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Modern Memory System: A Shared Resource
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The Memory System

The memory system is a fundamental performance and
power bottleneck in almost all computing systems: server,
mobile, embedded, desktop, sensor

The memory system must scale (in size, performance,
efficiency, cost) to maintain performance and technology
scaling

Recent technology, architecture, and application trends lead
to new requirements from the memory system:

o Scalability (technologyjand algorithm)

o Fairness and QoS-awareness
o Energy/power efficiency
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Technology Trends

DRAM does not scale well beyond N nm [ITRS 2009, 2010]
o Memory scaling benefits: density, capacity, cost

Energy/power already key design limiters

o Memory hierarchy responsible for a large fraction of power

IBM servers: ~50% energy spent in off-chip memory hierarchy
[Lefurgy+, IEEE Computer 2003]

DRAM consumes power when idle and needs periodic refresh

More transistors (cores) on chip

Pin bandwidth not increasing as fast as number of transistors
o Memory is the major shared resource among cores
o More pressure on the memory hierarchy



Application Trends

Many different threads/applications/virtual-machines (will)
concurrently share the memory system

o Cloud computing/servers: Many workloads consolidated on-chip to
improve efficiency

o GP-GPU, CPU+GPU, accelerators: Many threads from multiple
applications

o Mobile: Interactive + non-interactive consolidation

Different applications with different requirements (SLAs)

o Some applications/threads require performance guarantees
o Modern hierarchies do not distinguish between applications

Applications are increasingly data intensive
o More demand for memory capacity and bandwidth



Architecture/System Trends

Sharing of memory hierarchy

More cores and components
o More pressure on the memory hierarchy

Asymmetric cores: Performance asymmetry, CPU+GPUs,
accelerators, ...

o Motivated by energy efficiency and Amdahl’s Law
Different cores have different performance requirements
o Memory hierarchies do not distinguish between cores

Different goals for different systems/users
o System throughput, fairness, per-application performance
o Modern hierarchies are not flexible/configurable



Summary: Major Trends Affecting Memory
Need for main memory capacity and bandwidth increasing

New need for handling inter-application interference;
providing fairness, QoS

Need for memory system flexibility increasing
Main memory energy/power is a key system design concern

DRAM is not scaling well
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Requirements from an Ideal Memory System

= Traditional
o High system performance
o Enough capacity
o Low cost

= New
o Technology scalability
a QoS support and configurability
o Energy (and power, bandwidth) efficiency
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Requirements from an Ideal Memory System

= Traditional
o High system performance: Need to reduce inter-thread interference
o Enough capacity: Emerging tech. and waste management can help
o Low cost: Other memory technologies can help

= New
o Technology scalability
= Emerging memory technologies (e.g., PCM) can help
a QoS support and configurability
= Need HW mechanisms to control interference and build QoS policies

o Energy (and power, bandwidth) efficiency
= One-size-fits-all design wastes energy; emerging tech. can help?
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The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]
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DRAM capacity, cost, and energy/power hard to scale
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Concerns with DRAM as Main Memory

= Need for main memory capacity and bandwidth increasing
o DRAM capacity hard to scale

= Main memory energy/power is a key system design concern
o DRAM consumes high power due to leakage and refresh

= DRAM technology scaling is becoming difficult
o DRAM capacity and cost may not continue to scale
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Possible Solution 1: Tolerate DRAM

Overcome DRAM shortcomings with
o System-level solutions
o Changes to DRAM microarchitecture, interface, and functions
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Possible Solution 2: Emerging Technologies

Some emerging resistive memory technologies are more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory

o Data stored by changing phase of special material
o Data read by detecting material’s resistance

o Expected to scale to 9nm (2022 [ITRS])

o Prototyped at 20nm (Raoux+, IBM JRD 2008)

o Expected to be denser than DRAM: can store multiple bits/cell
But, emerging technologies have shortcomings as well

o Can they be enabled to replace/augment/surpass DRAM?
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Phase Change Memory: Pros and Cons

= Pros over DRAM
o Better technology scaling (capacity and cost)
o Non volatility
o Low idle power (no refresh)

= Cons
o Higher latencies: ~4-15x DRAM (especially write)
a Higher active energy: ~2-50x DRAM (especially write)
a Lower endurance (a cell dies after ~108 writes)

= Challenges in enabling PCM as DRAM replacement/helper:
o Mitigate PCM shortcomings
o Find the right way to place PCM in the system
o Ensure secure and fault-tolerant PCM operation
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PCM-based Main Memory (I)

= How should PCM-based (main) memory be organized?
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= Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC'09]:

o How to partition/migrate data between PCM and DRAM
= Energy, performance, endurance

o Is DRAM a cache for PCM or part of main memory?

o How to design the hardware and software
= Exploit advantages, minimize disadvantages of each technology



PCM-based Main Memory (11)

= How should PCM-based (main) memory be organized?
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= Pure PCM main memory [Lee et al., ISCA'09, Top Picks’10]:

o How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

= Energy, performance, endurance
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PCM-Based Memory Systems: Research Challenges

Partitioning
o Should DRAM be a cache or main memory, or configurable?
o What fraction? How many controllers?

