
A Case for Efficient Hardware/Software
Cooperative Management of

Storage and Memory

 Justin Meza*, Yixin Luo*, Samira Khan*†, Jishen Zhao§,
Yuan Xie§‡, and Onur Mutlu*

 *Carnegie Mellon University

 §Pennsylvania State University
†Intel Labs ‡AMD Research

Overview
n  Traditional systems have a two-level storage model

q  Access volatile data in memory with a load/store interface
q  Access persistent data in storage with a file system interface
q  Problem: Operating system (OS) and file system (FS) code and buffering

for storage lead to energy and performance inefficiencies

n  Opportunity: New non-volatile memory (NVM) technologies can help
provide fast (similar to DRAM), persistent storage (similar to Flash)
q  Unfortunately, OS and FS code can easily become energy efficiency and

performance bottlenecks if we keep the traditional storage model

n  This work: makes a case for hardware/software cooperative
management of storage and memory within a single-level
q  We describe the idea of a Persistent Memory Manager (PMM) for

efficiently coordinating storage and memory, and quantify its benefit
q  And, examine questions and challenges to address to realize PMM

2

Talk Outline
n  Background: Storage and Memory Models

n  Motivation: Eliminating Operating/File System Bottlenecks

n  Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

q  Opportunities and Benefits

n  Evaluation Methodology

n  Evaluation Results

n  Related Work

n  New Questions and Challenges

n  Conclusions

3

A Tale of Two Storage Levels
n  Traditional systems use a two-level storage model

q  Volatile data is stored in DRAM
q  Persistent data is stored in HDD and Flash

n  Accessed through two vastly different interfaces

4

Processor
and caches

Main Memory Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

A Tale of Two Storage Levels
n  Two-level storage arose in systems due to the widely different

access latencies and methods of the commodity storage devices
q  Fast, low capacity, volatile DRAM à working storage
q  Slow, high capacity, non-volatile hard disk drives à persistent storage

n  Data from slow storage media is buffered in fast DRAM
q  After that it can be manipulated by programs à programs cannot

directly access persistent storage
q  It is the programmer’s job to translate this data between the two

formats of the two-level storage (files and data structures)

n  Locating, transferring, and translating data and formats between
the two levels of storage can waste significant energy and
performance

5

Opportunity: New Non-Volatile Memories
n  Emerging memory technologies provide the potential for unifying

storage and memory (e.g., Phase-Change, STT-RAM, RRAM)
q  Byte-addressable (can be accessed like DRAM)
q  Low latency (comparable to DRAM)
q  Low power (idle power better than DRAM)
q  High capacity (closer to Flash)
q  Non-volatile (can enable persistent storage)
q  May have limited endurance (but, better than Flash)

n  Can provide fast access to both volatile data and persistent
storage

n  Question: if such devices are used, is it efficient to keep a
two-level storage model?

6

Eliminating Traditional Storage Bottlenecks

7

Normalized Total Energy

0

0.2

0.4

0.6

0.8

1.0

HDD Baseline NVM Baseline Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

 E
ne

rg
y

0.065
0.013

Today
(DRAM +
HDD) and
two-level
storage
model Replace HDD

with NVM
(PCM-like),

keep two-level
storage model

Replace HDD
and DRAM
with NVM

(PCM-like),
eliminate all

OS+FS
overhead

Results for PostMark

Eliminating Traditional Storage Bottlenecks

8

0

0.2

0.4

0.6

0.8

1.0

HDD Baseline NVM Baseline Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

 E
ne

rg
y

User CPU Syscall CPU DRAM NVM HDD

0.065
0.013

Results for PostMark

Where is Energy Spent in Each Model?

9

0

0.2

0.4

0.6

0.8

1.0

HDD Baseline NVM Baseline Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

 E
ne

rg
y

User CPU Syscall CPU DRAM NVM HDD

HDD access
wastes energy

FS/OS overhead
becomes important

Additional DRAM energy
due to buffering overhead

of two-level model

No FS/OS overhead
No additional buffering

overhead in DRAM

Results for PostMark

Outline
n  Background: Storage and Memory Models

n  Motivation: Eliminating Operating/File System Bottlenecks

n  Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

q  Opportunities and Benefits

n  Evaluation Methodology

n  Evaluation Results

n  Related Work

n  New Questions and Challenges

n  Conclusions

10

Our Proposal: Coordinated HW/SW
Memory and Storage Management

n  Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data
q  Improve both energy and performance
q  Simplify programming model as well

