needs periodic refresh

n  More transistors (cores) on chip
n  Pin bandwidth not increasing as fast as number of transistors

q  Memory is the major shared resource among cores
q  More pressure on the memory hierarchy

5

Application Trends
n  Many different threads/applications/virtual-machines (will)

concurrently share the memory system

q  Cloud computing/servers: Many workloads consolidated on-chip to
improve efficiency

q  GP-GPU, CPU+GPU, accelerators: Many threads from multiple
applications

q  Mobile: Interactive + non-interactive consolidation

n  Different applications with different requirements (SLAs)
q  Some applications/threads require performance guarantees
q  Modern hierarchies do not distinguish between applications

n  Applications are increasingly data intensive
q  More demand for memory capacity and bandwidth

6

Architecture/System Trends
n  Sharing of memory hierarchy

n  More cores and components
q  More pressure on the memory hierarchy

n  Asymmetric cores: Performance asymmetry, CPU+GPUs,
accelerators, …
q  Motivated by energy efficiency and Amdahl’s Law

n  Different cores have different performance requirements
q  Memory hierarchies do not distinguish between cores

n  Different goals for different systems/users
q  System throughput, fairness, per-application performance
q  Modern hierarchies are not flexible/configurable

7

Summary: Major Trends Affecting Memory

n  Need for main memory capacity and bandwidth increasing

n  New need for handling inter-application interference;
providing fairness, QoS

n  Need for memory system flexibility increasing

n  Main memory energy/power is a key system design concern

n  DRAM is not scaling well

8

Agenda

n  Technology, Application, Architecture Trends
n  Requirements from the Memory Hierarchy
n  Research Challenges and Solution Directions

q  Main Memory Scalability
q  QoS support: Inter-thread/application interference

n  Summary

9

Requirements from an Ideal Memory System

n  Traditional
q  High system performance
q  Enough capacity
q  Low cost

n  New
q  Technology scalability
q  QoS support and configurability
q  Energy (and power, bandwidth) efficiency

10

n  Traditional
q  High system performance: Need to reduce inter-thread interference

q  Enough capacity: Emerging tech. and waste management can help

q  Low cost: Other memory technologies can help

n  New
q  Technology scalability

n  Emerging memory technologies (e.g., PCM) can help

q  QoS support and configurability
n  Need HW mechanisms to control interference and build QoS policies

q  Energy (and power, bandwidth) efficiency
n  One-size-fits-all design wastes energy; emerging tech. can help?

11

Requirements from an Ideal Memory System

Agenda

n  Technology, Application, Architecture Trends
n  Requirements from the Memory Hierarchy
n  Research Challenges and Solution Directions

q  Main Memory Scalability
q  QoS support: Inter-thread/application interference

n  Summary

12

The DRAM Scaling Problem
n  DRAM stores charge in a capacitor (charge-based memory)

q  Capacitor must be large enough for reliable sensing
q  Access transistor should be large enough for low leakage and high

retention time
q  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n  DRAM capacity, cost, and energy/power hard to scale

13

Concerns with DRAM as Main Memory

n  Need for main memory capacity and bandwidth increasing
q  DRAM capacity hard to scale

n  Main memory energy/power is a key system design concern

q  DRAM consumes high power due to leakage and refresh

n  DRAM technology scaling is becoming difficult

q  DRAM capacity and cost may not continue to scale

14

Possible Solution 1: Tolerate DRAM

n  Overcome DRAM shortcomings with
q  System-level solutions
q  Changes to DRAM microarchitecture, interface, and functions

15

Possible Solution 2: Emerging Technologies
n  Some emerging resistive memory technologies are more

scalable than DRAM (and they are non-volatile)

n  Example: Phase Change Memory
q  Data stored by changing phase of special material
q  Data read by detecting material’s resistance
q  Expected to scale to 9nm (2022 [ITRS])
q  Prototyped at 20nm (Raoux+, IBM JRD 2008)
q  Expected to be denser than DRAM: can store multiple bits/cell

n  But, emerging technologies have shortcomings as well
q  Can they be enabled to replace/augment/surpass DRAM?