Data allocation/movement (energy, performance, lifetime)

o Who manages allocation/movement?

o What are good control algorithms?
Latency-critical, heavily modified - DRAM, otherwise PCM?
Preventing denial/degradation of service

Design of cache hierarchy, memory controllers, OS
o Mitigate PCM shortcomings, exploit PCM advantages

Design of PCM/DRAM chips and modules

o Rethink the design of PCM/DRAM with new requirements
20



An Initial Study: Replace DRAM with PCM

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

o Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
o Derived “average” PCM parameters for F=90nm

Density Latency
> 9-12F? using BJT > 50ns Rd, 150ns Wr
> 1.5x DRAM .~ |> 4x,12x DRAM
Endurance Energy

- 40,A R, 150,A We
> 1E-08x DRAM | > 2x,43x DRAM
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Results: Naive Replacement of DRAM with PCM

Replace DRAM with PCM in a 4-core, 4MB L2 system
PCM organized the same as DRAM: row buffers, banks, peripherals
1.6x delay, 2.2x energy, 500-hour average lifetime
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Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.
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Architecting PCM to Mitigate Shortcomings

Idea 1: Use narrow row buffers in each PCM chip
- Reduces write energy, peripheral circuitry

Idea 2: Use multiple row buffers in each PCM chip
- Reduces array reads/writes - better endurance, latency, energy

o DRAM PCM
Idea 3: Write into array at [ oata aray J { cataaray J
cache block or word v v
granularity s
- Reduces unnecessary wear b o R

latches
(buffer)

i 1’0

23




Results: Architected PCM as Main Memory

= 1.2x delay, 1.0x energy, 5.6-year average lifetime
= Scaling improves energy, endurance, density
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= Caveat 1: Worst-case lifetime is much shorter (no guarantees)
= Caveat 2: Intensive applications see large performance and energy hits

= Caveat 3: Optimistic PCM parameters?
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PCM as Main Memory: Research Challenges

= Many research opportunities from
technology layer to algorithms layer

Problems
= Enabling PCM/NVM IAD\Igorithms,
o How to maximize performance? rograms ' -
o How to maximize lifetime? \ /
o How to prevent denial of service? Runtime System
(VM, OS, MM)
= Exploiting PCM/NVM ISA

o How to exploit non-volatility?

o How to minimize energy consumption?
o How to minimize cost?

o How to exploit NVM on chip?
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Memory System is the Major Shared Resource

threads’ requests

interfere
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Inter-Thread/Application Interference

Problem: Threads share the memory system, but memory
system does not distinguish between threads’ requests

Existing memory systems

o Free-for-all, shared based on demand

o Control algorithms thread-unaware and thread-unfair

o Aggressive threads can deny service to others

a Do not try to reduce or control inter-thread interference
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Uncontrolled Interference: An Example
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A Memory Performance Hog

// initialize large arrays A, B // initialize large arrays A, B
for (j=0; j<N; j++ for (j=0; j<N; j++) {
index = j*linesize;| streaming index = rand()] random
Al[index] = B[index]; Alindex] = B[index];
) }
STREAM RANDOM
- Sequential memory access - Random memory access
- Very high row buffer locality (96% hit rate) - Very low row buffer locality (3% hit rate)
- Memory intensive - Similarly memory intensive

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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What Does the Memory Hog Do?
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Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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Ettect of the Memory Performance Hog

2X slowdown
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Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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Problems due to Uncontrolled Interference

8  Main memory is the only shared resource 7.74 High priority
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= Unfair slowdown of different threads [MICRO'07, ISCA'08, ASPLOS'10]
= Low system performance [MICRO'07, ISCA'08, HPCA'10, MICRO’10]

= Vulnerability to denial of service [USENIX Security’07]

= Priority inversion: unable to enforce priorities/SLAS [MICRO'07]

= Poor performance predictability (no performance isolation)
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Problems due to Uncontrolled Interference
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= Unfair slowdown of different threads [MICRO'07, ISCA'08, ASPLOS'10]
= Low system performance [MICRO'07, ISCA'08, HPCA'10, MICRO10]

= Vulnerability to denial of service [USENIX Security’07]

= Priority inversion: unable to enforce priorities/SLAS [MICRO'07]

= Poor performance predictability (no performance isolation)

34



How Do We Solve The Problem?

