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High-performance processors tolerate latency using out-of-order execution. Unfor-

tunately, today’s processors are facing memory latencies in the order of hundreds of cycles.

To tolerate such long latencies, out-of-order execution requires an instruction window that

is unreasonably large, in terms of design complexity, hardware cost, and power consump-

tion. Therefore, current processors spend most of their execution time stalling and waiting

for long-latency cache misses to return from main memory. And, the problem is getting

worse because memory latencies are increasing in terms of processor cycles.

The runahead execution paradigm improves the memory latency tolerance of an

out-of-order execution processor by performing potentially useful execution while a long-

latency cache miss is in progress. Runahead execution unblocks the instruction window

blocked by a long-latency cache miss allowing the processor to execute far ahead in the

program path. This results in other long-latency cache misses to be discovered and their

data to be prefetched into caches long before it is needed.

This dissertation presents the runahead execution paradigm and its implementation

on an out-of-order execution processor that employs state-of-the-art hardware prefetching
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techniques. It is shown that runahead execution on a 128-entry instruction window achieves

the performance of a processor with three times the instruction window size for a current,

500-cycle memory latency. For a near-future 1000-cycle memory latency, it is shown that

runahead execution on a 128-entry window achieves the performance of a conventional pro-

cessor with eight times the instruction window size, without requiring a significant increase

in hardware cost and complexity.

This dissertation also examines and provides solutions to two major limitations of

runahead execution: its energy inefficiency and its inability to parallelize dependent cache

misses. Simple and effective techniques are proposed to increase the efficiency of runahead

execution by reducing the extra instructions executed without affecting the performance

improvement. An efficient runahead execution processor employing these techniques ex-

ecutes only 6.2% more instructions than a conventional out-of-order execution processor

but achieves 22.1% higher Instructions Per Cycle (IPC) performance.

Finally, this dissertation proposes a new technique, called address-value delta (AVD)

prediction, that predicts the values of pointer load instructions encountered in runahead ex-

ecution in order to enable the parallelization of dependent cache misses using runahead

execution. It is shown that a simple 16-entry AVD predictor improves the performance of a

baseline runahead execution processor by 14.3% on a set of pointer-intensive applications,

while it also reduces the executed instructions by 15.5%. An analysis of the high-level pro-

gramming constructs that result in AVD-predictable load instructions is provided. Based

on this analysis, hardware and software optimizations are proposed to increase the benefits

of AVD prediction.
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Chapter 1

Introduction

1.1 The Problem: Tolerating Long Main Memory Latencies

High-performance processors execute instructions out of program order to tolerate

long latencies and extract instruction-level parallelism. An out-of-order execution pro-

cessor tolerates latencies by moving the long-latency operation “out of the way” of the

operations that come later in the instruction stream and that do not depend on it. However,

these processors retire instructions in program order to support precise exceptions [103].

To accomplish the out-of-order execution but in-order retirement of instructions, the pro-

cessor buffers the decoded but not-yet-retired instructions in a hardware buffer called the

instruction window [90].

If the execution of a long-latency instruction is not complete, that instruction and

instructions following it in the sequential instruction stream cannot be retired. Incoming

instructions fill the instruction window if the window is not large enough. Once the win-

dow becomes full, the processor cannot place new instructions into the window and stalls.

This resulting stall is called a full-window stall. It prevents the processor from finding

independent instructions to execute in order to tolerate the long latency. The processor’s

latency tolerance can be increased by increasing the size of the instruction window such

that no full-window stall occurs when a long-latency instruction blocks retirement. How-

ever, this is a challenging task due to the design complexity, verification difficulty, and

increased power consumption of a large instruction window [28, 46]. In fact, Palacharla et

al. showed that the complexity and delay of many hardware structures on the critical path
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increase quadratically with instruction window size [87].

Unfortunately, today’s main memory latencies are so long that out-of-order proces-

sors require very large instruction windows to tolerate them. A cache miss to main memory

costs about 128 cycles on an Alpha 21264 [122] and 330 cycles on a Pentium-4-like pro-

cessor [108]. As processor and system designers continue to push for smaller cycle times

and larger memory modules and memory designers continue to push for higher bandwidth

and capacity, main memory latencies will continue to increase in terms of processor cy-

cles [124, 122].

Figure 1.1 shows that a current x86 processor, modeled after the Pentium 4, with a

128-entry instruction window, a 512 KB L2 cache, and an aggressive hardware prefetcher

spends 68% of its execution cycles in full-window stalls (Processor 1). If the L2 cache

is made perfect (Processor 2), the processor wastes only 30% of its cycles in full-window

stalls, indicating that long-latency L2 misses are the single largest cause of full-window

stalls in Processor 1. On the other hand, Processor 3, which has a 2048-entry instruction

window and a 512 KB L2 cache spends only 33% of its cycles in full-window stalls. Fig-

ure 1.1 also shows that 49% IPC improvement is possible with a 2048-entry instruction

window, 82% IPC improvement is possible with an infinite-entry instruction window, and

120% IPC improvement is possible if all L2 cache misses are eliminated. Hence, a proces-

sor with a large instruction window tolerates the main memory latency much better than

a processor with a small instruction window. Furthermore, significant potential exists to

improve the performance of the state-of-the-art out-of-order processors by improving their

tolerance to long main memory latencies.

As energy/power consumption has already become a limiting constraint in the de-

sign of high-performance processors [45], simple power- and area-efficient memory la-

tency tolerance techniques are especially desirable. Our main research objective is to im-

prove the memory latency tolerance of high-performance out-of-order execution processors
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Figure 1.1: Percentage of execution cycles with full-window stalls. Data is averaged over a
wide variety of memory-intensive benchmarks. Minimum memory latency is 495 cycles and the processor
employs an aggressive stream-based hardware prefetcher. Section 4.1 describes the baseline processor model
and the simulated benchmarks.

with simple, implementable, and energy-efficient mechanisms without resorting to build-

ing complex and power-hungry large instruction windows. To this end, this dissertation

proposes and evaluates efficient runahead execution.

1.2 The Solution: Efficient Runahead Execution

The runahead execution paradigm tolerates long main memory latencies by per-

forming useful execution rather than stalling the processor when a long-latency cache miss

occurs.1 A runahead execution processor switches to a special runahead mode when the

1In this dissertation, we refer to a cache miss to main memory as a long-latency cache miss or an L2 cache
miss, assuming a two-level cache hierarchy. The concepts presented are applicable to processors with more
than two caches in their memory hierarchy as well. In that case, a cache miss at the cache level furthest from
the processor core is considered a long-latency cache miss.
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oldest instruction in the processor incurs a long-latency cache miss, and speculatively ex-

ecutes the program during the cycles that would otherwise be spent idle as full-window

stall cycles in a conventional processor. The purpose of this speculative runahead mode

execution is to discover and service in parallel long-latency cache misses that cannot be

discovered and serviced had the processor been stalled because of a long-latency cache

miss. A runahead execution processor tolerates a long-latency cache miss by servicing it

in parallel with other long-latency cache misses discovered through speculative runahead

mode execution.

The runahead execution paradigm does not require significant hardware cost or

complexity because the performed runahead mode execution does not require the buffering

of a large number of instructions following a long-latency cache miss. As instructions are

speculatively executed in runahead mode, they are removed from the processor’s instruction

window. Long-latency cache misses and their dependents are removed from the instruction

window without waiting for the data to return from main memory. This creates space in the

instruction window for the execution of younger instructions and thus eliminates the need

for maintaining a large instruction window. When the long-latency cache miss that caused

the processor to switch to runahead mode is complete, the runahead processor switches

back to normal execution mode and re-executes those instructions that were speculatively

executed in runahead mode in order to correctly update the architectural program state with

their results.

The runahead execution paradigm results in the execution of more instructions than

a conventional processor because runahead execution relies on the speculative execution

of instructions during otherwise-idle cycles. If uncontrolled, runahead mode execution

can result in significant increases in dynamic energy. To avoid this problem, while still

preserving the memory latency tolerance benefits of runahead execution, this dissertation

proposes and evaluates hardware and software techniques to predict when speculative runa-
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head mode execution will be useful. An efficient runahead execution processor uses these

techniques to perform runahead mode execution only when it is predicted to increase the

processor’s memory latency tolerance.

1.3 Thesis Statement

Efficient runahead execution is a cost- and complexity-effective microarchitectural

technique that can tolerate long main memory latencies without requiring unreasonably

large, slow, complex, and power-hungry hardware structures or significant increases in

processor complexity and power consumption.