16

Phase Change Memory: Pros and Cons
n  Pros over DRAM

q  Better technology scaling (capacity and cost)
q  Non volatility
q  Low idle power (no refresh)

n  Cons
q  Higher latencies: ~4-15x DRAM (especially write)
q  Higher active energy: ~2-50x DRAM (especially write)
q  Lower endurance (a cell dies after ~108 writes)

n  Challenges in enabling PCM as DRAM replacement/helper:
q  Mitigate PCM shortcomings
q  Find the right way to place PCM in the system
q  Ensure secure and fault-tolerant PCM operation

17

PCM-based Main Memory (I)
n  How should PCM-based (main) memory be organized?

n  Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:
q  How to partition/migrate data between PCM and DRAM

n  Energy, performance, endurance

q  Is DRAM a cache for PCM or part of main memory?
q  How to design the hardware and software

n  Exploit advantages, minimize disadvantages of each technology
18

PCM-based Main Memory (II)
n  How should PCM-based (main) memory be organized?

n  Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

q  How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings
n  Energy, performance, endurance

19

PCM-Based Memory Systems: Research Challenges

n  Partitioning
q  Should DRAM be a cache or main memory, or configurable?
q  What fraction? How many controllers?

n  Data allocation/movement (energy, performance, lifetime)
q  Who manages allocation/movement?
q  What are good control algorithms?

n  Latency-critical, heavily modified à DRAM, otherwise PCM?
n  Preventing denial/degradation of service

n  Design of cache hierarchy, memory controllers, OS
q  Mitigate PCM shortcomings, exploit PCM advantages

n  Design of PCM/DRAM chips and modules
q  Rethink the design of PCM/DRAM with new requirements

20

An Initial Study: Replace DRAM with PCM
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change

Memory as a Scalable DRAM Alternative,” ISCA 2009.
q  Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
q  Derived “average” PCM parameters for F=90nm

21

Results: Naïve Replacement of DRAM with PCM
n  Replace DRAM with PCM in a 4-core, 4MB L2 system
n  PCM organized the same as DRAM: row buffers, banks, peripherals
n  1.6x delay, 2.2x energy, 500-hour average lifetime

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a

Scalable DRAM Alternative,” ISCA 2009.
22

Architecting PCM to Mitigate Shortcomings
n  Idea 1: Use narrow row buffers in each PCM chip

à Reduces write energy, peripheral circuitry

n  Idea 2: Use multiple row buffers in each PCM chip
à Reduces array reads/writes à better endurance, latency, energy

n  Idea 3: Write into array at
 cache block or word
 granularity

 à Reduces unnecessary wear

23

DRAM PCM

Results: Architected PCM as Main Memory
n  1.2x delay, 1.0x energy, 5.6-year average lifetime
n  Scaling improves energy, endurance, density

n  Caveat 1: Worst-case lifetime is much shorter (no guarantees)
n  Caveat 2: Intensive applications see large performance and energy hits
n  Caveat 3: Optimistic PCM parameters?

24

PCM as Main Memory: Research Challenges
n  Many research opportunities from

technology layer to algorithms layer

n  Enabling PCM/NVM
q  How to maximize performance?
q  How to maximize lifetime?
q  How to prevent denial of service?

n  Exploiting PCM/NVM
q  How to exploit non-volatility?
q  How to minimize energy consumption?
q  How to minimize cost?
q  How to exploit NVM on chip?

25

Microarchitecture

ISA

Programs

Algorithms
Problems

Logic

Devices

Runtime System
(VM, OS, MM)

User

Agenda

n  Technology, Application, Architecture Trends
n  Requirements from the Memory Hierarchy
n  Research Challenges and Solution Directions

q  Main Memory Scalability
q  QoS support: Inter-thread/application interference

n  Summary

26

Memory System is the Major Shared Resource

27

threads’ requests
interfere

Inter-Thread/Application Interference

n  Problem: Threads share the memory system, but memory
system does not distinguish between threads’ requests

n  Existing memory systems
q  Free-for-all, shared based on demand
q  Control algorithms thread-unaware and thread-unfair
q  Aggressive threads can deny service to others
q  Do not try to reduce or control inter-thread interference

28

29

Uncontrolled Interference: An Example

CORE 1 CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

stream random

DRAM
Bank 3

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = rand();
 A[index] = B[index];
 …
}

30

A Memory Performance Hog

STREAM

-  Sequential memory access
-  Very high row buffer locality (96% hit rate)
-  Memory intensive

RANDOM

-  Random memory access
-  Very low row buffer locality (3% hit rate)
-  Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = j*linesize;
 A[index] = B[index];
 …
}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

31

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0 T1: Row 111

T0: Row 0 T0: Row 0 T1: Row 5

T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Effect of the Memory Performance Hog

0

0.5

1

1.5

2

2.5

3

STREAM RANDOM

32

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Sl
ow

do
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc
0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Problems due to Uncontrolled Interference