Inter-thread interference is uncontrolled in all memory
resources

o Memory controller
o Interconnect
o Caches

We need to control it
o i.e., design an interference-aware (QoS-aware) memory system
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QoS-Aware Memory Systems: Challenges

How do we reduce inter-thread interference?
o Improve system performance and core utilization
o Reduce request serialization and core starvation

How do we control inter-thread interference?

o Provide mechanisms to enable system software to enforce
QoS policies

o While providing high system performance

How do we make the memory system configurable/flexible?

o Enable flexible mechanisms that can achieve many goals

Provide fairness or throughput when needed
Satisfy performance guarantees when needed
36



Designing QoS-Aware Memory Systems: Approaches

Smart resources: Design each shared resource to have a

configurable interference control/reduction mechanism
o | QoS-aware memory controllers [ Mutlu+ MICRO'07] [Moscibroda+, Usenix
ecurity’U Viutiu A'03, Top PICKS'09] [Kim+ HPCA'10] [Kim+ MICRO10, Top

Picks'11]

o QoS-aware interconnects [Das+ MICRO'09, ISCA’10, Top Picks '11] [Grot+
MICRO'09, ISCA'11]

o QoS-aware caches

Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping

o Source throttling to control access to memory system [Ebrahimi+
ASPLOS’10, ISCA’11] [Ebrahimi+ MICRO'09] [Nychis+ HotNets'10]

o QoS-aware data mapping to memory controllers [Muralidhara+ CMU TR'11]
o QoS-aware thread scheduling to cores
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QoS-Aware Memory Scheduling

Resolves memory contention
by scheduling requests

Core|Core vl
Y X _ A Memory
4 Controller E

Core j Core I ;

= How to schedule requests to provide
o High system performance
o High fairness to applications
o Configurability to system software

= Memory controller needs to be aware of threads
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QoS-Aware Memory Scheduling: Evolution

Stall-time fair memory scheduling [Mutlu+ MICRO'07]
o Idea: Estimate and balance thread slowdowns

o Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

Parallelism-aware batch scheduling [Mutlu+ ISCA'08, Top Picks'09]

o Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

ATLAS memory scheduler [Kim+ HPCA10]
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Within-Thread Bank Parallelism
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QoS-Aware Memory Scheduling: Evolution

Stall-time fair memory scheduling [Mutlu+ MICRO'07]
o Idea: Estimate and balance thread slowdowns

o Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

Parallelism-aware batch scheduling [Mutlu+ ISCA'08, Top Picks'09]

o Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

o Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

ATLAS memory scheduler [Kim+ HPCA10]

o Idea: Prioritize threads that have attained the least service from the
memory scheduler

o Takeaway: Prioritizing “light” threads improves performance
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Previous Scheduling Algorithms are Biased

24 cores, 4 memory controllers, 96 workloads
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Better system throughput

No previous memory scheduling algorithm provides
both the best fairness and system throughput
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Throughput vs. Fairness

Throughput biased approach Fairness biased approach

Prioritize less memory-intensive threads Take turns accessing memory

Good for throughput Does not starve

— T

—>—
less memory higher

intensive {M priority
not prioritized =»

starvation = unfairness reduced throughput

Single policy for all threads is insufficient
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Achieving the Best of Both Worlds
higher
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_ _ Prioritize memory-non-intensive threads
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Memory-intensive threads have
different vulnerability to interference
 Shuffle asymmetrically
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Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

/higher A
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TCM: Throughput and Fairness

24 cores, 4 memory controllers, 96 workloads
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TCM, a heterogeneous scheduling policy,
provides best fairness and system throughput
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TCM: Fairness-Throughput Tradeoff

When configuration parameter is varied...
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Designing QoS-Aware Memory Systems: Approaches

= Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

o QoS-aware memory controllers [Mutlu+ MICRO'07] [Moscibroda+, Usenix

Security’07] [Mutlu+ ISCA'08, Top Picks'09] [Kim+ HPCA10] [Kim+ MICRQO’10, Top
Picks'11]

o QoS-aware interconnects [Das+ MICRO'09, ISCA’10, Top Picks '11] [Grot+
MICRO'09, ISCA'11]

o QoS-aware caches

= Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping
o | Source throttllng to control access to memory systemy[Ebrahimi+

o QoS-aware data mapping to memory controllers [Muralidhara+ CMU TR'11]
o QoS-aware thread scheduling to cores
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Many Shared Resources

Shared Memory
Resources

.. Chip Boundary
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The Problem with “Smart Resources’

Independent interference control mechanisms in

caches, interconnect, and memory can contradict
each other

Explicitly coordinating mechanisms for different
resources requires complex implementation

