Scalable Many-Core Memory Systems Lecture 2, Topic 1: DRAM Basics and DRAM Scaling

Prof. Onur Mutlu

http://www.ece.cmu.edu/~omutlu

onur@cmu.edu

HiPEAC ACACES Summer School 2013 July 16, 2013

Carnegie Mellon

Agenda for Topic 1 (DRAM Scaling)

- What Will You Learn in This Mini-Lecture Series
- Main Memory Basics (with a Focus on DRAM)
- Major Trends Affecting Main Memory
- DRAM Scaling Problem and Solution Directions
- Solution Direction 1: System-DRAM Co-Design
- Ongoing Research
- Summary

Review: DRAM Controller: Functions

- Ensure correct operation of DRAM (refresh and timing)
- Service DRAM requests while obeying timing constraints of DRAM chips
 - Constraints: resource conflicts (bank, bus, channel), minimum write-to-read delays
 - Translate requests to DRAM command sequences
- Buffer and schedule requests to improve performance
 - Reordering, row-buffer, bank, rank, bus management
- Manage power consumption and thermals in DRAM
 - Turn on/off DRAM chips, manage power modes

DRAM Power Management

- DRAM chips have power modes
- Idea: When not accessing a chip power it down
- Power states
 - Active (highest power)
 - All banks idle
 - Power-down
 - Self-refresh (lowest power)
- Tradeoff: State transitions incur latency during which the chip cannot be accessed

Review: Why are DRAM Controllers Difficult to Design?

- Need to obey DRAM timing constraints for correctness
 - □ There are many (50+) timing constraints in DRAM
 - tWTR: Minimum number of cycles to wait before issuing a read command after a write command is issued
 - tRC: Minimum number of cycles between the issuing of two consecutive activate commands to the same bank
 - **-** ...
- Need to keep track of many resources to prevent conflicts
 - Channels, banks, ranks, data bus, address bus, row buffers
- Need to handle DRAM refresh
- Need to optimize for performance (in the presence of constraints)
 - Reordering is not simple
 - Predicting the future?

Review: Many DRAM Timing Constraints

Latency	Symbol	DRAM cycles	Latency	Symbol	DRAM cycles
Precharge	^{t}RP	11	Activate to read/write	tRCD	11
Read column address strobe	CL	11	Write column address strobe	CWL	8
Additive	AL	0	Activate to activate	tRC	39
Activate to precharge	tRAS	28	Read to precharge	tRTP	6
Burst length	tBL	4	Column address strobe to column address strobe	tCCD	4
Activate to activate (different bank)	tRRD	6	Four activate windows	tFAW	24
Write to read	tWTR	6	Write recovery	^{t}WR	12

Table 4. DDR3 1600 DRAM timing specifications

 From Lee et al., "DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory Systems," HPS Technical Report, April 2010.

Review: More on DRAM Operation

- Kim et al., "A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM," ISCA 2012.
- Lee et al., "Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture," HPCA 2013.

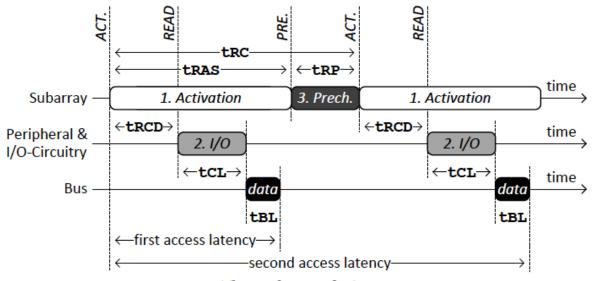


Figure 5. Three Phases of DRAM Access

Table 2. Timing Constraints (DDR3-1066) [43]

Phase	Commands	Name	Value	
1	$\begin{array}{c} ACT \to READ \\ ACT \to WRITE \end{array}$	tRCD	15ns	
	$ACT \to PRE$	tRAS	37.5ns	
2	$\begin{array}{c} \text{READ} \rightarrow \textit{data} \\ \text{WRITE} \rightarrow \textit{data} \end{array}$	tCL tCWL	15ns 11.25ns	
	data burst	tBL	7.5ns	
3	$\text{PRE} \to \text{ACT}$	tRP	15ns	
1 & 3	$ACT \to ACT$	tRC (tRAS+tRP)	52.5ns	

- Problem: DRAM controllers difficult to design → It is difficult for human designers to design a policy that can adapt itself very well to different workloads and different system conditions
- Idea: Design a memory controller that adapts its scheduling policy decisions to workload behavior and system conditions using machine learning.
- Observation: Reinforcement learning maps nicely to memory control.
- Design: Memory controller is a reinforcement learning agent that dynamically and continuously learns and employs the best scheduling policy.

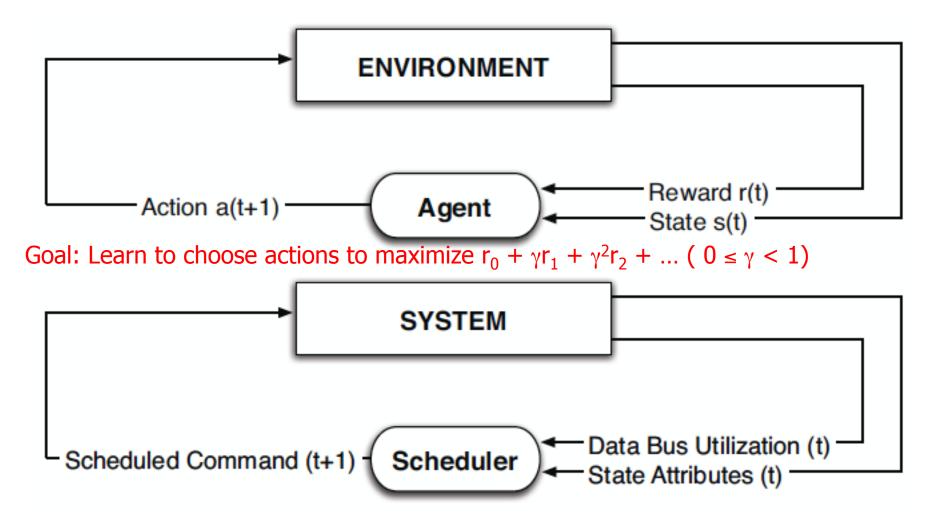
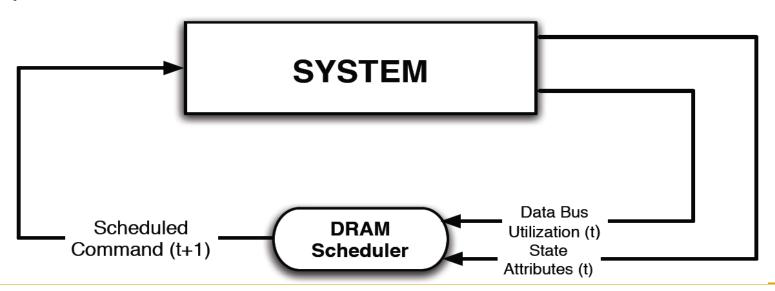


Figure 2: (a) Intelligent agent based on reinforcement learning principles; (b) DRAM scheduler as an RL-agent

- Dynamically adapt the memory scheduling policy via interaction with the system at runtime
 - Associate system states and actions (commands) with long term reward values
 - Schedule command with highest estimated long-term value in each state
 - Continuously update state-action values based on feedback from system



Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
 "Self Optimizing Memory Controllers: A Reinforcement Learning Approach"

Proceedings of the <u>35th International Symposium on Computer Architecture</u> (**ISCA**), pages 39-50, Beijing, China, June 2008.

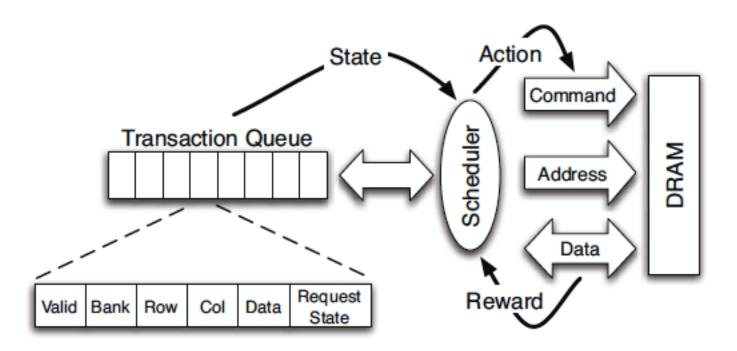


Figure 4: High-level overview of an RL-based scheduler.