33

n  Unfair slowdown of different threads [MICRO’07, ISCA’08, ASPLOS’10]

n  Low system performance [MICRO’07, ISCA’08, HPCA’10, MICRO’10]

n  Vulnerability to denial of service [USENIX Security’07]

n  Priority inversion: unable to enforce priorities/SLAs [MICRO’07]

n  Poor performance predictability (no performance isolation)

Cores make
very slow
progress

Memory performance hog Low priority

High priority
Sl

ow
do

w
n

Main memory is the only shared resource

Problems due to Uncontrolled Interference

34

n  Unfair slowdown of different threads [MICRO’07, ISCA’08, ASPLOS’10]

n  Low system performance [MICRO’07, ISCA’08, HPCA’10, MICRO’10]

n  Vulnerability to denial of service [USENIX Security’07]

n  Priority inversion: unable to enforce priorities/SLAs [MICRO’07]

n  Poor performance predictability (no performance isolation)

How Do We Solve The Problem?

n  Inter-thread interference is uncontrolled in all memory
resources
q  Memory controller
q  Interconnect
q  Caches

n  We need to control it
q  i.e., design an interference-aware (QoS-aware) memory system

35

QoS-Aware Memory Systems: Challenges

n  How do we reduce inter-thread interference?
q  Improve system performance and core utilization
q  Reduce request serialization and core starvation

n  How do we control inter-thread interference?
q  Provide mechanisms to enable system software to enforce

QoS policies
q  While providing high system performance

n  How do we make the memory system configurable/flexible?
q  Enable flexible mechanisms that can achieve many goals

n  Provide fairness or throughput when needed
n  Satisfy performance guarantees when needed

36

Designing QoS-Aware Memory Systems: Approaches

n  Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix

Security’07] [Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top
Picks’11]

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+
MICRO’09, ISCA’11]

q  QoS-aware caches

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping
q  Source throttling to control access to memory system [Ebrahimi+

ASPLOS’10, ISCA’11] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

q  QoS-aware data mapping to memory controllers [Muralidhara+ CMU TR’11]
q  QoS-aware thread scheduling to cores

37

Agenda

n  Technology, Application, Architecture Trends
n  Requirements from the Memory Hierarchy
n  Research Challenges and Solution Directions

q  Main Memory Scalability
q  QoS support: Inter-thread/application interference

n  Smart Resources: Thread Cluster Memory Scheduling
n  Dumb Resources: Fairness via Source Throttling

n  Summary

38

QoS-Aware Memory Scheduling

n  How to schedule requests to provide
q  High system performance
q  High fairness to applications
q  Configurability to system software

n  Memory controller needs to be aware of threads

39

Memory	

Controller	

Core	
 Core	

Core	
 Core	

Memory	

Resolves memory contention
by scheduling requests

QoS-Aware Memory Scheduling: Evolution
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07]

q  Idea: Estimate and balance thread slowdowns

q  Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

n  Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

q  Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

n  ATLAS memory scheduler [Kim+ HPCA’10]

40

Within-Thread Bank Parallelism	

41	

Bank	
 0	

Bank	
 1	

req	

req	
 req	

req	

memory	
 service	
 +meline	

thread	
 A	
 	

thread	
 B	
 	

thread	
 execu+on	
 +meline	

WAIT	

WAIT	

thread	
 B	
 	

thread	
 A	
 	

Bank	
 0	

Bank	
 1	

req	

req	
 req	

req	

memory	
 service	
 +meline	

thread	
 execu+on	
 +meline	

WAIT	

WAIT	

ra
nk
	

thread	
 B	
 	

thread	
 A	
 	

thread	
 A	
 	

thread	
 B	
 	

SAVED	
 CYCLES	

Key	
 Idea:	

QoS-Aware Memory Scheduling: Evolution
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07]

q  Idea: Estimate and balance thread slowdowns

q  Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

n  Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

q  Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

q  Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

n  ATLAS memory scheduler [Kim+ HPCA’10]

q  Idea: Prioritize threads that have attained the least service from the
memory scheduler