1.4 Contributions

This dissertation makes the following major contributions:

• This dissertation presents the runahead execution paradigm for out-of-order execu-

tion processors. Runahead execution is a microarchitectural technique that improves

a conventional processor’s tolerance to long main memory latencies. This disserta-

tion presents the operation of runahead execution in the context of high performance

out-of-order execution processors and describes runahead execution’s advantages,

disadvantages, and limitations.

• This dissertation presents a cost- and complexity-effective implementation of runa-

head execution in an aggressive high performance processor and evaluates the design

tradeoffs in the microarchitecture of a runahead execution processor. It demonstrates

that a conventional processor augmented with runahead execution can surpass the

performance of a conventional processor with at least three times the instruction win-

dow size. The results presented in this dissertation show that runahead execution is a
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simple and cost-efficient alternative to building large instruction windows to tolerate

long memory latencies.

• This dissertation identifies the inefficiency of runahead execution as one of its limita-

tions and analyzes the causes of inefficiency in a runahead processor. It defines a new

efficiency metric to evaluate the energy-efficiency of runahead execution. It presents

new microarchitectural and compiler techniques that significantly improve runahead

execution’s energy efficiency. These techniques reduce the number of speculatively

executed instructions in a runahead processor while maintaining and sometimes even

increasing the performance improvement provided by runahead execution.

• This dissertation identifies dependent cache misses as another limitation of runahead

execution and proposes a new technique, address-value delta (AVD) prediction, that

overcomes this limitation. AVD prediction allows the parallelization of dependent

cache misses in a runahead processor by predicting the load values that lead to the

generation of other load instruction addresses. This dissertation evaluates AVD pre-

diction on pointer-intensive benchmarks and shows that a simple, low-cost AVD pre-

dictor improves the latency tolerance of both runahead execution and conventional

processors to dependent cache misses. Furthermore, this dissertation analyzes the

high-level programming constructs that result in AVD-predictable load instructions

and evaluates hardware and software optimizations that increase the effectiveness of

AVD prediction.

1.5 Dissertation Organization

This dissertation is organized into seven chapters. Chapter 2 presents the runahead

execution paradigm, including its operation principles and its implementation on a high

performance processor. Chapter 3 describes related work in handling long memory laten-
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cies. Chapter 4 presents the performance evaluation of the baseline runahead execution

mechanism on both x86 and Alpha ISA processors and evaluates the design tradeoffs in

runahead execution. Chapter 5 describes the inefficiency problem in runahead execution

and presents techniques that make a runahead execution processor more efficient. Chapter

6 describes the problem of dependent cache misses and presents address-value delta (AVD)

prediction as a solution to this problem. Chapter 7 provides conclusions, a summary of the

key results and insights presented in this dissertation, and suggestions for future research

in runahead execution.
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Chapter 2

The Runahead Execution Paradigm

2.1 The Basic Idea

The runahead execution paradigm provides an alternative to building large instruc-

tion windows to tolerate long-latency operations. Instead of moving the long-latency oper-

ation “out of the way” of younger independent operations (as a conventional out-of-order

execution processor does), which requires buffering the operation and the instructions fol-

lowing it in the instruction window, runahead execution on an out-of-order execution pro-

cessor tosses the long-latency operation out of the instruction window. This eliminates

the need for buffering the long-latency operation and the instructions following it in large

hardware structures (such as large schedulers, register files, load/store buffers and reorder

buffers), and creates space in the instruction window to speculatively process operations

independent of the long-latency operation.

When the instruction window is blocked by the long-latency operation, the state of

the architectural register file is checkpointed. The processor then enters “runahead mode.”

It distributes a bogus result for the blocking operation and tosses it out of the instruc-

tion window. The instructions following the blocking operation are fetched, executed, and

pseudo-retired from the instruction window. By pseudo-retire, we mean that the instruc-

tions are retired as in the conventional sense, except that they do not update architectural

state. When the blocking operation completes, the processor re-enters “normal mode.” It

restores the checkpointed state and re-fetches and re-executes instructions starting with the

blocking operation.
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Runahead execution’s benefit comes from transforming a small instruction window

which is blocked by long-latency operations into a non-blocking window, giving it the per-

formance of a much larger window. The instructions fetched and executed during runahead

mode create very accurate prefetches for the data and instruction caches. These benefits

come at a modest hardware cost which we will describe later.

This chapter first analyzes the memory latency tolerance of out-of-order execution

processors to motivate the concept of runahead execution. An analysis of the impact of the

scheduling window, the instruction window, and the memory latency on the performance

of a current processor is provided. The chapter then describes the detailed operation of

runahead execution and its implementation on a modern out-of-order processor.

2.2 Out-of-Order Execution and Memory Latency Tolerance
2.2.1 Instruction and Scheduling Windows

Out-of-order execution can tolerate cache misses better than in-order execution by

scheduling and executing operations that are independent of the cache misses while the

cache misses are being serviced. An out-of-order execution machine accomplishes this

using two windows: the instruction window and the scheduling window. The instruction

window holds all the instructions that have been decoded but not yet committed to the

architectural state. Its main purpose is to guarantee in-order retirement of instructions in

order to support precise exceptions. The scheduling window holds a subset of the instruc-

tions in the instruction window. This subset consists of instructions that have been decoded

but not yet scheduled for execution. The main function of the scheduling window is to

search its instructions each cycle for those that are ready to execute and to schedule them

to be executed in dataflow order.

A long-latency operation blocks the instruction window until the operation is com-
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pleted. Although later instructions may have completed execution, they cannot retire from

the instruction window. If the latency of the operation is long enough and the instruction

window is not large enough, instructions pile up in the instruction window and the win-

dow becomes full. The machine then stalls and stops making forward progress. Note that

the machine can still fetch and buffer instructions during a full-window stall, but it cannot

decode, schedule, execute, and retire them.

A long-latency operation may also block the scheduling window if the scheduling

window is not large enough to hold all the instructions dependent on the long-latency oper-

ation. In this case, the scheduling window becomes full. Then the machine stalls and stops

making forward progress even though the instruction window may have available space.

2.2.2 Main-Memory Latency Tolerance of Out-of-Order Execution

In this section, we show that an idealized version of a current out-of-order execu-

tion machine spends most of its time stalling, mostly waiting for memory. Furthermore,

we show that the instruction window, not the scheduling window, is the major bottleneck

limiting a current out-of-order processor’s tolerance to long main memory latencies.

We model different processors with a 128 or a 2048-entry instruction window. The

scheduling window is either small (48 entries) or large (the same size as the instruction

window). All other machine buffers are set to either 128 or 2048 entries so they do not

create bottlenecks. The fetch engine is ideal in that it never suffers from cache misses and

always supplies a fetch-width’s worth of instructions every cycle. Thus fetch never stalls.

However, the fetch engine does use a real branch predictor. The other machine parame-

ters are the same as those of the current baseline—which is based on the Intel Pentium 4

processor—and are shown in Table 4.2.

Figure 2.1 shows the percentage of cycles the instruction window is stalled for

seven different machines. The number on top of each bar is the IPC performance (in
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micro-operations retired per cycle) of the respective machine. The data is averaged over all

benchmarks simulated (see Section 4.1.1).
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Figure 2.1: Percentage of cycles with full instruction window stalls for processors with
small and large scheduling or instruction windows. The number on top of each bar is the IPC of the
corresponding machine. Section 4.1 describes the baseline processor model and the simulated benchmarks.

The machine with a 128-entry instruction window, a small scheduling window and

a real L2 cache (P1-128) spends 70% of its cycles in full instruction window stalls where

no forward progress is made on the running application program. If the scheduling window

is removed from being a bottleneck by making the scheduling window size as large as the

instruction window size (P2-128), the instruction window still remains a bottleneck with

68% of all cycles spent in full window stalls. Note that the IPC increases only slightly (from

0.73 to 0.77) when the scheduling window is removed from being a bottleneck. Hence, the

scheduling window is not the primary bottleneck in a 128-entry-window processor. If in-

stead the main memory latency is removed from being a bottleneck by making the L2 cache

perfect (P3-128), the machine only wastes 32% of its cycles in full window stalls. Thus
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most of the stalls are due to main memory latency. Eliminating this latency by eliminating

all L2 cache misses increases the IPC by 143%.