States, Actions, Rewards

- Reward function
 - +1 for scheduling Read and Write commands
 - 0 at all other times

- State attributes
 - Number of reads, writes, and load misses in transaction queue
 - Number of pending writes and ROB heads waiting for referenced row
 - Request's relative ROB order

- Actions
 - Activate
 - Write
 - Read load miss
 - Read store miss
 - Precharge pending
 - Precharge preemptive
 - NOP

Performance Results

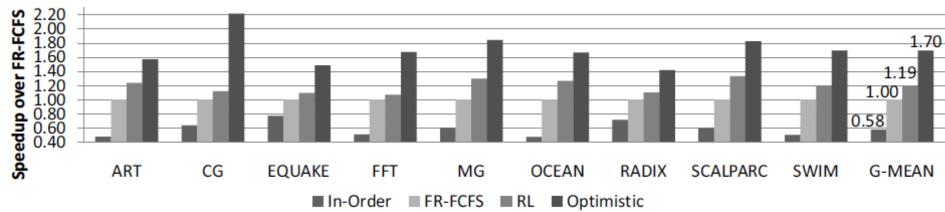


Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers

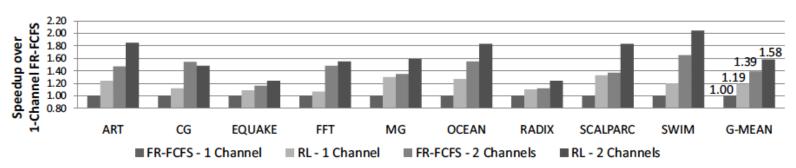


Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB/s peak DRAM bandwidth

Advantages

- + Adapts the scheduling policy dynamically to changing workload behavior and to maximize a long-term target
- + Reduces the designer's burden in finding a good scheduling policy. Designer specifies:
 - 1) What system variables might be useful
 - 2) What target to optimize, but not how to optimize it

Disadvantages

- -- Black box: designer much less likely to implement what she cannot easily reason about
- -- How to specify different reward functions that can achieve different objectives? (e.g., fairness, QoS)

Trends Affecting Main Memory

Agenda for Topic 1 (DRAM Scaling)

- What Will You Learn in This Mini-Lecture Series
- Main Memory Basics (with a Focus on DRAM)
- Major Trends Affecting Main Memory
- DRAM Scaling Problem and Solution Directions
- Solution Direction 1: System-DRAM Co-Design
- Ongoing Research
- Summary

Major Trends Affecting Main Memory (I)

Need for main memory capacity, bandwidth, QoS increasing

Main memory energy/power is a key system design concern

DRAM technology scaling is ending

Major Trends Affecting Main Memory (II)

- Need for main memory capacity, bandwidth, QoS increasing
 - Multi-core: increasing number of cores
 - Data-intensive applications: increasing demand/hunger for data
 - Consolidation: cloud computing, GPUs, mobile

Main memory energy/power is a key system design concern

DRAM technology scaling is ending

Major Trends Affecting Main Memory (III)

Need for main memory capacity, bandwidth, QoS increasing

- Main memory energy/power is a key system design concern
 - ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, IEEE Computer 2003]
 - DRAM consumes power even when not used (periodic refresh)
- DRAM technology scaling is ending

Major Trends Affecting Main Memory (IV)

Need for main memory capacity, bandwidth, QoS increasing

Main memory energy/power is a key system design concern

- DRAM technology scaling is ending
 - ITRS projects DRAM will not scale easily below X nm
 - Scaling has provided many benefits:
 - higher capacity (density), lower cost, lower energy

Agenda for Today

- What Will You Learn in This Mini-Lecture Series
- Main Memory Basics (with a Focus on DRAM)
- Major Trends Affecting Main Memory
- DRAM Scaling Problem and Solution Directions
- Solution Direction 1: System-DRAM Co-Design
- Ongoing Research
- Summary

The DRAM Scaling Problem

- DRAM stores charge in a capacitor (charge-based memory)
 - Capacitor must be large enough for reliable sensing
 - Access transistor should be large enough for low leakage and high retention time
 - Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]



DRAM capacity, cost, and energy/power hard to scale

Solutions to the DRAM Scaling Problem

- Two potential solutions
 - Tolerate DRAM (by taking a fresh look at it)
 - Enable emerging memory technologies to eliminate/minimize DRAM
- Do both
 - Hybrid memory systems

Solution 1: Tolerate DRAM

- Overcome DRAM shortcomings with
 - System-DRAM co-design
 - Novel DRAM architectures, interface, functions
 - Better waste management (efficient utilization)
- Key issues to tackle
 - Reduce refresh energy
 - Improve bandwidth and latency
 - Reduce waste
 - Enable reliability at low cost
- Liu, Jaiyen, Veras, Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012.
- Kim, Seshadri, Lee+, "A Case for Exploiting Subarray-Level Parallelism in DRAM," ISCA 2012.
- Lee+, "Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture," HPCA 2013.
- Liu+, "An Experimental Study of Data Retention Behavior in Modern DRAM Devices" ISCA'13.
- Seshadri+, "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data," 2013.

Tolerating DRAM: System-DRAM Co-Design

New DRAM Architectures

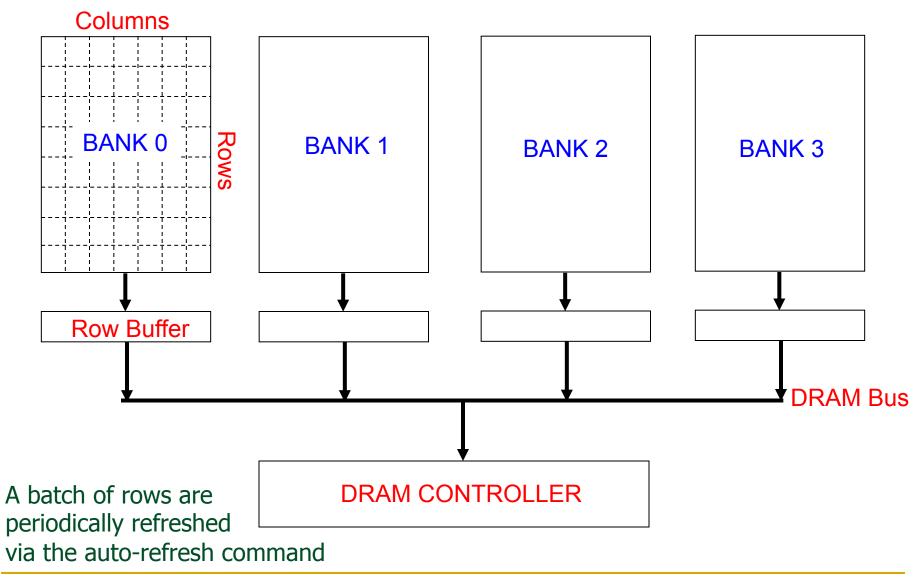
- RAIDR: Reducing Refresh Impact
- TL-DRAM: Reducing DRAM Latency
- SALP: Reducing Bank Conflict Impact
- RowClone: Fast Bulk Data Copy and Initialization

RAIDR: Reducing DRAM Refresh Impact

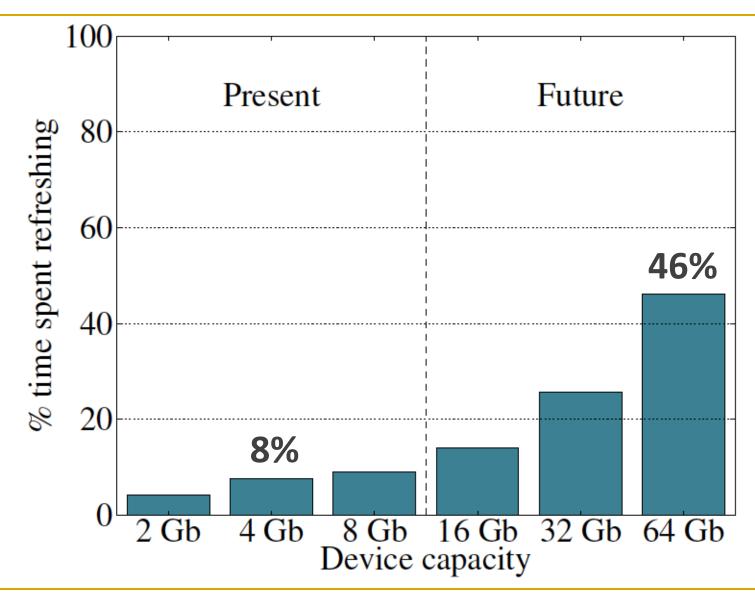
DRAM Refresh

- DRAM capacitor charge leaks over time
- The memory controller needs to refresh each row periodically to restore charge
 - Activate + precharge each row every N ms
 - \Box Typical N = 64 ms
- Downsides of refresh
 - -- Energy consumption: Each refresh consumes energy
 - -- Performance degradation: DRAM rank/bank unavailable while refreshed
 - -- QoS/predictability impact: (Long) pause times during refresh
 - -- Refresh rate limits DRAM density scaling