11

Our Proposal: Coordinated HW/SW
Memory and Storage Management

n  Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data
q  Improve both energy and performance
q  Simplify programming model as well

12

Before: Traditional Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Our Proposal: Coordinated HW/SW
Memory and Storage Management

n  Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data
q  Improve both energy and performance
q  Simplify programming model as well

13

After: Coordinated HW/SW Management

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

The Persistent Memory Manager (PMM)
n  Exposes a load/store interface to access persistent data

q  Applications can directly access persistent memory à no conversion,
translation, location overhead for persistent data

n  Manages data placement, location, persistence, security
q  To get the best of multiple forms of storage

n  Manages metadata storage and retrieval
q  This can lead to overheads that need to be managed

n  Exposes hooks and interfaces for system software
q  To enable better data placement and management decisions

14

The Persistent Memory Manager
n  Persistent Memory Manager

q  Exposes a load/store interface to access persistent data
q  Manages data placement, location, persistence, security
q  Manages metadata storage and retrieval
q  Exposes hooks and interfaces for system software

n  Example program manipulating a persistent object:

15

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Create persistent object and its handle
Allocate a persistent array and assign

Load/store interface

Putting Everything Together

16

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware

Software
Data Layout, Persistence, Metadata, Security, ...

Hints from SW/OS/runtime

PMM	 uses	 access	 and	 hint	 informa2on	 to	 allocate,	 locate,	 migrate	
and	 access	 data	 in	 the	 heterogeneous	 array	 of	 devices	

Outline
n  Background: Storage and Memory Models

n  Motivation: Eliminating Operating/File System Bottlenecks

n  Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

q  Opportunities and Benefits

n  Evaluation Methodology

n  Evaluation Results

n  Related Work

n  New Questions and Challenges

n  Conclusions

17

Opportunities and Benefits

n  We’ve identified at least five opportunities and benefits of a unified
storage/memory system that gets rid of the two-level model:

1.  Eliminating system calls for file operations

2.  Eliminating file system operations

3.  Efficient data mapping/location among heterogeneous devices

4.  Providing security and reliability in persistent memories

5.  Hardware/software cooperative data management

18

Eliminating System Calls for File Operations

n  A persistent memory can expose a large, linear, persistent
address space
q  Persistent storage objects can be directly manipulated with load/

store operations

n  This eliminates the need for layers of operating system code
q  Typically used for calls like open, read, and write!

n  Also eliminates OS file metadata
q  File descriptors, file buffers, and so on

19

Eliminating File System Operations
n  Locating files is traditionally done using a file system

q  Runs code and traverses structures in software to locate files

n  Existing hardware structures for locating data in virtual memory
can be extended and adapted to meet the needs of persistent
memories
q  Memory Management Units (MMUs), which map virtual addresses to

physical addresses
q  Translation Lookaside Buffers (TLBs), which cache mappings of

virtual-to-physical address translations

n  Potential to eliminate file system code
n  At the cost of additional hardware overhead to handle persistent

data storage

20

Efficient Data Mapping among Heterogeneous Devices

n  A persistent memory exposes a large, persistent address space
q  But it may use many different devices to satisfy this goal
q  From fast, low-capacity volatile DRAM to slow, high-capacity non-

volatile HDD or Flash
q  And other NVM devices in between

n  Performance and energy can benefit from good placement of
data among these devices
q  Utilizing the strengths of each device and avoiding their weaknesses,

if possible
q  For example, consider two important application characteristics:

locality and persistence

21

22

Efficient Data Mapping among Heterogeneous Devices

23

X

Columns in a column store that are
scanned through only infrequently

à place on Flash

Efficient Data Mapping among Heterogeneous Devices

24

X

Columns in a column store that are
scanned through only infrequently

à place on Flash

X

Frequently-updated index for a
Content Delivery Network (CDN)

à place in DRAM

Efficient Data Mapping among Heterogeneous Devices

Applica2ons	 or	 system	 so:ware	 can	 provide	 hints	 for	 data	 placement	

Providing Security and Reliability

n  A persistent memory deals with data at the granularity of bytes
and not necessarily files
q  Provides the opportunity for much finer-grained security and

protection than traditional two-level storage models provide/afford
q  Need efficient techniques to avoid large metadata overheads

n  A persistent memory can improve application reliability by
ensuring updates to persistent data are less vulnerable to failures
q  Need to ensure that changes to copies of persistent data placed in

volatile memories become persistent

25

HW/SW Cooperative Data Management

n  Persistent memories can expose hooks and interfaces to
applications, the OS, and runtimes
q  Have the potential to provide improved system robustness and

efficiency than by managing persistent data with either software or
hardware alone

n  Can enable fast checkpointing and reboots, improve application
reliability by ensuring persistence of data
q  How to redesign availability mechanisms to take advantage of these?