A machine with a 2048-entry instruction window and a real L2 cache (P4-2048

or P5-2048) is able to tolerate main memory latency much better than the machines with

128-entry instruction windows and real L2 caches. Its percentage of full window stalls is

similar to that of the machine with a 128-entry instruction window and a perfect L2 cache

(P3-128). However, its IPC is not nearly as high because L2 cache misses increase the

number of cycles in which no instructions are retired. L2 cache misses are still not free

even on a machine with a 2048-entry instruction window and their latency still adversely

impacts the execution time of the program. Note that the scheduling window is still not

a major performance bottleneck on a machine with a 2048-entry instruction window. The

machine with a 2048-entry instruction window and a perfect L2 cache (P6-2048) is shown

for reference. It has the highest IPC and the smallest percentage of full-window stall cycles.

2.2.3 Why Runahead Execution: Providing Useful Work to the Processor During an
L2 Cache Miss

A conventional out-of-order processor performs no useful work while the instruc-

tion window is stalled waiting for an L2 cache miss to be serviced from main memory. The

purpose of runahead execution is to utilize idle cycles that are wasted due to full-window

stalls for useful speculative execution of the program, thereby improving the main memory

latency tolerance of a small instruction window without increasing the size of the instruc-

tion window. The premise is that this non-blocking mechanism lets the processor fetch

and execute many more instructions than the instruction window normally permits. If this

is not the case (i.e., if a processor’s instruction window is already large enough to buffer

instructions during an L2 cache miss), runahead execution would provide no performance

benefit over conventional out-of-order execution.
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We would expect the full-window stall percentage of a 128-entry window processor

with runahead execution to be similar to the stall percentage of a 128-entry window pro-

cessor with a perfect L2 cache (P3-128 in Figure 2.1), since runahead execution does not

stall the processor due to L2 cache misses. We would also expect the IPC performance of a

128-entry window processor with runahead execution to be better than that of a 128-entry

window processor with a real L2 cache (P1-128) and close to that of a 2048-entry window

processor with a real L2 cache (P4-2048), As shown in the rightmost bar in Figure 2.1

(P7-128-RA), runahead execution eliminates almost all of the full-window stalls due to L2

cache misses on a 128-entry window machine and approximates the IPC performance of a

2048-entry window processor. A detailed performance analysis of runahead execution is

provided in Chapter 4.

2.3 Operation of Runahead Execution

Figure 2.2 shows an example execution timeline illustrating the differences between

the operation of a conventional out-of-order execution processor and a runahead execution

processor. The instruction window of a conventional processor becomes full soon after a

load instruction incurs a long-latency (L2) cache miss. Once the instruction window is full,

the processor cannot decode and process any new instructions and stalls until the L2 cache

miss is serviced. While the processor is stalled, it makes no forward progress in the run-

ning application. Therefore, the execution timeline of a memory-intensive application on

a conventional processor consists of useful computation (COMPUTE) periods interleaved

with useless long STALL periods due to L2 cache misses, as shown in Figure 2.2(a). With

increasing memory latencies, STALL periods start dominating the COMPUTE periods,

leaving the processor idle for most of its execution time and thus reducing performance.

Runahead execution avoids stalling the processor when an L2 cache miss occurs, as

shown in Figure 2.2(b). When the processor detects that the oldest instruction is waiting for
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(a)   CONVENTIONAL OUT−OF−ORDER EXECUTION PROCESSOR 

(b)   RUNAHEAD EXECUTION PROCESSOR

Figure 2.2: Execution timelines showing a high-level overview of the concept of runahead
execution. A runahead processor pre-executes the running application during cycles in which a
conventional processor would be stalled due to an L2 cache miss. The purpose of this pre-execution
is to discover and service in parallel additional L2 cache misses. In this example, runahead execu-
tion discovers L2 Miss B and services it in parallel with L2 Miss A, thereby eliminating a stall that
would be caused by Load B in a conventional processor.

an L2 cache miss that is still being serviced, it checkpoints the architectural register state,

the branch history register, and the return address stack, and enters a speculative processing

mode called runahead mode. The processor removes this long-latency instruction from the

instruction window. While in runahead mode, the processor continues to execute instruc-

tions without updating the architectural state and without blocking retirement due to L2

cache misses and the instructions dependent on them. The results of L2 cache misses and

their dependents are identified as bogus (INV). Instructions that generate or source INV
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results (called INV instructions) are removed from the instruction window so that they do

not prevent independent instructions from being placed into the window. Therefore, runa-

head mode allows the processor to execute more instructions than the instruction window

normally permits. The removal of instructions from the processor during runahead mode

is accomplished in program order and it is called pseudo-retirement. Some of the instruc-

tions executed in runahead mode that are independent of L2 cache misses may miss in the

instruction, data, or unified caches (e.g., Load B in Figure 2.2(b)). Their miss latencies

are overlapped with the latency of the cache miss that caused entry into runahead mode

(i.e., runahead-causing cache miss). When the runahead-causing cache miss completes,

the processor exits runahead mode by flushing the instructions in its pipeline. It restores

the checkpointed state and resumes normal instruction fetch and execution starting with

the runahead-causing instruction (Load A in Figure 2.2(b)). Once the processor returns to

normal mode, it is able to make faster progress without stalling because some of the data

and instructions needed during normal mode have already been prefetched into the caches

during runahead mode. For example, in Figure 2.2(b), the processor does not need to stall

for Load B because the L2 miss caused by Load B was discovered in runahead mode and

serviced in parallel with the L2 miss caused by Load A. Hence, runahead execution uses

otherwise-idle clock cycles due to L2 misses to speculatively execute the application in

order to generate accurate prefetch requests.

2.4 Advantages, Disadvantages and Limitations of the Runahead Ex-
ecution Paradigm

A great deal of research has been dedicated to building large instruction windows

to tolerate long memory latencies. The runahead execution paradigm provides a new al-

ternative to building large instruction windows by capturing the memory-level parallelism

(MLP) benefits of a large instruction window without requiring the implementation of large
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and complex structures associated with a large window. This approach has advantages as

well as disadvantages.

2.4.1 Advantages

Runahead execution improves processor performance by enabling the processor to

do useful processing instead of stalling for hundreds of cycles while a long-latency cache

miss is being serviced. This speculative processing during runahead mode provides the

following performance benefits:

• Discovery and prefetching of L2 cache data and instruction misses: Runahead

mode execution discovers and initiates L2 cache misses that are independent of the

runahead-causing cache miss. Both data and instruction L2 cache misses are dis-

covered and serviced in parallel with the runahead-causing cache miss. Therefore,

runahead execution increases the processor’s tolerance to the latency of the runahead-

causing cache miss and prefetches independent L2 cache misses from DRAM mem-

ory into the L2 cache. The nature of prefetching in runahead execution (i.e., execution-

based prefetching) enables runahead execution to prefetch both regular and irregu-

lar cache miss patterns. Therefore runahead execution can capture a wide variety

of access patterns that cannot be captured by conventional software and hardware

prefetching techniques which can only capture regular miss patterns.

• Data and instruction prefetching between levels of the cache hierarchy: Besides

prefetching long-latency misses, runahead execution prefetches data and instructions

between levels of the cache hierarchy. For example, an L1 cache miss that hits in the

L2 cache is prefetched into the L1 cache during runahead mode.

• Early training of the hardware data prefetcher: Load and store instructions specu-

latively executed during runahead mode train the tables of the hardware data prefetcher

16



earlier than they would in a conventional processor. This early training improves the

timeliness of the accurate hardware prefetch requests.

• Early resolution of branch instructions and early training of the branch predic-

tor pattern history tables: Branch instructions that are independent of L2 misses

are correctly executed and resolved during runahead mode. These instructions train

the branch predictor with their outcomes. Furthermore, structures can be provided to

communicate the outcome of branch instructions to normal mode execution.

• Early execution of L2-miss independent instructions: The results of L2-miss inde-

pendent instructions are generated in runahead mode. Performance can be improved

if these results are buffered and reused during normal mode. However, Section 5.5.1

shows that such buffering and reuse is not worthwhile to implement.

Overall, runahead execution prepares the processor for processing future instruc-

tions instead of keeping it stalled while the initial L2 miss is being serviced.