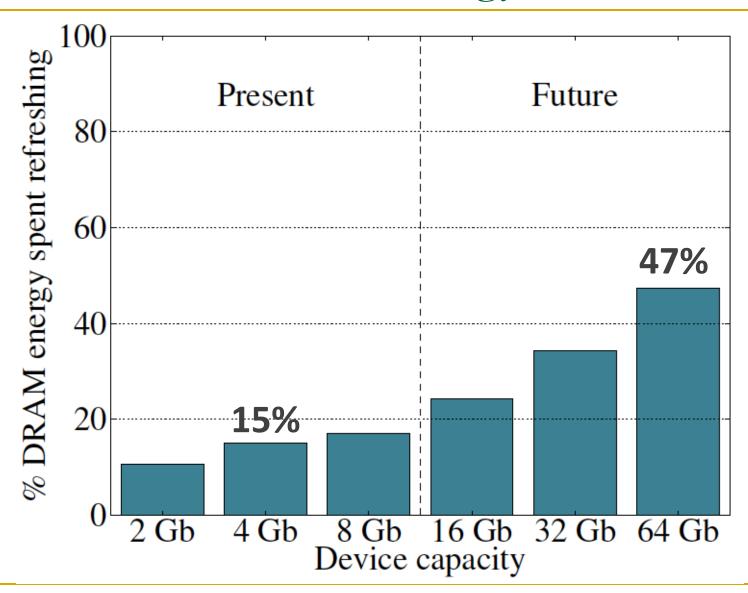
Refresh Today: Auto Refresh



Refresh Overhead: Performance

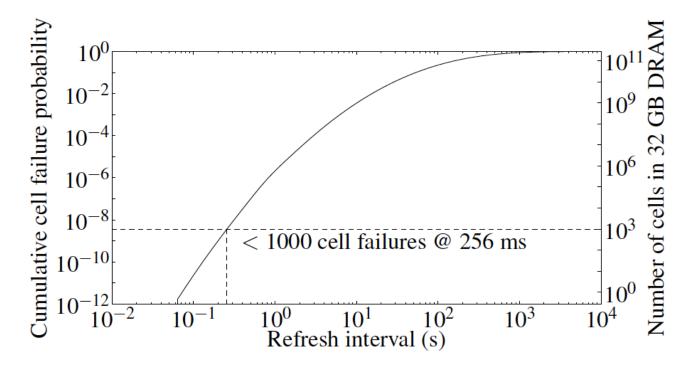


Refresh Overhead: Energy



Problem with Conventional Refresh

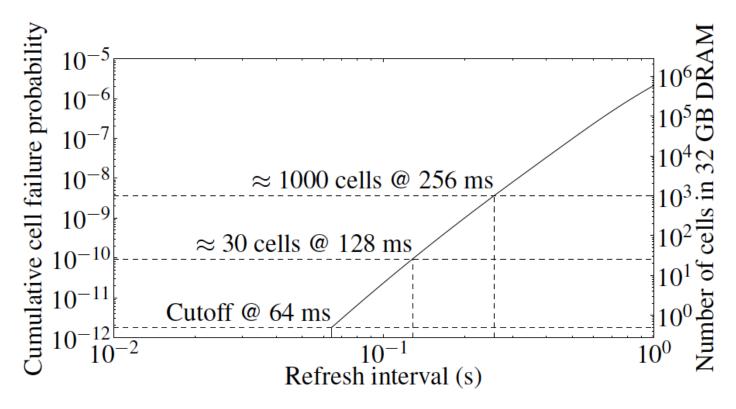
Today: Every row is refreshed at the same rate



- Observation: Most rows can be refreshed much less often without losing data [Kim+, EDL'09]
- Problem: No support in DRAM for different refresh rates per row

Retention Time of DRAM Rows

 Observation: Only very few rows need to be refreshed at the worst-case rate



Can we exploit this to reduce refresh operations at low cost?

Reducing DRAM Refresh Operations

- Idea: Identify the retention time of different rows and refresh each row at the frequency it needs to be refreshed
- (Cost-conscious) Idea: Bin the rows according to their minimum retention times and refresh rows in each bin at the refresh rate specified for the bin
 - e.g., a bin for 64-128ms, another for 128-256ms, ...
- Observation: Only very few rows need to be refreshed very frequently [64-128ms] → Have only a few bins → Low HW overhead to achieve large reductions in refresh operations
- Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012.

RAIDR: Mechanism

64-128ms

>256ms

1.25KB storage in controller for 32GB DRAM memory

128-256ms

bins at different rates

→ probe Bloom Filters to determine refresh rate of a row

1. Profiling

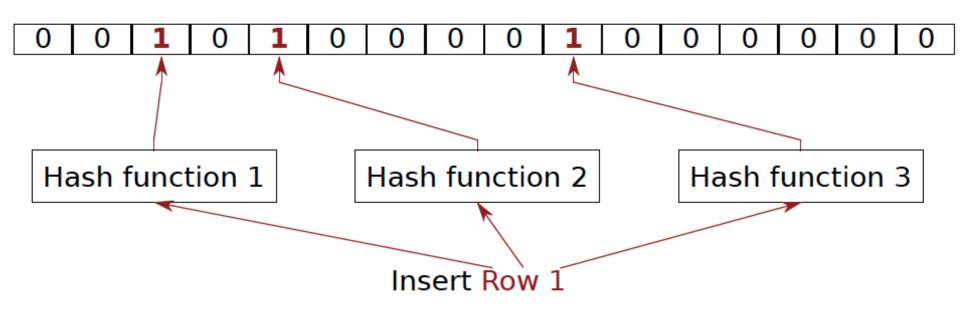
To profile a row:

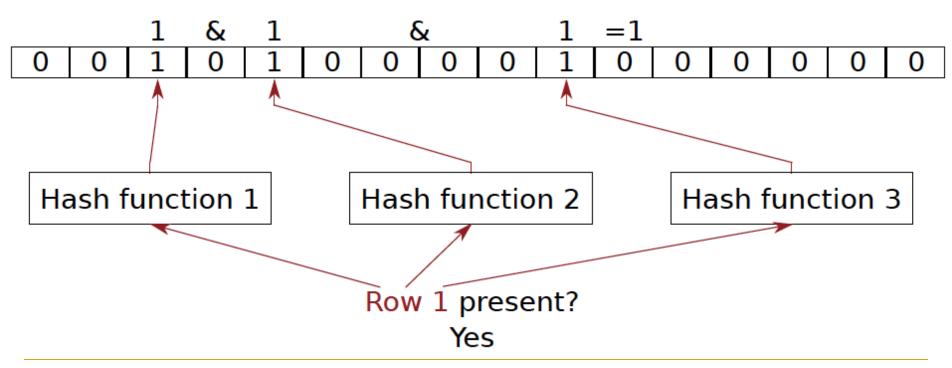
- 1. Write data to the row
- Prevent it from being refreshed
- 3. Measure time before data corruption

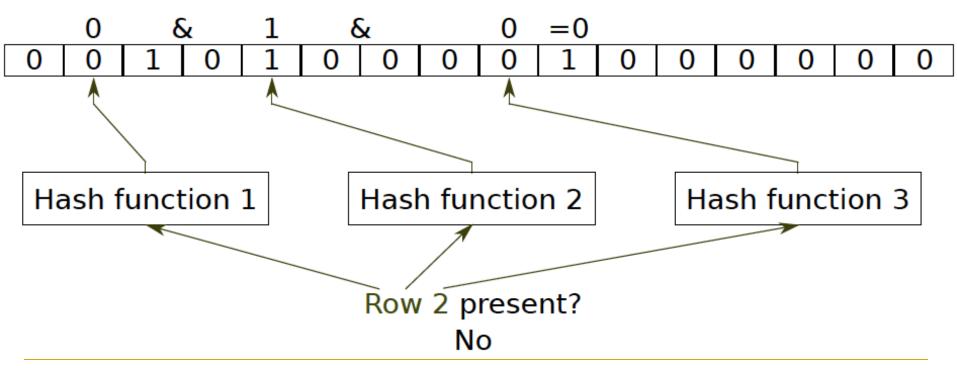
	Row 1	Row 2	Row 3
Initially	111111111	11111111	11111111
After 64 ms	11111111	11111111	11111111
After 128 ms	11011111	11111111	11111111
	(64–128ms)		
After 256 ms		11111 <mark>0</mark> 11	11111111
		(128-256ms)	(>256ms)

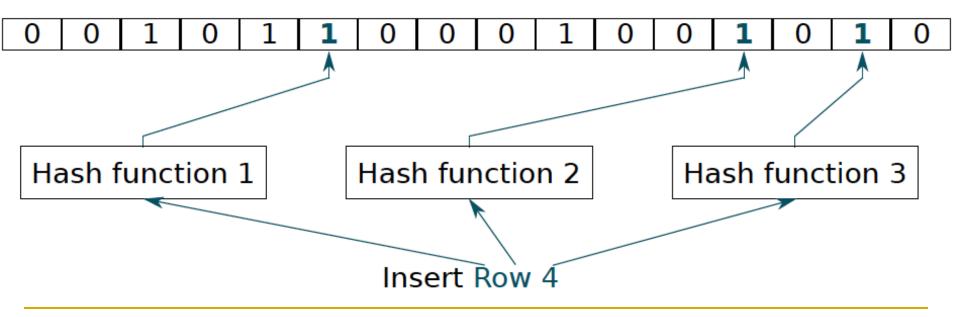
2. Binning

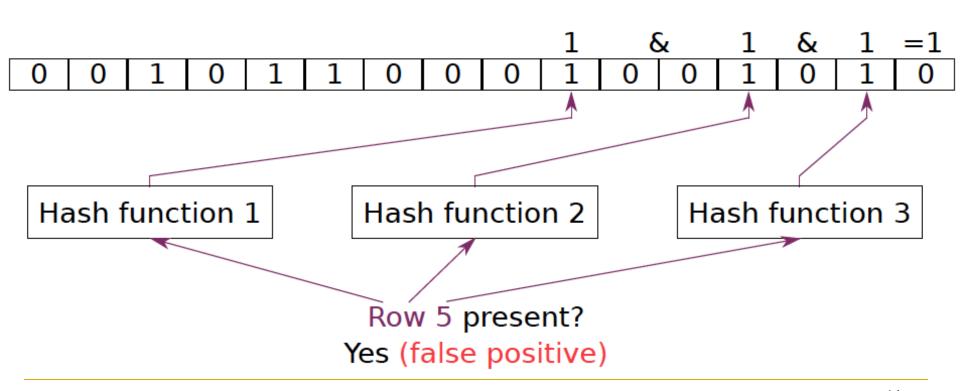
- How to efficiently and scalably store rows into retention time bins?
- Use Hardware Bloom Filters [Bloom, CACM 1970]