How do we enable fair sharing of the entire

memory system by controlling interference in a
coordinated manner?
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An Alternative Approach: Source Throttling

Manage inter-thread interference at the cores, not at the
shared resources

Dynamically estimate unfairness in the memory system
Feed back this information into a controller

Throttle cores’ memory access rates accordingly

o Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

o E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

Ebrahimi et al., “"Fairness via Source Throttling,” ASPLOS"10.
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Fairness via Source Throttling (FST) [aspros10]

‘ Interval 1’ Interval 2 ‘ Interval 3
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3- Find app. causing most (limit injection rate and parallelism)
interference for App-slowest 2-Throttle up App-slowest
(App-interfering) >




System Software Support

Different fairness objectives can be configured by
system software

o Keep maximum slowdown in check
Estimated Max Slowdown < Target Max Slowdown

o Keep slowdown of particular applications in check to achieve a
particular performance target

Estimated Slowdown(i) < Target Slowdown(i)

Support for thread priorities

o Weighted Slowdown(i) =
Estimated Slowdown(i) x Weight(i)
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Source Throttling Results: Takeaways

Source throttling alone provides better performance than a
combination of “smart” memory scheduling and fair caching

o Decisions made at the memory scheduler and the cache
sometimes contradict each other

Neither source throttling alone nor “smart resources” alone
provides the best performance

Combined approaches are even more powerful
o Source throttling and resource-based interference control
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Designing QoS-Aware Memory Systems: Approaches

= Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

o QoS-aware memory controllers [Mutlu+ MICRO'07] [Moscibroda+, Usenix

Security’07] [Mutlu+ ISCA'08, Top Picks'09] [Kim+ HPCA10] [Kim+ MICRQO’10, Top
Picks'11]

o QoS-aware interconnects [Das+ MICRO'09, ISCA’10, Top Picks '11] [Grot+
MICRO'09, ISCA'11]

o QoS-aware caches

= Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping
o Source throttling to control access to memory system [Ebrahimi+

ASPLOS’10, ISCA’11] [Ebrahimi+ MICRO’09] [Nychis+ HotNets'10]
o | QoS-aware data mapping to memory controllers[Muralidhara+ CMU TR'11]

o QoS-aware thread scheduling to cores
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Another Way of Reducing Interference

Memory Channel Partitioning

o Idea: Map badly-interfering applications’ pages to different
channels [Muralidhara+ CMU TR'11]

Time Units ‘Time Units '
T a3l 21 Channel 0 s 1203121 Channel 0
Core 0 QL_JIMH H N _ Bank 0 HE NN Bank 0
Bank 1 App A N H Bank 1
gomé Bank 0 g;;eé \ [] Bank 0
- EE N T Bank 1
aved '
Channel 1 Time Units Channel 1
(a) Conventional Page Mapping. (b) Channel Partitioning.

Separate data of low/high intensity and low/high row-locality applications

Especially effective in reducing interference of threads with “medium” and
“heavy” memory intensity
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Summary: Memory QoS Approaches and Techniques

Approaches: Smart vs. dumb resources

o Smart resources: QoS-aware memory scheduling

o Dumb resources: Source throttling; channel partitioning
o Both approaches are effective in reducing interference
a No single best approach for all workloads

Techniques: Request scheduling, source throttling, memory
partitioning

o All approaches are effective in reducing interference

o Can be applied at different levels: hardware vs. software

o No single best technique for all workloads

Combined approaches and techniques are the most powerful
o Integrated Memory Channel Partitioning and Scheduling
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Two Related Talks at ISCA

How to design QoS-aware memory systems (memory
scheduling and source throttling) in the presence of prefetching

o Ebrahimi et al., “Prefetch-Aware Shared Resource Management for
Multi-Core Systems,” ISCA'11.

o Monday afternoon (Session 3B)

How to design scalable QoS mechanisms in on-chip
interconnects

o Idea: Isolate shared resources in a region, provide QoS support only
within the region, ensure interference-free access to the region

o Grot et al., "Kilo-NOC: A Heterogeneous Network-on-Chip Architecture
for Scalability and Service Guarantees,” ISCA'11.

o Wednesday morning (Session 8B)
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Conclusions

Technology, application, architecture trends dictate
new needs from memory system

A fresh look at (re-designing) the memory hierarchy
o Scalability: Enabling new memory technologies

o QoS, fairness & performance: Reducing and controlling inter-
application interference: QoS-aware memory system design

o Efficiency: Customizability, minimal waste, new technologies

Many exciting research topics in fundamental areas across
the system stack

o Hardware/software/device cooperation essential
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Thank you.
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