One important advantage of runahead execution is its simplicity. Compared to the

alternative of large instruction windows that require large, cycle-critical, complex, slow,

and power-hungry hardware structures in the processor core, runahead execution requires

very simple and modest hardware structures, which will be described in detail in Sec-

tion 2.5. Runahead execution utilizes the existing processing structures to improve mem-

ory latency tolerance. None of the additional structures required by runahead execution are

large, complex, or on the critical path of the processor. Therefore, the addition of runahead

execution to a conventional processor is unlikely to increase the processor’s complexity,

area, or cycle time.

Instruction execution in runahead mode is purely speculative since runahead exe-

cution aims to generate only prefetches. A positive consequence of this is that runahead
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mode does not impose any functional correctness requirements. Therefore, the processor

designer does not have to worry about getting the corner implementation cases functionally

right in runahead mode. This makes the addition of runahead execution to a conventional

processor possible without significantly increasing the processor’s design and verification

complexity.

Finally, runahead execution does not require software (programmer, compiler, or

ISA) support to improve performance.1 It is a hardware technique that can improve the

performance of existing as well as new program binaries. Therefore, memory-intensive

legacy code can benefit from runahead execution and runahead execution can be beneficial

in environments where program re-compilation is not a viable or cost-effective option.

2.4.2 Disadvantages

Runahead execution provides a cost- and complexity-effective framework to im-

prove memory latency tolerance. However, runahead execution has some drawbacks that

need to be addressed.

First and foremost, runahead execution requires the speculative processing of extra

instructions while an L2 cache miss is in progress. These instructions are re-executed in

normal mode. Therefore, runahead execution increases the number of instructions executed

by a conventional processor, which results in an increase in the dynamic energy dissipated

by the processor. Also, this increase in executed instructions may not always result in a

performance increase. Chapter 5 addresses this disadvantage of runahead execution and

develops new mechanisms that improve the energy-efficiency of a runahead execution pro-

cessor.

1Although, programming and compiler techniques can be developed to increase the performance benefits
of runahead execution.
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Second, the prefetches generated during runahead mode may not always be ac-

curate because they may be generated on the wrong program path. Inaccurate prefetch

requests waste memory bandwidth and can cause pollution in the caches. However, previ-

ous analyses found that the positive prefetching effect of wrong-path memory references

significantly outweighs these negative effects in a runahead execution processor [76, 77].

Filtering techniques that reduce the negative effects of wrong-path references can also be

used with runahead execution [75, 78].

Third, runahead execution may result in performance degradation if the perfor-

mance benefit of prefetching in runahead mode does not outweigh the performance cost

of exiting runahead mode via a pipeline flush. The performance evaluation presented in

Chapter 4 shows that this rarely happens.

2.4.3 Limitations

The baseline runahead execution mechanism has two major limitations. These lim-

itations can be reduced by developing complementary mechanisms that address them.

Runahead execution is unable to discover and initiate a cache miss if the miss is

dependent on an older L2 miss because the data for the older L2 miss is unavailable during

runahead mode. Thus runahead execution cannot parallelize misses that are due to depen-

dent load instructions which are common in programs that utilize and manipulate linked

data structures. This limitation can be addressed by augmenting a runahead processor with

a value or address prediction mechanism that predicts the values of L2-miss load instruc-

tions. Chapter 6 addresses this limitation by developing a new value prediction mechanism

that aims to predict the values of address loads, i.e. load instructions that load pointers into

registers.

Since runahead execution relies on the speculative execution of instructions, it

needs an effective instruction supply that brings those instructions into the execution core.
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If there are not enough useful instructions to execute during runahead mode, runahead

execution may not provide performance benefits. Mispredicted branches that depend on

L2 cache misses and instruction/trace cache misses in runahead mode therefore limit the

effectiveness of runahead execution. As more effective branch prediction and instruction

fetch mechanisms are developed, we would expect the benefits of runahead execution to

increase. Section 4.1.3.4 provides an analysis of the impact of the effectiveness of the

instruction supply on the performance benefit of runahead execution.

Note that these two limitations also exist in a processor with a large instruction

window. Therefore, new techniques that are developed to overcome these limitations are

applicable not only to runahead execution but also to large-window processors.

2.5 Implementation of Runahead Execution in a State-of-the-art High
Performance Out-of-order Processor

This section describes the implementation of runahead execution in an out-of-order

processor and addresses the design tradeoffs that need to be considered when designing a

runahead execution processor.

We assume a processor model where instructions access the register file after they

are scheduled and before they execute. Pentium 4 [48], MIPS R10000 [126], and Alpha

21264 [58] are examples of such a microarchitecture. In some other microarchitectures,

such as the Pentium Pro [47], instructions access the register file before they are placed

in the scheduler. The implementation details of runahead execution are slightly different

between the two microarchitectures, but the basic mechanism is applicable to both.
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2.5.1 Overview of the Baseline Microarchitecture

Figure 2.3 shows the structures in a modern processor’s microarchitecture. Addi-

tional hardware structures needed for runahead execution are shown in bold and they will

be described in this section. Dashed lines show the flow of miss traffic out of the caches.
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Figure 2.3: Additional hardware structures needed for the implementation of runahead
execution in a state-of-the-art out-of-order processor. Additional structures are shown in bold.
Dashed lines indicate the flow of cache miss traffic.

Decoded and cracked instructions (micro-operations or uops) are fetched from the

trace cache and inserted into a Uop Queue. The Frontend Register Alias Table (RAT) [48]

is used for renaming incoming instructions and contains the speculative mapping of ar-
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chitectural registers to physical registers. The scheduling window of the processor is dis-

tributed: integer (INT), floating-point (FP), and memory (MEM) operations have three

separate schedulers. Instructions are scheduled from the scheduling window to the execu-

tion units when their source operands are ready (i.e., in dataflow order). FP instructions

are executed in the FP units after reading their operands from the FP register file. INT and

MEM instructions read their operands from the INT register file and are later either exe-

cuted in the INT units or access the data cache or store buffer after generating their memory

addresses. Instructions retire and commit their results to the architectural state in program

order. The Backend RAT [48] contains pointers to those physical registers that contain

committed architectural values. It is used for recovery of state after branch mispredictions

without requiring copying of register data values. The reorder buffer holds the results of

completed instructions and ensures the in-order update of the architectural state.

2.5.2 Requirements for Runahead Execution

A processor’s pipeline needs to be modified to support runahead execution. We

discuss the required modifications and design tradeoffs in three phases of runahead mode

operation:

• Entering runahead mode.

• Instruction execution in runahead mode.

• Exiting runahead mode.

A runahead execution processor operates in two different microarchitectural modes:

normal mode or runahead mode. One bit (runahead mode bit) is used to distinguish the two

modes from each other. The state diagram in Figure 2.4 shows the transitions between the

two modes.
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NORMAL RUNAHEAD
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Oldest instruction in the window is

Runahead−causing L2 miss is satisfied

RESET

Figure 2.4: State diagram showing the two modes of operation in a runahead execution
processor.

2.5.3 Entering Runahead Mode

2.5.3.1 When to Enter Runahead Mode

A runahead execution processor enters runahead mode under two different condi-

tions:

• If the oldest instruction in the window is a load instruction that missed in the L2

cache.

• If the oldest instruction in the window is a store instruction that missed in the L2

cache and the processor’s store buffer is full. We assume that an L2-miss store in-

struction does not block retirement and forward progress unless the store buffer is

full.

Several other alternatives were considered as to when to enter runahead mode. We

address the design tradeoffs related to these alternatives and explain why they were not

chosen.

23



First, it is possible to enter runahead mode when an L2 miss actually happens in-

stead of waiting for the L2-miss instruction to become the oldest instruction in the window.

This would initiate runahead mode early and let the processor execute more instructions in

runahead mode, thereby increasing the chances of the discovery of an L2 miss in runahead

mode. However, this approach has several drawbacks:

• If the L2-miss instruction is not the oldest, it is not guaranteed that it is a valid instruc-

tion that will actually be executed by the processor. The instruction may be on the

wrong path due to an older mispredicted branch that has not yet been resolved. Or an

older instruction in the window may cause an exception, which requires the flushing

of the L2 miss instruction. It is possible to add hardware that checks whether all in-

structions older than the L2-miss instruction are exception-free and not mispredicted.

However, this increases the hardware complexity.

• The potential gains for entering runahead mode at the time an L2 miss happens is

limited. We found that an L2-miss instruction becomes the oldest in the window

soon (10 cycles on average) after missing in the L2 cache unless an older instruction

causes an L2 miss. Hence, entering runahead mode when an L2 miss happens would

extend the runahead period by only few cycles, which is negligible compared to the

main memory latency that is on the order of hundreds of cycles.