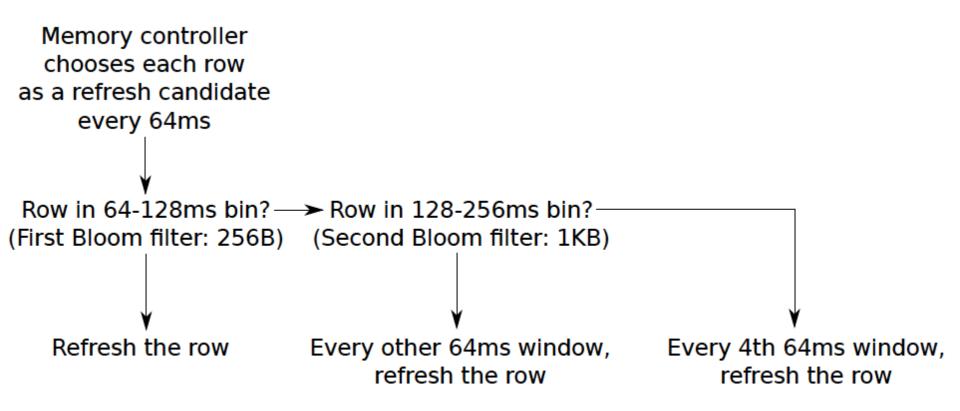
Benefits of Bloom Filters as Bins

- False positives: a row may be declared present in the Bloom filter even if it was never inserted
 - Not a problem: Refresh some rows more frequently than needed
- No false negatives: rows are never refreshed less frequently than needed (no correctness problems)
- Scalable: a Bloom filter never overflows (unlike a fixed-size table)
- Efficient: No need to store info on a per-row basis; simple hardware → 1.25 KB for 2 filters for 32 GB DRAM system

3. Refreshing (RAIDR Refresh Controller)

Choose a refresh candidate row Determine which bin the row is in Determine if refreshing is needed

3. Refreshing (RAIDR Refresh Controller)

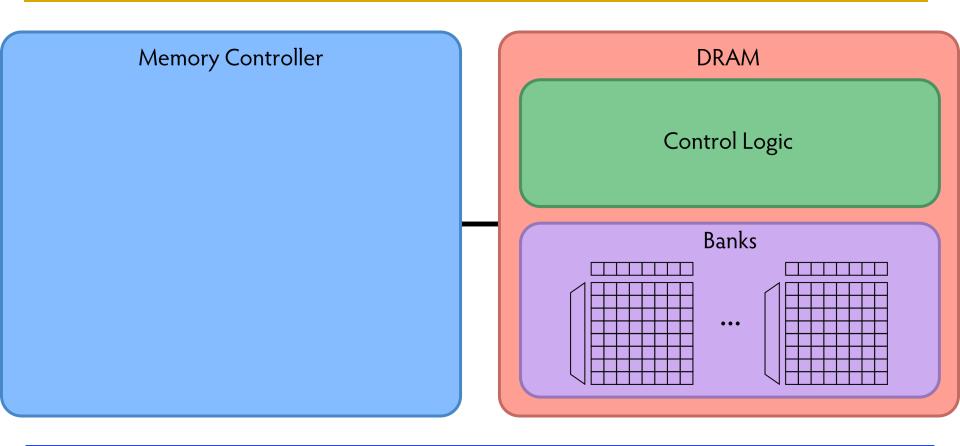


Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012.

Tolerating Temperature Changes

- Change in temperature causes retention time of all cells to change by a uniform and predictable factor
- Refresh rate scaling: increase the refresh rate for all rows uniformly, depending on the temperature
- Implementation: counter with programmable period
 - ▶ Lower temperature ⇒ longer period ⇒ less frequent refreshes
 - ► Higher temperature ⇒ shorter period ⇒ more frequent refreshes

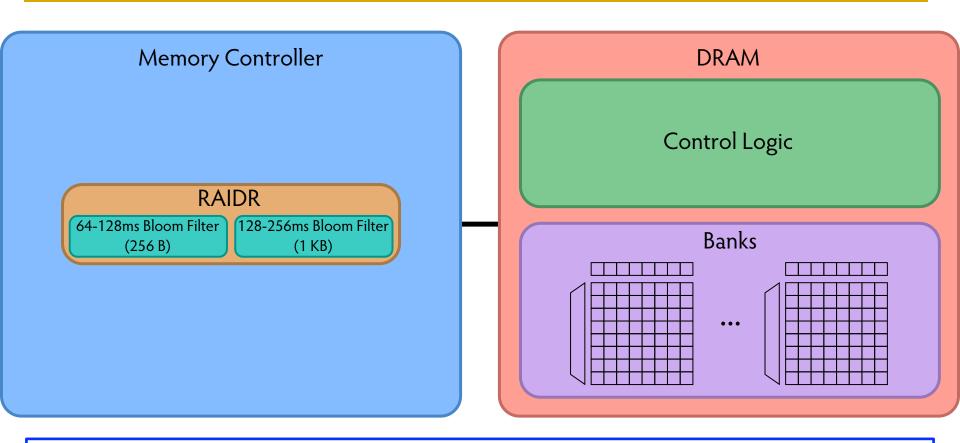
RAIDR: Baseline Design



Refresh control is in DRAM in today's auto-refresh systems

RAIDR can be implemented in either the controller or DRAM

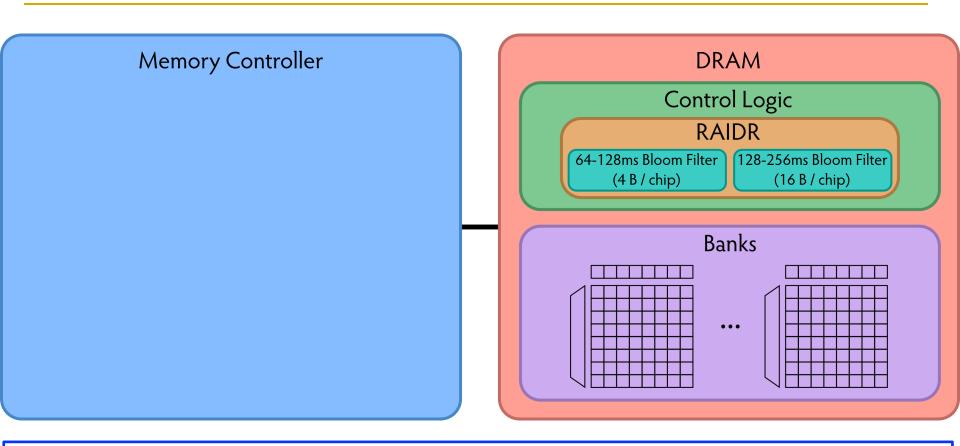
RAIDR in Memory Controller: Option 1



Overhead of RAIDR in DRAM controller:

1.25 KB Bloom Filters, 3 counters, additional commands issued for per-row refresh (all accounted for in evaluations)

RAIDR in DRAM Chip: Option 2



Overhead of RAIDR in DRAM chip:

Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)

RAIDR Results

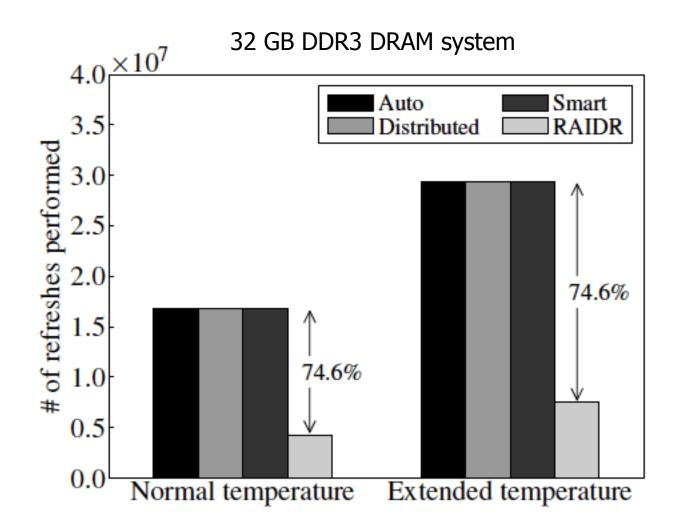
Baseline:

- □ 32 GB DDR3 DRAM system (8 cores, 512KB cache/core)
- 64ms refresh interval for all rows

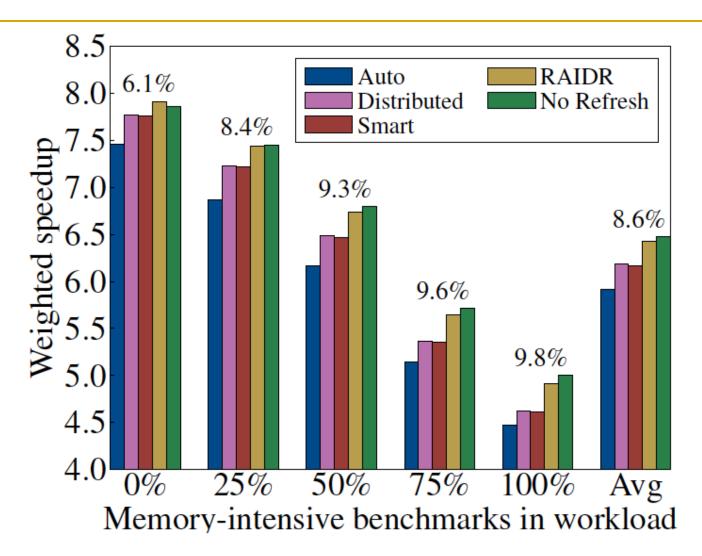
RAIDR:

- 64–128ms retention range: 256 B Bloom filter, 10 hash functions
- □ 128–256ms retention range: 1 KB Bloom filter, 6 hash functions
- Default refresh interval: 256 ms
- Results on SPEC CPU2006, TPC-C, TPC-H benchmarks
 - 74.6% refresh reduction
 - ~16%/20% DRAM dynamic/idle power reduction
 - ~9% performance improvement

RAIDR Refresh Reduction

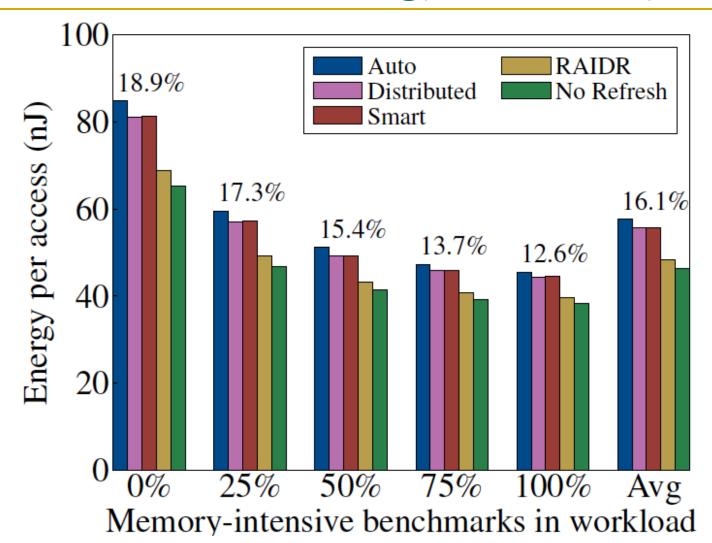


RAIDR: Performance



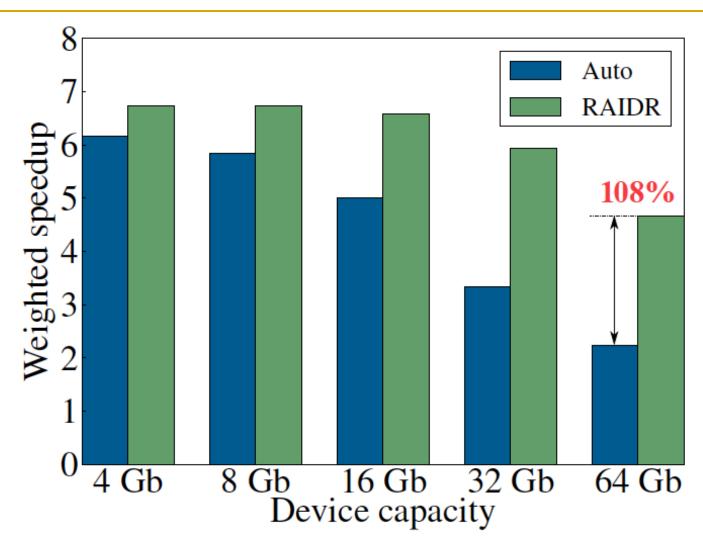
RAIDR performance benefits increase with workload's memory intensity

RAIDR: DRAM Energy Efficiency



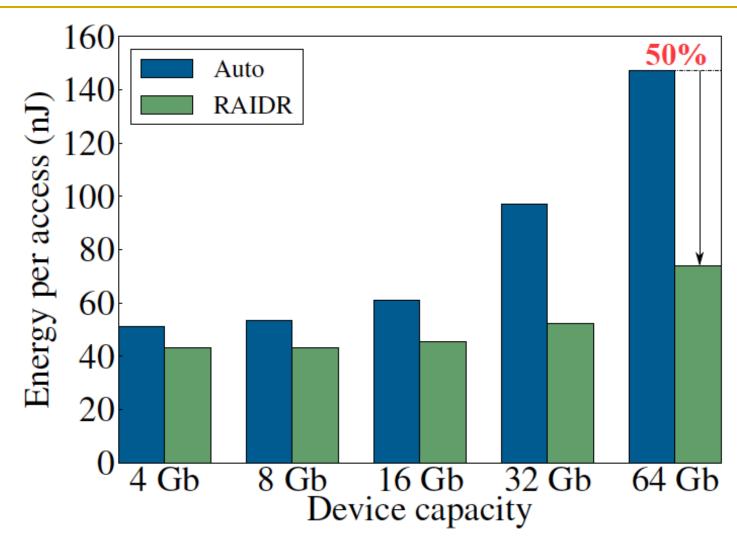
RAIDR energy benefits increase with memory idleness

DRAM Device Capacity Scaling: Performance



RAIDR performance benefits increase with DRAM chip capacity

DRAM Device Capacity Scaling: Energy



RAIDR energy benefits increase with DRAM chip capacity

RAIDR slides

More Readings Related to RAIDR

Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and <u>Onur Mutlu</u>,
 <u>"An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms"</u>

Proceedings of the

<u>40th International Symposium on Computer Architecture</u> (**ISCA**), Tel-Aviv, Israel, June 2013. <u>Slides (pptx)</u> <u>Slides (pdf)</u>

New DRAM Architectures

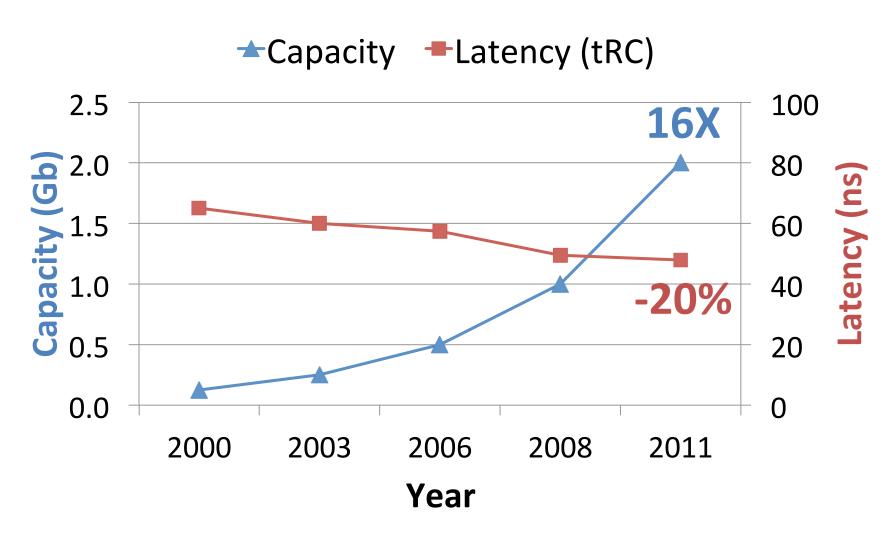
- RAIDR: Reducing Refresh Impact
- TL-DRAM: Reducing DRAM Latency
- SALP: Reducing Bank Conflict Impact
- RowClone: Fast Bulk Data Copy and Initialization

Tiered-Latency DRAM: Reducing DRAM Latency

Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and <u>Onur Mutlu</u>, <u>"Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture"</u>