n  Persistent locks and other persistent synchronization constructs
can enable more robust programs and systems

26

Quantifying Persistent Memory Benefits

n  We have identified several opportunities and benefits of using
persistent memories without the traditional two-level store model

n  We will next quantify:
q  How do persistent memories affect system performance?
q  How much energy reduction is possible?
q  Can persistent memories achieve these benefits despite additional

access latencies to the persistent memory manager?

27

Outline
n  Background: Storage and Memory Models

n  Motivation: Eliminating Operating/File System Bottlenecks

n  Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

q  Opportunities and Benefits

n  Evaluation Methodology

n  Evaluation Results

n  Related Work

n  New Questions and Challenges

n  Conclusions

28

Evaluation Methodology
n  Hybrid real system / simulation-based approach

q  System calls are executed on host machine (functional correctness)
and timed to accurately model their latency in the simulator

q  Rest of execution is simulated in Multi2Sim (enables hardware-level
exploration)

n  Power evaluated using McPAT and memory power models

n  16 cores, 4-wide issue, 128-entry instruction window, 1.6 GHz

n  Volatile memory: 4GB DRAM, 4KB page size, 100-cycle latency

n  Persistent memory
q  HDD (measured): 4ms seek latency, 6Gbps bus rate

q  NVM: (modeled after PCM) 4KB page size, 160-/480-cycle (read/
write) latency

29

Evaluated Systems
n  HDD Baseline (HB)

q  Traditional system with volatile DRAM memory and persistent HDD storage
q  Overheads of operating system and file system code and buffering

n  HDD without OS/FS (HW)
q  Same as HDD Baseline, but with the ideal elimination of all OS/FS overheads
q  System calls take 0 cycles (but HDD access takes normal latency)

n  NVM Baseline (NB)
q  Same as HDD Baseline, but HDD is replaced with NVM
q  Still has OS/FS overheads of the two-level storage model

n  Persistent Memory (PM)
q  Uses only NVM (no DRAM) to ensure full-system persistence
q  All data accessed using loads and stores
q  Does not waste energy on system calls
q  Data is manipulated directly on the NVM device

30

Evaluated Workloads
n  Unix utilities that manipulate files

q  cp: copy a large file from one location to another
q  cp –r: copy files in a directory tree from one location to another
q  grep: search for a string in a large file
q  grep –r: search for a string recursively in a directory tree

n  PostMark: an I/O-intensive benchmark from NetApp
q  Emulates typical access patterns for email, news, web commerce

n  MySQL Server: a popular database management system
q  OLTP-style queries generated by Sysbench
q  MySQL (simple): single, random read to an entry
q  MySQL (complex): reads/writes 1 to 100 entries per transaction

31

Performance Results

32

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

Performance Results: HDD w/o OS/FS

33

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

For HDD-based systems, eliminating OS/FS overheads typically leads to small
performance improvements à execution time dominated by HDD access latency

Performance Results: HDD w/o OS/FS

34

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

Though, for more complex file system operations like directory traversal (seen with
cp -r and grep -r), eliminating the OS/FS overhead improves performance

Performance Results: HDD to NVM

35

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

Switching from an HDD to NVM greatly reduces execution time due to NVM’s much
faster access latencies, especially for I/O-intensive workloads (cp, PostMark, MySQL)

Performance Results: NVM to PMM

36

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

For most workloads, eliminating OS/FS code and buffering improves performance
greatly on top of the NVM Baseline system

(even when DRAM is eliminated from the system)

Performance Results

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

37

The workloads that see the greatest improvement from using a Persistent Memory
are those that spend a large portion of their time executing system call code due to

the two-level storage model

Energy Results

38

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

User CPU Syscall CPU DRAM NVM HDD

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

Energy Results: HDD to NVM

39

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

User CPU Syscall CPU DRAM NVM HDD

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

Between HDD-based and NVM-based systems, lower NVM energy leads to greatly
reduced energy consumption

Energy Results: NVM to PMM

40

Between systems with and without OS/FS code, energy improvements come from:
1. reduced code footprint, 2. reduced data movement