• Entering runahead mode at the time an L2 miss happens requires the state of the

machine to be checkpointed at the oldest instruction in the window, which may not

be the L2-miss instruction. This throws away the useful work that will be completed

soon by relatively short-latency instructions older than the L2-miss instruction, since

those instructions will need to be re-executed when the processor returns to normal

mode.

24



Second, it is possible to delay entry into runahead mode until a full-window stall

occurs due to an L2-miss instruction that is the oldest in the window. This runahead mode

entry policy ensures that a full-window stall will actually occur due to an L2 miss and

therefore eliminates possible unnecessary entries into runahead mode. However, it also has

two drawbacks that deem it unattractive:

• Waiting for a full-window stall to occur reduces the time spent in runahead mode,

which reduces the likelihood of discovering an L2 cache miss in runahead mode.

• We found that the window is already full 78% of the time when the oldest instruction

in the window is an L2-miss instruction. Furthermore, the window becomes full 98%

of the time after an L2 cache miss happens on the correct program path. Therefore,

there is little value in adding extra logic to check for a full window as the window

will almost always become full after the occurrence of an L2 miss.

Third, it is possible to enter runahead mode on relatively shorter-latency L1 data

cache misses. This would increase the time spent in runahead mode if the L1 miss also

misses in the L2 cache. However, most L1 cache misses hit in the L2 cache especially if

the L2 cache is large. Furthermore, if the L1 miss hits in the L2 cache, the processor would

stay in runahead mode for a very short time. Since an out-of-order processor is good at

tolerating relatively short L1 miss/L2 hit latency, entering runahead mode on such misses

would not provide any benefit. Therefore our implementation does not enter runahead

mode on an L1 cache miss. In contrast, if runahead execution is implemented on an in-

order processor [36], it could be beneficial to enter runahead mode on an L1 data cache

miss because an in-order processor is unable to tolerate the latency of even an L1 miss.
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2.5.3.2 Processor Actions for Runahead Mode Entry

The processor takes the following actions to enter runahead mode when it detects

that conditions for entering mode (described in the previous section) are satisfied:

• The address of the instruction that causes entry into runahead mode is recorded in a

special register.

• The processor checkpoints the state of the architectural registers. This is required to

correctly recover the architectural state on exit from runahead mode.

• The processor also checkpoints the state of the global branch history register and the

return address stack so that the context of the branch prediction mechanisms can be

recovered to a consistent state when the processor exits runahead mode and restarts

normal operation. Note that it is not required to checkpoint the state of these branch

prediction structures for functional correctness, but we found that performance is

degraded significantly if they are not checkpointed.

• The mode of the processor is switched to runahead mode.

2.5.3.3 Hardware Requirements for Runahead Mode Entry

Entry into runahead mode requires a mechanism to convey to the scheduler that an

instruction missed in the L2 cache. This is accomplished by simply extending the miss

signal for the instruction’s access from the L2 cache controller into the processor core.

The mechanism for checkpointing the architectural registers depends on the mi-

croarchitecture. There are several alternatives:

• The entire architectural register file can be checkpointed. The hardware cost of this

can be considerable especially if the number of architectural registers is large. How-

ever, this may be the only option for microarchitectures that store the architectural
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register state in a dedicated architectural register file. A flash copy of the architec-

tural registers can be made using circuit techniques so that no cycles are lost to take

the checkpoint.

• Microarchitectures that store the architectural register state in the physical register

file can avoid checkpointing the entire architectural register state by checkpointing

only the register map that points to the architectural state (i.e. Backend RAT in Fig-

ure 2.3). This significantly reduces the hardware cost of the checkpoint. In this case,

physical registers that are part of the architectural state are not deallocated during

the entire runahead period. Therefore, runahead mode execution has fewer avail-

able registers. We found that the performance degradation due to reduced number of

available registers is negligible. Our experiments use this option.

• The checkpointing of the architectural register file can also be accomplished by copy-

ing the contents of the physical registers pointed to by the Backend RAT. This may

take some time. To avoid performance loss due to this copying, the processor can

always update the checkpointed architectural register file during normal mode. This

option keeps all physical registers available during runahead mode. However, it is

unattractive because it increases the processor’s energy consumption since it requires

the checkpointed register file to be updated during normal mode.

The return address stack can also be checkpointed in several ways. Instead of copy-

ing the entire stack, we use a mechanism proposed by Jourdan et al. [57] that checkpoints

the return address stack without significant hardware cost.

Note that the hardware needed to checkpoint the state of the architectural register

file and return address stack already exists in modern out-of-order processors to support

recovery from branch mispredictions. Many current processors checkpoint the architectural

register map after renaming a branch instruction [126, 58] and the return address stack after
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fetching a branch instruction. Runahead execution only requires modifications to take these

checkpoints when the oldest instruction is an L2 miss.

2.5.4 Instruction Execution in Runahead Mode

The execution of instructions in runahead mode is very similar to instruction execu-

tion in a conventional out-of-order execution processor with the following key differences:

• Execution in runahead mode is purely speculative. Runahead instructions do not

update the architectural state.

• L2-miss instructions and their dependents are tracked in runahead mode. Their re-

sults are marked as INV and they are not allowed to block the retirement logic.

The main complexities involved in execution of runahead instructions are the prop-

agation of INV results and the communication between stores and loads. This section de-

scribes the rules of the machine, the hardware required to support them, and the tradeoffs

involved in deciding the rules.

2.5.4.1 INV Bits and Instructions

A runahead execution processor treats L2-miss dependent values and instructions

differently from other instructions in runahead mode. L2-miss dependent values and in-

structions are marked as invalid (INV) by the processor. A runahead processor keeps track

of INV instructions for three purposes:

1. INV instructions can be removed from the instruction window without waiting for

the completion of the L2 miss they are dependent on. This creates space in the

instruction window for L2-miss independent instructions and allows the processor to

make forward progress in runahead mode without incurring full-window stalls.
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2. Branches that are dependent on L2 misses are not resolved. Since the source data

value of an INV branch is not available in runahead mode, the processor relies on the

branch predictor’s prediction for that branch rather than using a bogus stale value to

resolve the branch.

3. Load and store instructions whose addresses are dependent on L2 misses are not

allowed to generate memory requests since their addresses would be bogus. This

reduces the probability of polluting the caches with bogus memory requests in runa-

head mode.

Each physical register and store buffer entry has an INV bit associated with it to

indicate whether or not it has a bogus value. Any instruction that sources a register or a

store buffer entry whose INV bit is set is an INV instruction.

If the data of a store instruction is INV, the store introduces an INV value to the

memory image in runahead mode. To handle the communication of INV status of memory

locations and valid data values through memory in runahead mode, we use a small specu-

lative memory, called “runahead cache,” that is accessed in parallel with the first-level data

cache. We describe the rationale for the runahead cache and its design in Section 2.5.4.4.

2.5.4.2 Propagation of INV Values

The first instruction that introduces an INV data value is the instruction that causes

the processor to enter runahead mode. If this instruction is a load, it marks its physical

destination register as INV. If it is a store, it allocates a line in the runahead cache and

marks its destination bytes in memory as INV.

Any INV instruction that writes to a register marks that register as INV after it is

scheduled. Any valid operation that writes to a register resets the INV bit associated with

its physical destination register.
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2.5.4.3 Hardware Requirements to Support INV Bits and Their Propagation

INV status is a property of data that is stored in registers or in memory. Therefore,

INV bits are propagated in the datapath with the data they are associated with. The control

mechanism that communicates INV bits between dependent instructions is already present

in an out-of-order processor. An out-of-order processor communicates data values between

dependent instructions. An INV bit can be appended to each data value and simply com-

municated along with the data value it is associated with. Therefore adding support for

INV bits in the processor core would not significantly increase processor complexity.

Furthermore, bits identifying register values dependent on cache misses already

exist in aggressive implementations of out-of-order execution to support replay schedul-

ing [107]. A modern out-of-order processor removes the cache-miss dependent instructions

from the scheduling window so that they do not occupy the scheduling window entries for

a long time [12]. The hardware that exists to support this can be used or can be replicated

to support INV bits.