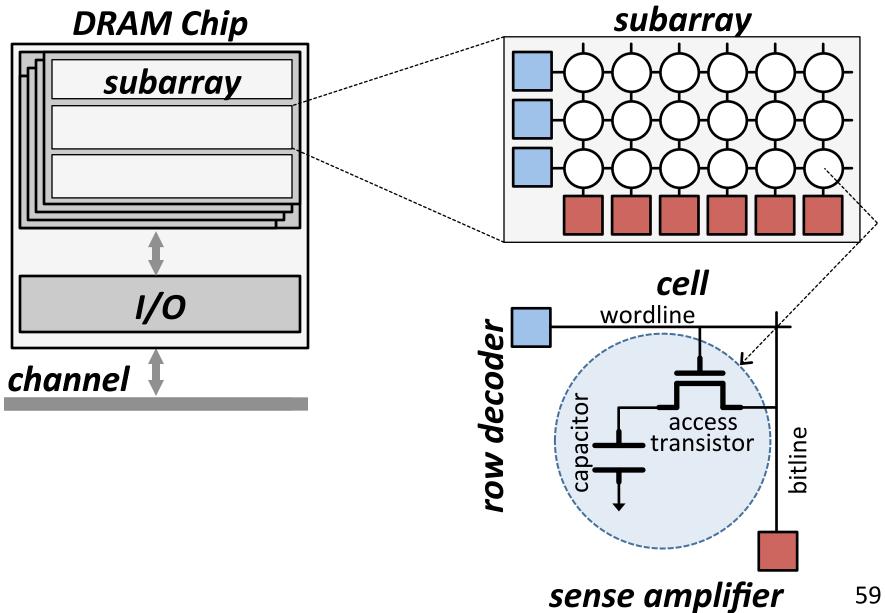
19th International Symposium on High-Performance Computer Architecture (HPCA),
Shenzhen, China, February 2013. <u>Slides (pptx)</u>

Historical DRAM Latency-Capacity Trend

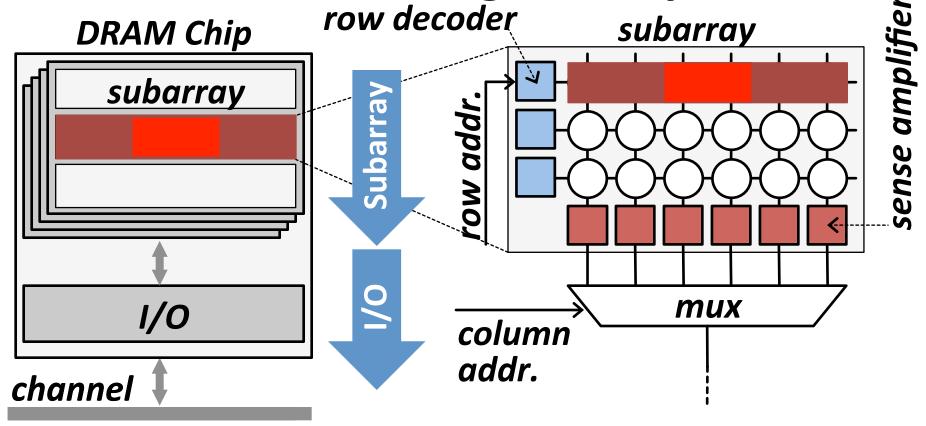


DRAM latency continues to be a critical bottleneck

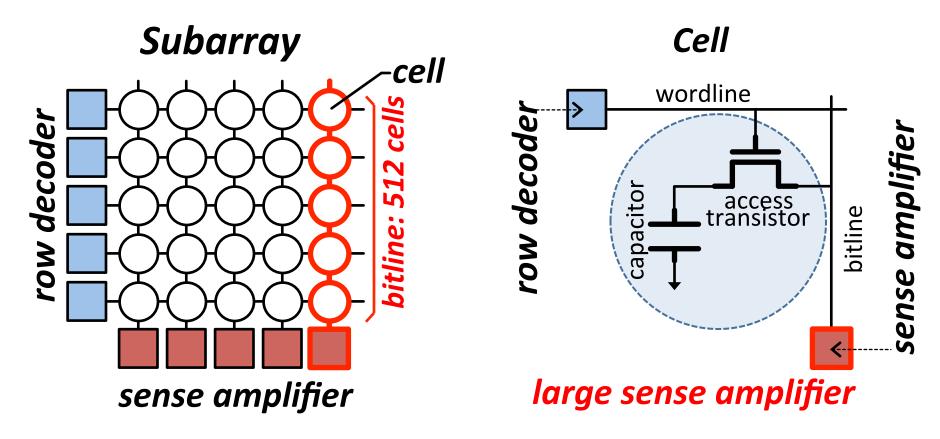
What Causes the Long Latency?



What Causes the Long Latency?



Why is the Subarray So Slow?

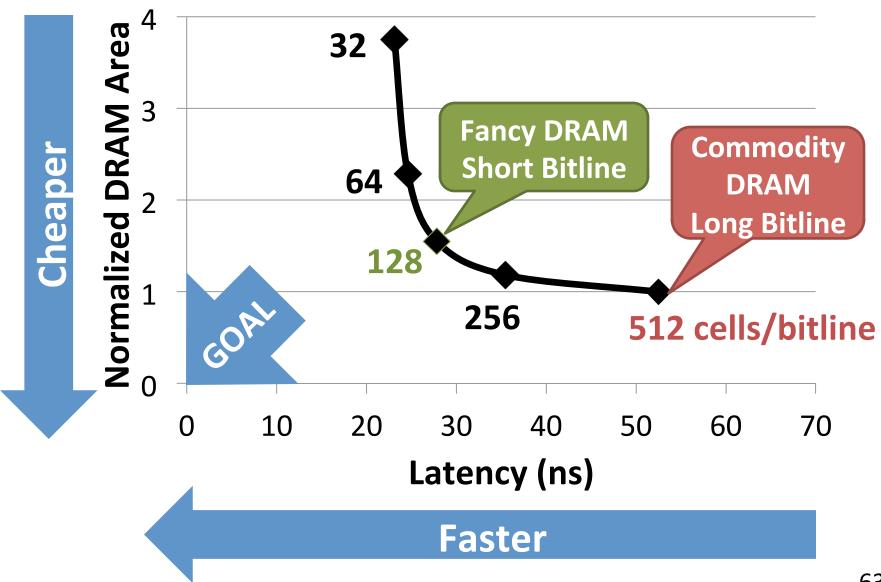


- Long bitline
 - Amortizes sense amplifier cost → Small area
 - Large bitline capacitance → High latency & power

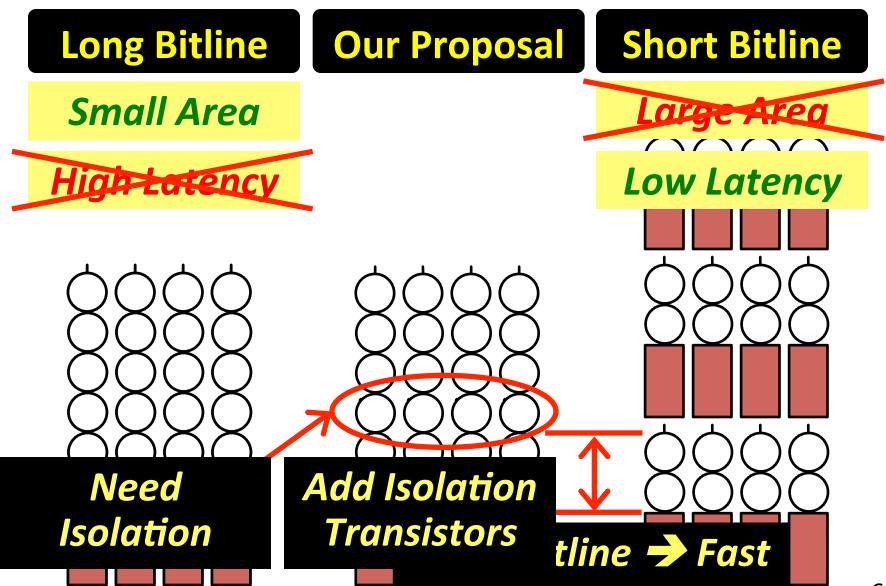
61

Trade-Off: Area (Die Size) vs. Latency **Long Bitline Short Bitline Faster** Smaller Trade-Off: Area vs. Latency