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

User CPU Syscall CPU DRAM NVM HDD

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

Large	 energy	 reduc2ons	 with	 a	 PMM	 over	 the	 NVM	 based	 system	

Scalability Analysis: Effect of PMM Latency

41

Even if each PMM access takes a non-overlapped 50 cycles (conservative),
PMM still provides an overall improvement compared to the NVM baseline

0

0.25

0.50

0.75

1.00

1.25

cp

cp
 -

r

gr
ep

gr
ep

 -
r

P
os

tM
ar

k

M
yS

Q
L

(s
im

pl
e)

M
yS

Q
L

(c
om

pl
ex

)

cp

cp
 -

r

gr
ep

gr
ep

 -
r

P
os

tM
ar

k

M
yS

Q
L

(s
im

pl
e)

M
yS

Q
L

(c
om

pl
ex

)

cp

cp
 -

r

gr
ep

gr
ep

 -
r

P
os

tM
ar

k

M
yS

Q
L

(s
im

pl
e)

M
yS

Q
L

(c
om

pl
ex

)

cp

cp
 -

r

gr
ep

gr
ep

 -
r

P
os

tM
ar

k

M
yS

Q
L

(s
im

pl
e)

M
yS

Q
L

(c
om

pl
ex

)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O PMM

1 cycle 10 cycles 50 cyclesNB

1.53

Future	 research	 should	 target	 keeping	 PMM	 latencies	 in	 check	

Outline
n  Background: Storage and Memory Models

n  Motivation: Eliminating Operating/File System Bottlenecks

n  Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

q  Opportunities and Benefits

n  Evaluation Methodology

n  Evaluation Results

n  Related Work

n  New Questions and Challenges

n  Conclusions

42

Related Work
n  We provide a comprehensive overview of past work related to

single-level stores and persistent memory techniques

1.  Integrating file systems with persistent memory
q  Need optimized hardware to fully take advantage of new technologies

2.  Programming language support for persistent objects
q  Incurs the added latency of indirect data access through software

3.  Load/store interfaces to persistent storage
q  Lack efficient and fast hardware support for address translation, efficient

file indexing, fast reliability and protection guarantees

4.  Analysis of OS overheads with Flash devices
q  Our study corroborates findings in this area and shows even larger

consequences for systems with emerging NVM devices

n  The goal of our work is to provide cheap and fast hardware support
for memories to enable high energy efficiency and performance

43

Outline
n  Background: Storage and Memory Models

n  Motivation: Eliminating Operating/File System Bottlenecks

n  Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

q  Opportunities and Benefits

n  Evaluation Methodology

n  Evaluation Results

n  Related Work

n  New Questions and Challenges

n  Conclusions

44

New Questions and Challenges
n  We identify and discuss several open research questions

Ø  Q1. How to tailor applications for systems with persistent
memory?

Ø  Q2. How can hardware and software cooperate to support a
scalable, persistent single-level address space?

Ø  Q3. How to provide efficient backward compatibility (for two-
level stores) on persistent memory systems?

Ø  Q4. How to mitigate potential hardware performance and energy
overheads?

45

Outline
n  Background: Storage and Memory Models

n  Motivation: Eliminating Operating/File System Bottlenecks

n  Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

q  Opportunities and Benefits

n  Evaluation Methodology

n  Evaluation Results

n  Related Work

n  New Questions and Challenges

n  Conclusions

46

Summary and Conclusions
n  Traditional two-level storage model is inefficient in terms of

performance and energy
q  Due to OS/FS code and buffering needed to manage two models
q  Especially so in future devices with NVM technologies, as we show

n  New non-volatile memory based persistent memory designs that
use a single-level storage model to unify memory and storage can
alleviate this problem

n  We quantified the performance and energy benefits of such a
single-level persistent memory/storage design
q  Showed significant benefits from reduced code footprint, data

movement, and system software overhead on a variety of workloads

n  Such a design requires more research to answer the questions we
have posed and enable efficient persistent memory managers
à can lead to a fundamentally more efficient storage system

47

Thank you.

48

A Case for Efficient Hardware/Software
Cooperative Management of

Storage and Memory

 Justin Meza*, Yixin Luo*, Samira Khan*†, Jishen Zhao§,
Yuan Xie§‡, and Onur Mutlu*

 *Carnegie Mellon University

 §Pennsylvania State University
†Intel Labs ‡AMD Research