2.5.4.4 Runahead Store Operations and Runahead Cache

In a previous proposal for runahead execution on in-order processors [36], runahead

store instructions do not write their results anywhere. Therefore, runahead loads that are

dependent on valid runahead stores are regarded as INV instructions and dropped. In our

experiments, we found that forwarding the results of valid runahead stores to dependent

runahead loads doubles the performance benefit of runahead execution on an out-of-order

processor (See Section 4.1.3.5). Therefore, the runahead processor described in this dis-

sertation provides support for the forwarding of the results of runahead store operations to

dependent runahead load operations.

If both the store and the load that depends on the store are in the instruction win-

dow during runahead mode, forwarding the value of the store to the load is accomplished

30



through the store buffer that already exists in current out-of-order processors. However, if

a runahead load depends on a runahead store that has already pseudo-retired (which means

that the store is no longer in the store buffer), it should get the result of the store from some

other location. One possibility is to write the result of the store into the data cache. This

introduces extra complexity to the design of the data cache (and possibly to the second-

level cache) because the data cache needs to be modified so that data written by speculative

runahead stores is not used by future non-runahead instructions. Writing the data of spec-

ulative runahead stores into the data cache can also evict useful cache lines and therefore

reduce the cache hit rate. Another possibility is to have a large fully-associative buffer that

stores the results of pseudo-retired runahead store instructions. Such a store buffer can be

implemented by enlarging the processor’s store buffer or by adding another buffer similar

to the existing store buffer, which is a multi-ported content-addressable memory (CAM)

structure. But, the size and access time of this associative structure can be prohibitively

large. Also, such a structure cannot handle the case where a load depends on multiple

stores, without increased complexity.

As a simpler alternative, this dissertation proposes the use of a scratch-pad memory

organized as a cache, called runahead cache, to hold the results and INV status of pseudo-

retired runahead stores. The runahead cache is addressed just like the data cache, but it can

be much smaller in size because a small number of store instructions pseudo-retire during

runahead mode. Unlike the processor’s store buffer, the runahead cache is not a CAM

structure but a RAM structure with less complex hardware and less power consumption.

Although we call it a cache because it is physically the same structure as a tra-

ditional cache, the purpose of the runahead cache is not to cache data. Its purpose is to

provide for the communication of data and INV status between store and load instructions.

The evicted cache lines are not stored in any other larger storage; they are simply dropped

(Since runahead mode is purely speculative, there is no requirement to satisfy correct prop-
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agation of data between store instructions and dependent load instructions). Runahead

cache is only accessed by loads and stores executed in runahead mode. In normal mode,

no instruction accesses it.

To support correct communication of INV bits between stores and loads, each entry

in the store buffer and each byte in the runahead cache has a corresponding INV bit. Each

byte in the runahead cache also has another bit associated with it (STO bit) indicating

whether or not a store has written to that byte. An access to the runahead cache results in a

hit only if the accessed byte was written by a store (STO bit is set) and the accessed cache

line is valid. Figures 2.5 shows the high-level block diagram of the runahead cache and the

structure of the tag array.
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Figure 2.5: High-level block diagram of a runahead cache with a single read port and a
single write port.
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Store instructions follow the following rules to update the store buffer and the runa-

head cache during runahead mode:

• When a valid runahead store completes execution, it writes its data into its store

buffer entry (just like in a conventional processor) and resets the associated INV bit

of the entry. In the meantime, it queries the data cache and sends a prefetch request

down the memory hierarchy if it misses in the data cache.

• When an invalid runahead store is scheduled, it sets the INV bit of its associated store

buffer entry.

• When a valid runahead store exits the instruction window, it writes its result into the

runahead cache and resets the INV bits of the written bytes. It also sets the STO bits

of the bytes it writes into.

• When an invalid runahead store exits the instruction window, it sets the INV bits and

the STO bits of the bytes it writes into (if its address is valid).

• Runahead stores never write their results into the data cache.

One complication arises when the address of a store operation is INV. In this case,

the store operation is simply treated as a NOP. Since loads are unable to identify their

dependencies on such stores, it is likely that a load instruction that is dependent on an

INV-address store will load a stale value from memory. This stale value might later be

used to resolve dependent branches or generate addresses of dependent load instructions,

which might result in the overturning of correct branch predictions or the generation of

inaccurate memory requests. This problem can be mitigated through the use of memory

dependence predictors [72, 25] to identify the dependence between an INV-address store

and its dependent load. Once the dependence has been identified, the load can be marked
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INV if the data value of the store is INV. If the data value of the store is valid, it can be

forwarded to the load that is predicted to be dependent on the store. In our evaluation we

found that INV-address stores do not significantly impact performance. If the address of a

store is INV, it is more than 92% likely that the address of a dependent load instruction is

also INV. Therefore, load instructions that depend on INV-address stores rarely introduce

stale values into the processor pipeline.

2.5.4.5 Runahead Load Operations

A runahead load operation can become invalid due to four different reasons:

1. It may source an INV physical register.

2. It may miss in the L2 cache.

3. It may be dependent on a store that is marked as INV in the store buffer.

4. It may be dependent on a INV store that was already pseudo-retired.

The last case is detected using the runahead cache (unless the runahead cache line

was evicted due to a conflict). When a valid load executes, it accesses three structures in

parallel: the data cache, the runahead cache, and the store buffer. If it hits in the store

buffer and the entry it hits is marked as valid, the load gets its data from the store buffer.

If the load hits in the store buffer and the entry is marked INV, the load marks its physical

destination register as INV.

A load is considered to hit in the runahead cache only if (1) the runahead cache line

it accesses is valid and (2) the STO bit of any of the accessed bytes in the cache line is set.

If the load misses in the store buffer and hits in the runahead cache, it checks the INV bits

of the bytes it is accessing in the runahead cache. The load executes using the data in the
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runahead cache if none of the INV bits of the requested data is set. If any of the data bytes

sourced by the load are marked INV, then the load marks its destination register as INV.

If the load misses in both the store buffer and the runahead cache, but hits in the

data cache, then it uses the value from the data cache and is considered valid. Nevertheless,

it may actually be dependent on an L2 miss because of two reasons:

1. It may be dependent on a store with INV address.

2. It may be dependent on an INV store that marked its destination bytes in the runahead

cache as INV, but the corresponding line in the runahead cache was evicted due to a

conflict.

However, we found that both of these are rare cases that do not affect performance

significantly.

If the load misses in all three structures, it sends a request to the L2 cache to fetch

its data. If this request hits in the L2 cache, data is transferred from the L2 to the L1

data cache and the load completes its execution. If the request misses in the L2, the load

marks its destination register as INV and is removed from the scheduler, just like the load

that caused entry into runahead mode. The request that misses in the L2 is sent to main

memory as a prefetch request.

2.5.4.6 Hardware Requirements to Support Runahead Store and Load Operations

The runahead cache is the largest structure that is required by runahead execution.

However, it is very small compared to the L1 data cache of the processor. In our ex-

periments we found that a 512-byte runahead cache is large enough to capture almost all

communication between runahead stores and dependent runahead loads. We also found

that the runahead cache is very latency tolerant and therefore the processor does not need
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to access it in parallel with the data cache. Hence, the runahead cache is not on the critical

path of the processor.

Aside from the runahead cache, runahead execution does not require significant

hardware to handle runahead stores and loads. The forwarding of INV bits from the store

buffer to a dependent load is accomplished similarly to the forwarding of data from the

store buffer. The hardware support for data forwarding from the store buffer already exists

in current out-of-order processors – runahead execution adds only one more bit (the INV

bit) to the forwarding data path.

2.5.4.7 Prediction and Execution of Runahead Branches

Branches are predicted and resolved in runahead mode exactly the same way they

are in normal mode except for one difference: A branch with an INV source cannot be re-

solved. A valid branch is predicted and resolved during runahead mode. If a valid branch is

mispredicted in runahead mode, the state of the machine is recovered and the fetch engine

is redirected to the correct fetch address, just like in normal mode. An INV branch is also

predicted and it updates the global branch history register speculatively like all normal-

mode branches. However, an INV branch cannot be resolved because the data value it is

dependent on has not yet come back from memory. This is not a problem if the branch

is correctly predicted. However, if the branch is mispredicted, the processor will be on

the wrong path after it fetches the branch until it reaches a control-flow independent point.