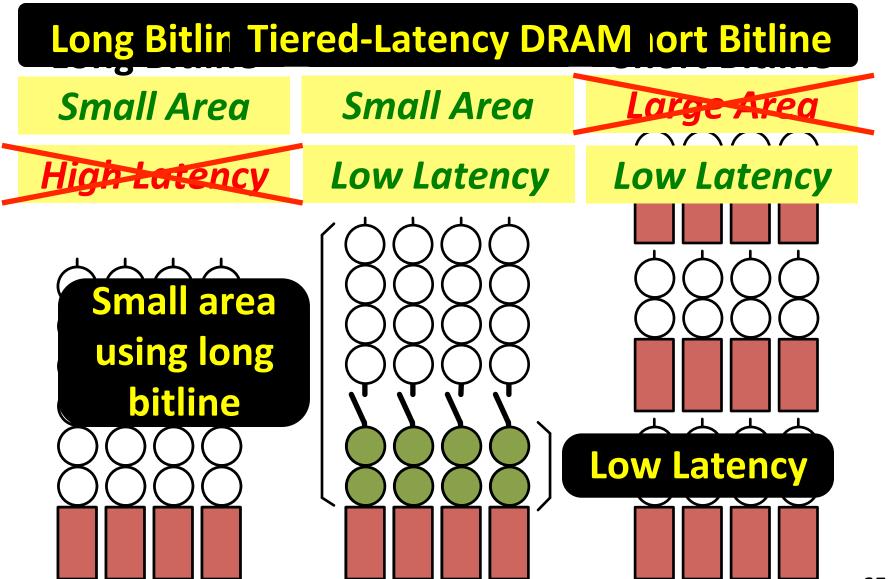
Trade-Off: Area (Die Size) vs. Latency



Approximating the Best of Both Worlds

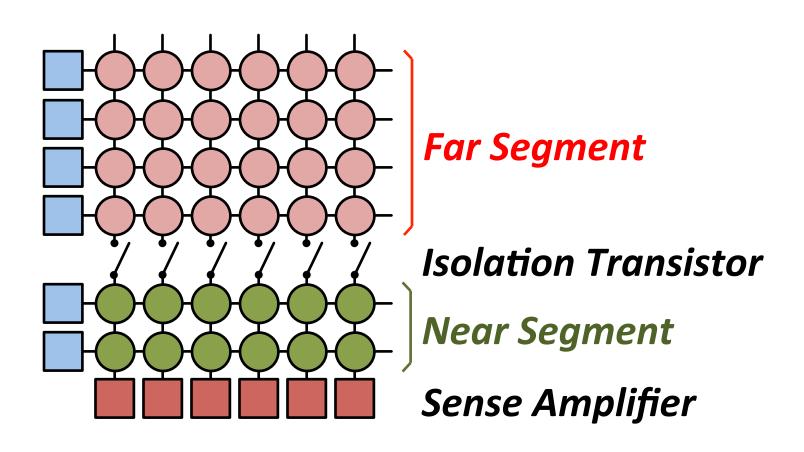


Approximating the Best of Both Worlds



Tiered-Latency DRAM

Divide a bitline into two segments with an isolation transistor



Near Segment Access

Turn off the isolation transistor

Reduced bitline length Reduced bitline capacitance → Low latency & low power Isolation Transistor (off) **Near Segment** Sense Amplifier

Far Segment Access

Turn on the isolation transistor

Long bitline length Large bitline capacitance Additional resistance of isolation transistor → High latency & high power Isolation Transistor (On) Near Segment Sense Amplifier

Latency, Power, and Area Evaluation

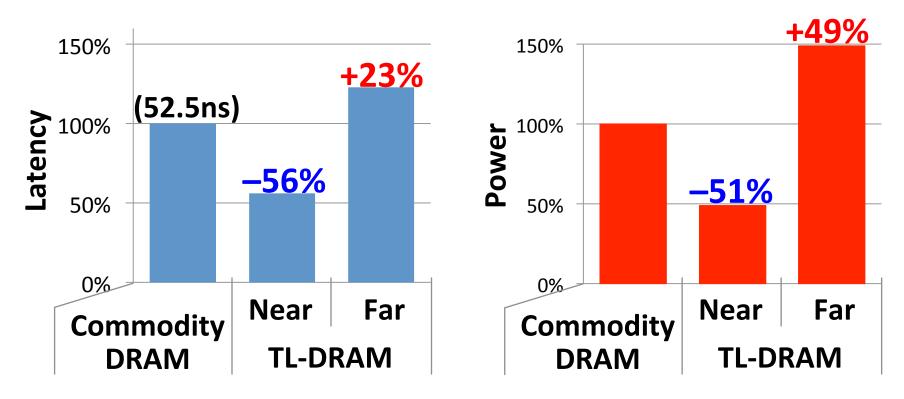
- Commodity DRAM: 512 cells/bitline
- TL-DRAM: 512 cells/bitline
 - Near segment: 32 cells
 - Far segment: 480 cells

Latency Evaluation

- SPICE simulation using circuit-level DRAM model
- Power and Area Evaluation
 - DRAM area/power simulator from Rambus
 - DDR3 energy calculator from Micron

Commodity DRAM vs. TL-DRAM

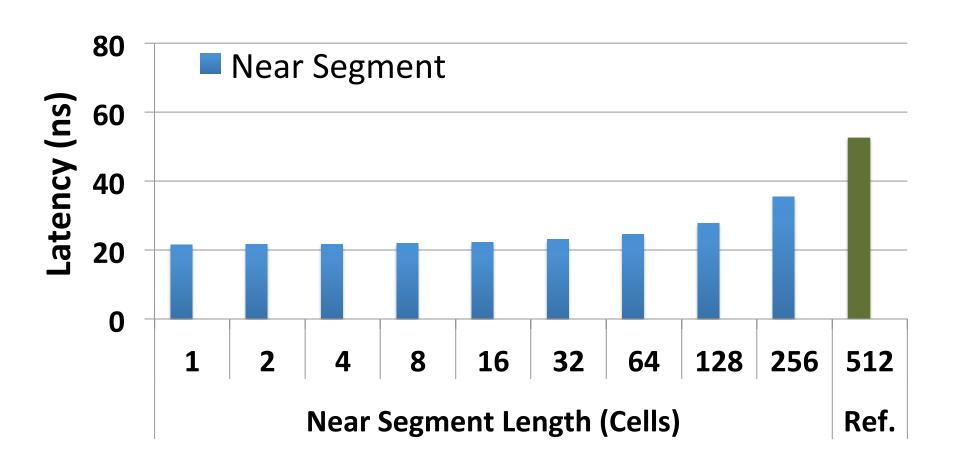
DRAM Latency (tRC)
 DRAM Power



DRAM Area Overhead

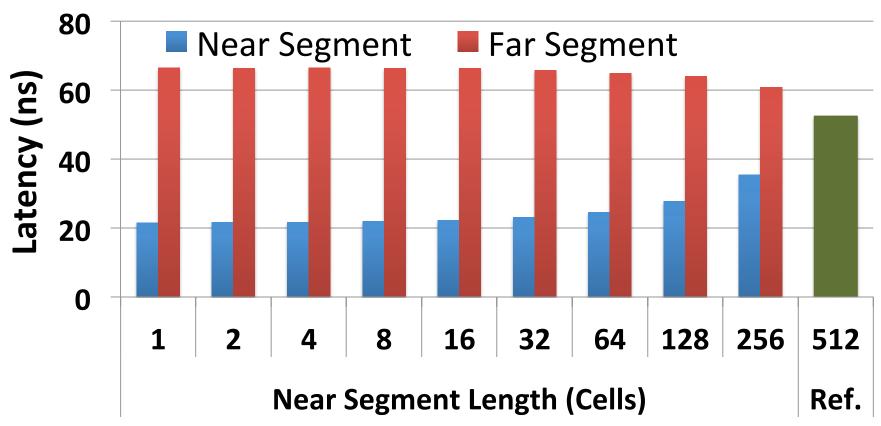
~3%: mainly due to the isolation transistors

Latency vs. Near Segment Length



Longer near segment length leads to higher near segment latency

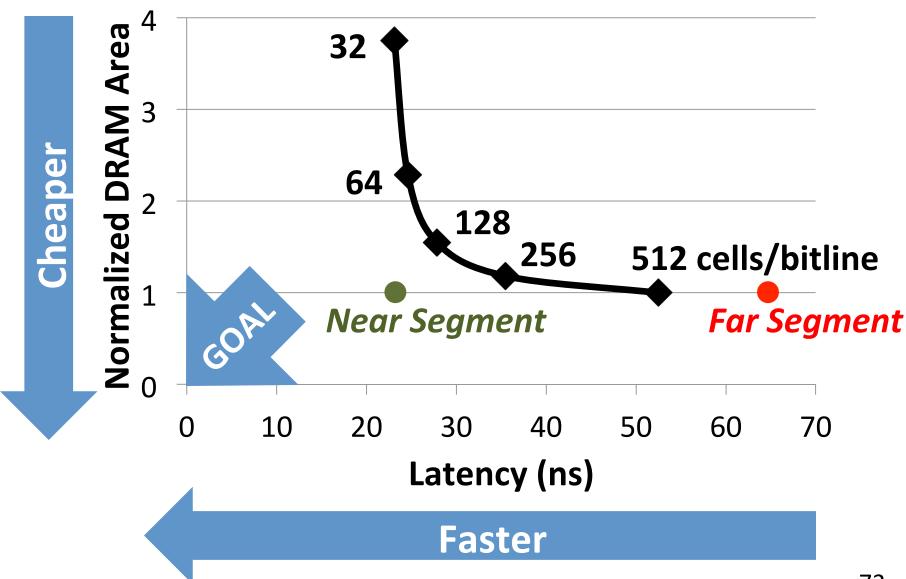
Latency vs. Near Segment Length



Far Segment Length = 512 – Near Segment Length

Far segment latency is higher than commodity DRAM latency

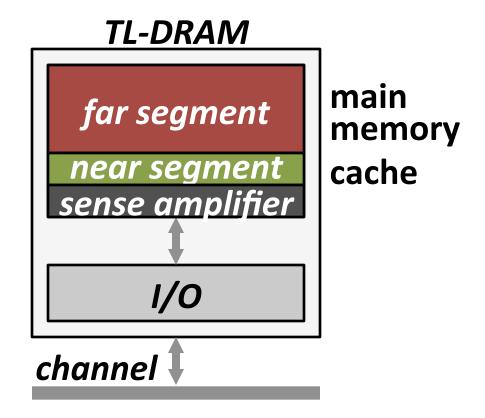
Trade-Off: Area (Die-Area) vs. Latency



Leveraging Tiered-Latency DRAM

- TL-DRAM is a substrate that can be leveraged by the hardware and/or software
- Many potential uses
 - 1. Use near segment as hardware-managed *inclusive* cache to far segment
 - 2. Use near segment as hardware-managed *exclusive* cache to far segment
 - 3. Profile-based page mapping by operating system
 - 4. Simply replace DRAM with TL-DRAM