q  Takeaway: Prioritizing “light” threads improves performance

42

1	

3	

5	

7	

9	

11	

13	

15	

17	

7	
 7.5	
 8	
 8.5	
 9	
 9.5	
 10	

M
ax
im

um
	
 S
lo
w
do

w
n	

Weighted	
 Speedup	

FCFS	

FRFCFS	

STFM	

PAR-­‐BS	

ATLAS	

No	
 previous	
 memory	
 scheduling	
 algorithm	
 provides	

both	
 the	
 best	
 fairness	
 and	
 system	
 throughput	

Previous Scheduling Algorithms are Biased

43	

System	
 throughput	
 bias	

Fairness	
 bias	

BeIer	
 system	
 throughput	

Be
Ie

r	
 f
ai
rn
es
s	

24	
 cores,	
 4	
 memory	
 controllers,	
 96	
 workloads	
 	

Take	
 turns	
 accessing	
 memory	

Throughput vs. Fairness

44	

Fairness	
 biased	
 approach	

thread	
 C	

thread	
 B	

thread	
 A	

less	
 memory	
 	

intensive	

higher	

priority	

PrioriMze	
 less	
 memory-­‐intensive	
 threads	

Throughput	
 biased	
 approach	

Good	
 for	
 throughput	

starva3on	
 è	
 unfairness	

thread	
 C	
 thread	
 B	
 thread	
 A	

Does	
 not	
 starve	

not	
 priori3zed	
 è	
 	

reduced	
 throughput	

Single	
 policy	
 for	
 all	
 threads	
 is	
 insufficient	

Achieving the Best of Both Worlds

45	

thread	

thread	

higher	

priority	

thread	

thread	

thread	
 	

thread	

thread	

thread	

PrioriDze	
 memory-­‐non-­‐intensive	
 threads	

For	
 Throughput	

Unfairness	
 caused	
 by	
 memory-­‐intensive	

being	
 prioriDzed	
 over	
 each	
 other	
 	

• 	
 Shuffle	
 thread	
 ranking	

Memory-­‐intensive	
 threads	
 have	
 	

different	
 vulnerability	
 to	
 interference	

• 	
 Shuffle	
 asymmetrically	

For	
 Fairness	

thread	

thread	

thread	

thread	

Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1.   Group	
 threads	
 into	
 two	
 clusters	

2.   PrioriDze	
 non-­‐intensive	
 cluster	

3.   Different	
 policies	
 for	
 each	
 cluster	

46	

thread	

Threads	
 in	
 the	
 system	

thread	

thread	

thread	

thread	

thread	

thread	

Non-­‐intensive	
 	

cluster	

Intensive	
 cluster	

thread	

thread	

thread	

Memory-­‐non-­‐intensive	
 	

Memory-­‐intensive	
 	

Priori3zed	

higher	

priority	

higher	

priority	

Throughput	

Fairness	

FRFCFS	

STFM	

PAR-­‐BS	

ATLAS	

TCM	

4	

6	

8	

10	

12	

14	

16	

7.5	
 8	
 8.5	
 9	
 9.5	
 10	

M
ax
im

um
	
 S
lo
w
do

w
n	

Weighted	
 Speedup	

TCM: Throughput and Fairness

47	

BeIer	
 system	
 throughput	

Be
Ie

r	
 f
ai
rn
es
s	

24	
 cores,	
 4	
 memory	
 controllers,	
 96	
 workloads	
 	

TCM,	
 a	
 heterogeneous	
 scheduling	
 policy,	

provides	
 best	
 fairness	
 and	
 system	
 throughput	

TCM: Fairness-Throughput Tradeoff

48	

2	

4	

6	

8	

10	

12	

12	
 12.5	
 13	
 13.5	
 14	
 14.5	
 15	
 15.5	
 16	

M
ax
im

um
	
 S
lo
w
do

w
n	

Weighted	
 Speedup	

When	
 configuraDon	
 parameter	
 is	
 varied…	

Adjus+ng	
 	

ClusterThreshold	

TCM	
 allows	
 robust	
 fairness-­‐throughput	
 tradeoff	
 	

STFM	

PAR-­‐BS	

ATLAS	

TCM	

BeIer	
 system	
 throughput	

Be
Ie

r	
 f
ai
rn
es
s	
 FRFCFS	

Agenda

n  Technology, Application, Architecture Trends
n  Requirements from the Memory Hierarchy
n  Research Challenges and Solution Directions

q  Main Memory Scalability
q  QoS support: Inter-thread/application interference

n  Smart Resources: Thread Cluster Memory Scheduling
n  Dumb Resources: Fairness via Source Throttling

n  Summary

49

Designing QoS-Aware Memory Systems: Approaches

n  Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix

Security’07] [Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top
Picks’11]

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+
MICRO’09, ISCA’11]

q  QoS-aware caches

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping
q  Source throttling to control access to memory system [Ebrahimi+

ASPLOS’10, ISCA’11] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

q  QoS-aware data mapping to memory controllers [Muralidhara+ CMU TR’11]
q  QoS-aware thread scheduling to cores

50

Many Shared Resources

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Shared Memory
Resources

Chip Boundary
On-chip
Off-chip

51

The Problem with “Smart Resources”

n  Independent interference control mechanisms in
caches, interconnect, and memory can contradict
each other

n  Explicitly coordinating mechanisms for different
resources requires complex implementation

n  How do we enable fair sharing of the entire
memory system by controlling interference in a
coordinated manner?