We call the point in the program where a mispredicted INV branch is fetched the diver-

gence point. Existence of divergence points is not necessarily bad for performance because

wrong-path memory references can provide significant prefetching benefits [77]. Neverthe-

less, as we will show later, the performance improvement provided by runahead execution

would increase significantly if the divergence points did not exist (i.e., if all INV branches

were correctly predicted).
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When a valid branch pseudo-retires, it can update the pattern history tables (PHTs)

of the branch predictor. In contrast, an INV branch is not allowed to update the PHTs be-

cause the correct direction of the branch cannot be determined. The update of the branch

predictor’s pattern history tables (PHTs) with the outcomes of valid branches can be han-

dled in several different ways:

• One option is to allow the valid runahead branches to update the PHTs. If a branch

executes first in runahead mode and then in normal mode, this option causes the same

PHT entry to be updated twice by the same dynamic branch instruction. The branch

prediction counter may therefore be strengthened unnecessarily and it may lose its

hysteresis.

• A second option is not to allow the valid runahead branches to update the PHTs.

This means that the new information that becomes available during runahead mode

is not incorporated into the branch predictor and branches in runahead mode are

predicted using stale information from normal mode. This is not a problem if the

branch behavior does not change after entering runahead mode. We found that this

option results in a slightly reduced branch prediction accuracy in runahead mode.

• A third option is to update the PHTs only with the outcomes of mispredicted valid

branches. This has the benefit of keeping the PHTs up-to-date during runahead mode.

It also avoids over-strengthening the prediction counters for correctly-predicted valid

branches. We found that this option results in the highest prediction accuracy among

the first three options and therefore use this as our baseline PHT update policy in

runahead mode.

• Finally, a fourth option is to allow the valid runahead branches to update the PHTs

but disallow the same branches from updating the PHTs when they are re-executed in
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normal mode. This can be accomplished with a FIFO queue that stores the outcomes

of pseudo-retired runahead branches. A branch that is fetched in normal mode ac-

cesses this queue for a prediction. If the branch was executed in runahead mode, the

processor reads from the queue the outcome of the branch that was computed in runa-

head mode and uses this outcome as the branch’s predicted direction in normal mode.

This option has higher hardware cost than the previous options. However, it not only

avoids the problem of over-strengthening the prediction counters but also provides a

way of reusing in normal mode the branch outcomes computed in runahead mode.

However, we found that the performance improvement provided by this PHT update

policy is not significant (less than 1%) and therefore its implementation is likely not

justifiable, a conclusion also supported by previous research in the area [37].

2.5.4.8 Instruction Pseudo-Retirement in Runahead Mode

During runahead mode, instructions leave the instruction window in program order

without updating the architectural state of the processor. We call this process pseudo-

retirement. Pseudo-retirement is very similar to retirement in normal mode except updates

to the architectural state are not allowed. Specifically, pseudo-retired instructions do not

update the state of the architectural register file that was checkpointed upon entry into

runahead mode, and pseudo-retired stores do not update the architectural memory state.

When an instruction becomes the oldest in the instruction window in runahead

mode, it is considered for pseudo-retirement. If the instruction considered for pseudo-

retirement is INV, it is removed from the window immediately. If it is valid, it needs to

wait until it is executed (at which point it may become INV) and its result is written into

the physical register file. Upon pseudo-retirement, an instruction releases all resources al-

located for its execution, including entries in the instruction window, load/store buffers,

and branch checkpoint table.
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Both valid and INV instructions update the Backend RAT when they leave the in-

struction window just like retired normal-mode instructions. This allows for correct state

recovery upon a branch misprediction in runahead mode.2 The Backend RAT does not

need to store INV bits associated with each register because physical registers already have

INV bits associated with them. However, in a microarchitecture that keeps the retired state

in a separate register file (i.e., Retirement Register File as in Pentium Pro [48]) than the

physical register file, this separate register file does need to store INV bits.

2.5.4.9 Exceptions and Input/Output Operations in Runahead Mode

Execution in runahead mode is not visible to the architectural state of the program.

Therefore, exceptions generated by runahead mode instructions are not handled. However,

an exception during the execution of an instruction usually implies that something has

gone wrong with the instruction and its result cannot be computed or trusted. For example,

a load instruction that incurs a page fault cannot load the correct result into its destination

register until after the page fault is handled by the operating system. To avoid using bogus

values due to exception-causing instructions, a runahead execution processor marks as INV

the destination register or memory location of an instruction that causes an exception in

runahead mode.

Since runahead mode is not supposed to modify the architectural state, it cannot

modify the architectural state of the devices that communicate with the program. Therefore

any operation that changes the architectural state of those devices is not permitted during

runahead mode. Examples of such operations are special input and output instructions

or load/store instructions that access memory-mapped I/O devices. These operations are

2When a mispredicted branch becomes the oldest instruction in the window, the Backend RAT is copied
into the Frontend RAT to recover the state of the register file to the point after the branch but before the next
instruction. Note that this misprediction recovery mechanism is the same in runahead mode as in normal
mode.
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not performed in runahead mode and their destination registers or memory locations are

marked as INV so that dependent operations do not source bogus values.

2.5.5 Exiting Runahead Mode

2.5.5.1 When to Exit Runahead Mode

An exit from runahead mode can be initiated at any time while the processor is

in runahead mode. Our policy is to exit from runahead mode when any of the following

happens:

• The runahead-causing L2 cache miss is serviced. An L2 cache miss is serviced when

the data required by it has returned to the processor core from main memory.

• An external interrupt with a priority higher than the priority of the running program

needs to be serviced.

Several other alternatives were considered as to when to exit runahead mode. We

address the design tradeoffs related to these alternatives and explain why they were not

chosen in our baseline runahead execution implementation.

First, it is possible to exit runahead mode earlier than when the runahead-causing

L2 cache miss is serviced. This mechanism can be advantageous because the processor can

switch to runahead mode early and hide the delay associated with exiting from runahead

mode. Runahead mode exit requires a pipeline flush and exiting runahead mode early can

enable the processor to fill its pipeline and instruction window by the time the runahead-

causing L2 cache miss completes. However, this approach has several drawbacks:

• It is not easy to determine exactly when is a good time to exit runahead mode so

that the delay associated with runahead exit is hidden. The processor needs to know
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when the L2 cache will be serviced in order to decide when to exit runahead mode

to hide the exit penalty. However, in current memory hierarchies the time required

to service an L2 cache miss is variable and essentially unknown to the processor

because of queueing delays, bank conflicts, port contentions that can happen in the

DRAM chips and the memory controller.

• Exiting runahead mode early reduces the time spent in runahead mode, which in

turn reduces the forward progress made in runahead mode in executing further in the

instruction stream. This may reduce the number of L2 cache misses discovered in

runahead mode and hence reduce the performance benefits of runahead execution.

We simulated this alternate approach using oracle information to determine exactly

when runahead exit should be initiated in order to fully hide the runahead exit penalty.

We found that the alternate policy slightly improves performance for some benchmarks

whereas it degrades performance for others. On average, exiting runahead mode early–

even using oracle information–performs 1% worse than exiting runahead mode when the

L2 cache miss is serviced. We found that, in many benchmarks, additional L2 cache misses

are discovered in runahead mode if the processor does not exit from runahead mode early.

The prefetching benefit due to the discovery of these L2 misses on average outweighs the

performance loss due to the pipeline flush penalty at runahead mode exit.

A second alternative approach is to delay runahead exit for a number of cycles

after the runahead-causing L2 cache miss is serviced. This could increase the performance

benefit of runahead execution if it results in the discovery of additional L2 cache misses

and if the performance benefit of prefetching those misses outweighs the performance loss

due to delaying normal-mode progress in the running application. On the other hand, if

no L2 misses are discovered in the additional cycles devoted to runahead execution, this

alternate approach would cause performance degradation. In this case, the processor could
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have executed useful instructions in normal mode and made forward progress instead of

wasting cycles in runahead mode without gaining any benefit. In our evaluations, we found

that some benchmarks (with high levels of memory-level parallelism) benefit from staying

in runahead mode even hundreds of additional cycles after the runahead-causing L2 cache

miss is serviced. In contrast, many benchmarks’ performance degraded if runahead exit was

delayed. Therefore, the baseline runahead execution mechanism does not delay runahead

exit after the runahead-causing L2 cache miss is serviced.

A more aggressive implementation of runahead execution can predict whether the

benefits of continuing in runahead mode outweigh the benefits of exiting runahead mode

early or when the runahead-causing miss is serviced. Using this prediction, such an im-

plementation can dynamically decide exactly when to exit runahead mode. This disser-

tation investigates such mechanisms to improve the efficiency of runahead execution in

Section 5.5.3.