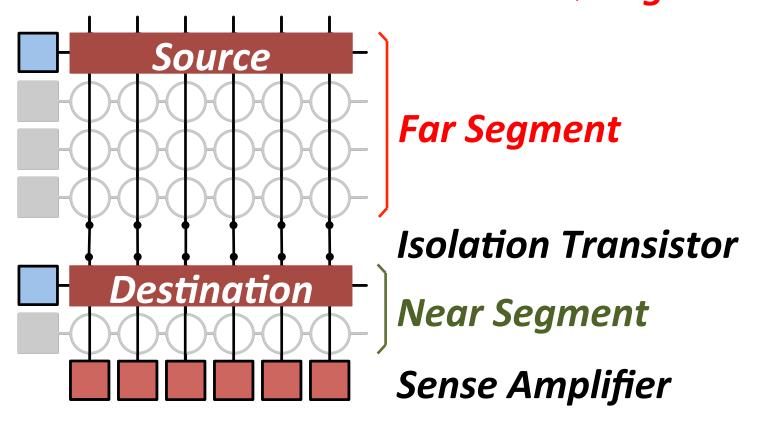
Near Segment as Hardware-Managed Cache



- Challenge 1: How to efficiently migrate a row between segments?
- Challenge 2: How to efficiently manage the cache?

Inter-Segment Migration

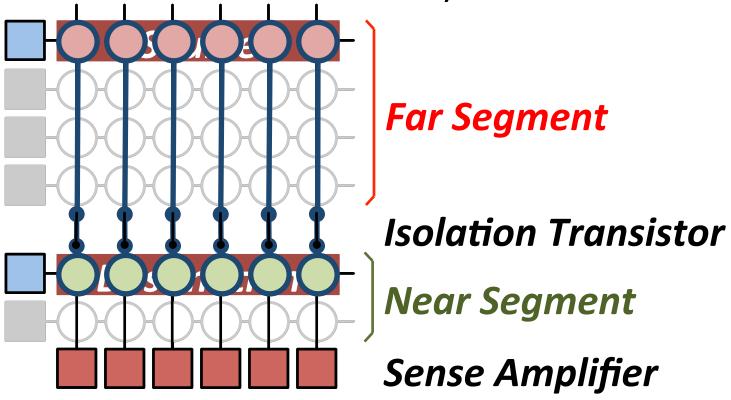
- Goal: Migrate source row into destination row
- Naïve way: Memory controller reads the source row byte by byte and writes to destination row byte by byte
 → High latency



Inter-Segment Migration

Our way:

- Source and destination cells share bitlines
- Transfer data from source to destination across shared bitlines concurrently

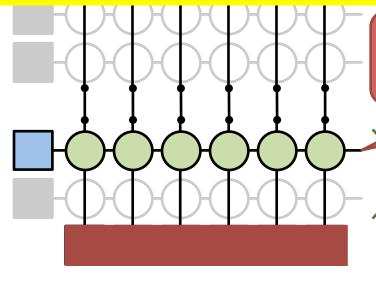


Inter-Segment Migration

- Our way:
 - Source and destination cells share bitlines
 - Transfer data from so shared bitlines concur
 Step 1: Activate source row

Migration is overlapped with source row access

Additional ~4ns over row access latency

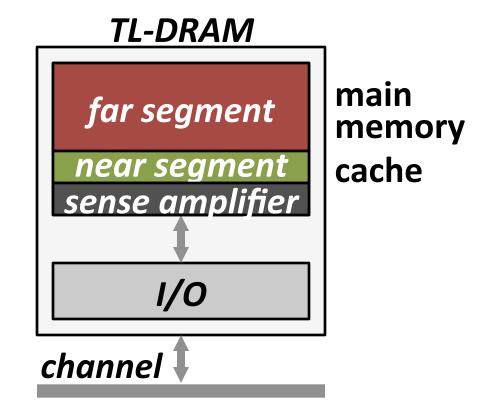


Step 2: Activate destination row to connect cell and bitline

Near Segment

Sense Amplifier

Near Segment as Hardware-Managed Cache



- Challenge 1: How to efficiently migrate a row between segments?
- Challenge 2: How to efficiently manage the cache?

Evaluation Methodology

System simulator

- CPU: Instruction-trace-based x86 simulator
- Memory: Cycle-accurate DDR3 DRAM simulator

Workloads

- 32 Benchmarks from TPC, STREAM, SPEC CPU2006

Performance Metrics

- Single-core: Instructions-Per-Cycle
- Multi-core: Weighted speedup

Configurations

- System configuration
 - CPU: 5.3GHz
 - LLC: 512kB private per core
 - Memory: DDR3-1066
 - 1-2 channel, 1 rank/channel
 - 8 banks, 32 subarrays/bank, 512 cells/bitline
 - Row-interleaved mapping & closed-row policy

TL-DRAM configuration

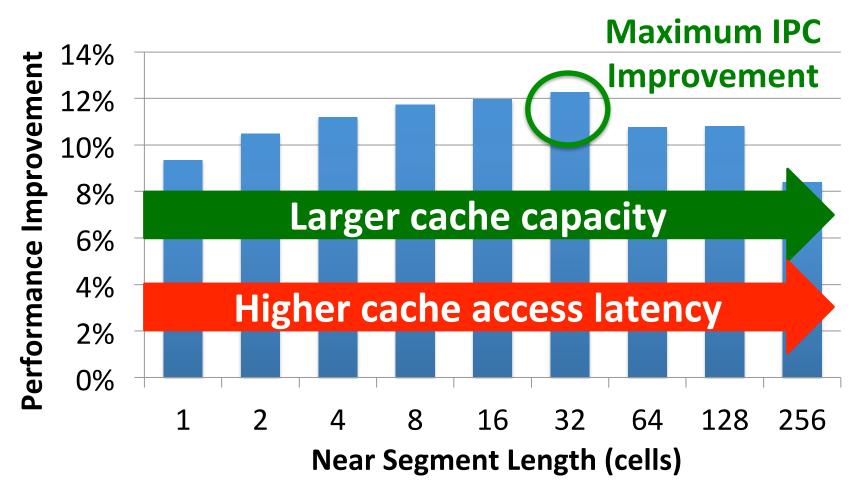
- Total bitline length: 512 cells/bitline
- Near segment length: 1-256 cells
- Hardware-managed inclusive cache: near segment

Performance & Power Consumption



Using near segment as a cache improves performance and reduces power consumption

Single-Core: Varying Near Segment Length



By adjusting the near segment length, we can trade off cache capacity for cache latency

Other Mechanisms & Results

- More mechanisms for leveraging TL-DRAM
 - Hardware-managed exclusive caching mechanism
 - Profile-based page mapping to near segment
 - TL-DRAM improves performance and reduces power consumption with other mechanisms
- More than two tiers
 - Latency evaluation for three-tier TL-DRAM
- Detailed circuit evaluation for DRAM latency and power consumption
 - Examination of tRC and tRCD
- Implementation details and storage cost analysis in memory controller

Summary of TL-DRAM

- Problem: DRAM latency is a critical performance bottleneck
- Our Goal: Reduce DRAM latency with low area cost
- Observation: Long bitlines in DRAM are the dominant source of DRAM latency
- Key Idea: Divide long bitlines into two shorter segments
 - Fast and slow segments
- <u>Tiered-latency DRAM</u>: Enables latency heterogeneity in DRAM
 - Can leverage this in many ways to improve performance and reduce power consumption
- Results: When the fast segment is used as a cache to the slow segment → Significant performance improvement (>12%) and power reduction (>23%) at low area cost (3%)

New DRAM Architectures

- RAIDR: Reducing Refresh Impact
- TL-DRAM: Reducing DRAM Latency
- SALP: Reducing Bank Conflict Impact
- RowClone: Fast Bulk Data Copy and Initialization

To Be Covered in Lecture 3

Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and <u>Onur Mutlu</u>,
 <u>"A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM"</u>

Proceedings of the <u>39th International Symposium on Computer Architecture</u> (**ISCA**), Portland, OR, June 2012. <u>Slides (pptx)</u>

 Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry,

"RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data"

CMU Computer Science Technical Report, CMU-CS-13-108, Carnegie Mellon University, April 2013.

Scalable Many-Core Memory Systems Lecture 2, Topic 1: DRAM Basics and DRAM Scaling

Prof. Onur Mutlu

http://www.ece.cmu.edu/~omutlu

onur@cmu.edu

HiPEAC ACACES Summer School 2013 July 16, 2013

Carnegie Mellon