52

An Alternative Approach: Source Throttling

n  Manage inter-thread interference at the cores, not at the
shared resources

n  Dynamically estimate unfairness in the memory system
n  Feed back this information into a controller
n  Throttle cores’ memory access rates accordingly

q  Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

q  E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

n  Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10.

53

54

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 (limit injection rate and parallelism)
 2-Throttle up App-slowest
}

FST
Unfairness Estimate

App-slowest
App-interfering

｜

⎨

｜

⎧

⎩
 Slowdown

Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST) [ASPLOS’10]

System Software Support

n  Different fairness objectives can be configured by

system software
q  Keep maximum slowdown in check

n  Estimated Max Slowdown < Target Max Slowdown

q  Keep slowdown of particular applications in check to achieve a
particular performance target
n  Estimated Slowdown(i) < Target Slowdown(i)

n  Support for thread priorities
q  Weighted Slowdown(i) =

 Estimated Slowdown(i) x Weight(i)

55

Source Throttling Results: Takeaways

n  Source throttling alone provides better performance than a
combination of “smart” memory scheduling and fair caching
q  Decisions made at the memory scheduler and the cache

sometimes contradict each other

n  Neither source throttling alone nor “smart resources” alone
provides the best performance

n  Combined approaches are even more powerful
q  Source throttling and resource-based interference control

56

Designing QoS-Aware Memory Systems: Approaches

n  Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix

Security’07] [Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top
Picks’11]

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+
MICRO’09, ISCA’11]

q  QoS-aware caches

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping
q  Source throttling to control access to memory system [Ebrahimi+

ASPLOS’10, ISCA’11] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

q  QoS-aware data mapping to memory controllers [Muralidhara+ CMU TR’11]
q  QoS-aware thread scheduling to cores

57

Another Way of Reducing Interference
n  Memory Channel Partitioning

q  Idea: Map badly-interfering applications’ pages to different
channels [Muralidhara+ CMU TR’11]

n  Separate data of low/high intensity and low/high row-locality applications
n  Especially effective in reducing interference of threads with “medium” and

“heavy” memory intensity

58

Summary: Memory QoS Approaches and Techniques

n  Approaches: Smart vs. dumb resources
q  Smart resources: QoS-aware memory scheduling
q  Dumb resources: Source throttling; channel partitioning
q  Both approaches are effective in reducing interference
q  No single best approach for all workloads

n  Techniques: Request scheduling, source throttling, memory
partitioning
q  All approaches are effective in reducing interference
q  Can be applied at different levels: hardware vs. software
q  No single best technique for all workloads

n  Combined approaches and techniques are the most powerful
q  Integrated Memory Channel Partitioning and Scheduling

59

Two Related Talks at ISCA

n  How to design QoS-aware memory systems (memory
scheduling and source throttling) in the presence of prefetching
q  Ebrahimi et al., “Prefetch-Aware Shared Resource Management for

Multi-Core Systems,” ISCA’11.
q  Monday afternoon (Session 3B)

n  How to design scalable QoS mechanisms in on-chip
interconnects
q  Idea: Isolate shared resources in a region, provide QoS support only

within the region, ensure interference-free access to the region
q  Grot et al., “Kilo-NOC: A Heterogeneous Network-on-Chip Architecture

for Scalability and Service Guarantees,” ISCA’11.
q  Wednesday morning (Session 8B)

60

Agenda

n  Technology, Application, Architecture Trends
n  Requirements from the Memory Hierarchy
n  Research Challenges and Solution Directions

q  Main Memory Scalability
q  QoS support: Inter-thread/application interference

n  Smart Resources: Thread Cluster Memory Scheduling
n  Dumb Resources: Fairness via Source Throttling

n  Conclusions

61

Conclusions

n  Technology, application, architecture trends dictate
new needs from memory system

n  A fresh look at (re-designing) the memory hierarchy
q  Scalability: Enabling new memory technologies
q  QoS, fairness & performance: Reducing and controlling inter-

application interference: QoS-aware memory system design
q  Efficiency: Customizability, minimal waste, new technologies

n  Many exciting research topics in fundamental areas across
the system stack
q  Hardware/software/device cooperation essential

62

Thank you.

63

Memory Systems in the Many-Core Era:
Some Challenges and Solution Directions

Onur Mutlu
http://www.ece.cmu.edu/~omutlu

June 5, 2011
ISMM/MSPC