2.5.5.2 Processor Actions for Runahead Mode Exit

For simplicity, we handle the exit from runahead mode similarly to the way a branch

misprediction is handled. The processor takes the following actions to exit runahead mode:

• All instructions in the machine are flushed and the buffers are allocated for them are

deallocated.

• The checkpointed architectural registers are restored. The hardware required for

restoring the checkpointed architectural registers depends on the checkpointing mech-

anism used. Since we use a mechanism that only checkpoints the Backend RAT (as

described in Section 2.5.3.3), the restoration of the checkpoint can be accomplished

by simply copying the contents of the checkpointed Backend RAT into the Frontend

RAT.
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• The checkpointed branch history register and return address stack are restored.

• The runahead cache is flushed. All lines in the runahead cache are invalidated and

the STO bits in the lines are reset. Note that it is not necessary to flush the runahead

cache for correct operation in runahead mode because instructions in normal mode

do not access the runahead cache. However, runahead cache is flushed so that load

operations in a later runahead mode do not read the stale values produced by stores

from a previous runahead mode.

• The program counter is set to the address of the instruction that caused runahead

mode.

• The mode of the processor is switched to normal mode. After switching to nor-

mal mode the processor starts fetching instructions starting with the instruction that

caused entry into runahead mode.

2.5.5.3 Hardware Requirements for Runahead Mode Exit

The hardware needed for flushing the processor pipeline and restoring the check-

pointed state is the same as the hardware needed for recovering from a branch mispredic-

tion. Therefore, branch misprediction recovery hardware can be used for runahead mode

exit without increasing processor complexity.

In addition, hardware support for flushing the runahead cache is required. This can

be done using gang-invalidation (or flash invalidation), which clears the whole cache using

circuit techniques and is already implemented in processors that support the flushing of the

translation lookaside buffers (TLBs).

43



2.5.6 Multiprocessor Issues

Implementation of runahead execution in a processor does not introduce any com-

plications in the design of a multiprocessor system that consists of runahead execution

processors. This is because the results produced during runahead mode in one processor

are not visible to any other processor or device in the system; they are purely speculative.

As described before, L2 miss requests to main memory generated in runahead

mode are treated as prefetch requests. Multiprocessor systems already support specula-

tive prefetch requests and prefetch requests generated in runahead mode are handled the

same way as a conventional prefetch request. In a multiprocessor system, if the data re-

quested by the prefetch resides in the L2 cache of another processor, it is transferred from

that processor to the requesting processor. This causes the prefetched cache line to tran-

sition to “shared” state in the coherence mechanism because the same cache line would

reside in multiple different L2 caches. Aside from this, runahead mode execution in one

processor does not cause any side effects in the L2 caches of other processors.

2.5.6.1 Lock Operations

Programmers can use special lock operations (e.g. the LOCK prefix in the x86

ISA [52] or the CASA (compare and swap) instruction in the SPARC ISA [106]) to atom-

ically acquire, test, or modify a lock variable in shared memory, which is used to ensure

that critical sections are not executed concurrently by different threads in multithreaded

programs. A runahead execution processor does not need to obey the atomicity semantics

of lock operations in runahead mode because purely-speculative runahead mode execution

cannot modify any critical shared data. A runahead execution processor treats the lock

operations differently from a conventional processor in the following cases:

• If a lock operation is encountered in runahead mode, it is simply treated as a normal
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instruction that does not require atomic updates to the memory location that stores

the lock variable. For example, the LOCK INC [edx] instruction in the x86 ISA

which is supposed to atomically increment the memory location pointed to by the

edx register is simply treated as INC [edx] in runahead mode. Since runahead

mode cannot make any changes to the lock variable or to the critical data protected by

the lock variable, there is no need to obey the atomicity dictated by lock operations.

This could enable faster progress in runahead mode without incurring the latency

associated with lock operations.

• If a lock operation incurs an L2 cache miss in normal mode, it causes entry into

runahead mode similar to a load instruction. The runahead-causing lock operation

is then treated as a normal instruction that does not have lock semantics. Hence,

runahead mode can be initiated without acquiring the lock and the processor can

enter a critical section. This allows the processor to speculatively prefetch the data

required by the critical section.

2.5.6.2 Serializing Instructions

Programmers can use special serializing instructions to guarantee that memory op-

erations occur in the intended order in a multiprocessor system. Two examples are the

MFENCE (memory fence) instruction in the x86 ISA [52] and the MB (memory barrier)

instruction in the Alpha ISA [101]. These operations make sure that all the previous mem-

ory access operations in the program running on the processor are globally visible to other

processors before any of the following memory access operations are globally visible to

other processors. Hence, serializing instructions enforce an order between the memory

operations before them and the memory operations after them. Most modern processors

handle these instructions by draining the pipeline before a serializing instruction is exe-

cuted [23], which requires all the previous instructions to be committed to the architectural
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state. This causes a performance loss.

As runahead mode is purely speculative, it does not need to obey the serializa-

tion constraints imposed by such instructions. Therefore a runahead processor treats the

serializing instructions differently from a conventional processor in runahead mode. If a

serializing instruction is encountered in runahead mode, it is simply treated as a normal

instruction that does not enforce serialization. For example, the MFENCE instruction is

treated as a NOP. This ensures fast forward progress in runahead mode by eliminating

the pipeline drain due to such instructions. Also, it allows the processor to speculatively

execute load and store instructions after the serializing instruction and service the misses

generated by them in parallel with other misses generated by instructions before the serial-

izing instruction.

This dissertation evaluates runahead execution and proposes mechanisms to en-

hance its efficiency and effectiveness on a uniprocessor. Due to the purely speculative

nature of runahead mode execution, the proposed mechanisms are directly applicable to

multiprocessor systems that consist of runahead execution processors without any modifi-

cations. However, a rigorous performance evaluation of runahead execution on multipro-

cessor systems is out of the scope of this dissertation and is left for future work.
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Chapter 3

Background and Related Work

Memory access is a very important long-latency operation that has concerned re-

searchers for a long time. This section classifies the relevant approaches into six categories

(caching, prefetching, out-of-order processing, enhanced in-order processing, multithread-

ing, and parallelizing dependent load instructions) and briefly describes the proposed ap-

proaches in relation to runahead execution and the techniques proposed in this dissertation.

We also provide an overview of the recent related work in runahead execution.

3.1 Related Research in Caching

Caches [121] tolerate memory latency by exploiting the temporal and spatial refer-

ence locality of applications. Kroft [62] improved the latency tolerance of caches by allow-

ing them to handle multiple outstanding misses and to service cache hits in the presence

of pending misses. Caches are very effective and are widely used in modern processors.

However, their effectiveness is limited due to two main reasons. First, some applications

exhibit poor temporal and spatial locality. Second, cache miss penalties are prohibitively

large, so even with a very low but non-zero cache miss rate, the effective memory hierarchy

access time remains high. To reduce the cache miss rates, researchers developed software,

hardware, and thread-based prefetching techniques.

This dissertation evaluates runahead execution on a baseline processor with large

caches. We show that runahead execution is an effective means of improving processor
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performance in the presence of large L2 caches (Section 4.1.3.6).

3.2 Related Research in Prefetching
3.2.1 Software Prefetching

Software prefetching techniques [60, 16, 74, 68] are effective for applications where

the compiler can statically predict which memory references will cause cache misses. For

many integer applications this is not a trivial task. These techniques also insert prefetch

instructions into applications, increasing instruction bandwidth requirements. In contrast to

these techniques, runahead execution does not require the modification of existing binaries

and can prefetch memory reference patterns that cannot be predicted at compile time.

3.2.2 Hardware Prefetching

Hardware prefetching techniques [41, 56, 5, 55, 29] use dynamic information to

predict what and when to prefetch. They do not require any instruction bandwidth. Dif-

ferent prefetch algorithms cover different types of access patterns. These techniques work

well if the reference stream of the running application is regular. Streaming and striding

prefetchers [56, 88] that are designed to capture regular patterns are already employed in

processors [48, 113]. The design of hardware prefetchers that can capture both irregular and

regular reference streams is still an open research topic. Hardware prefetching techniques

also degrade performance due to cache pollution and unnecessary bandwidth consumption,

if the accuracy of the hardware prefetcher is low.

Runahead execution, on the other hand, can capture both regular and irregular mem-

ory access patterns because it relies on the execution of instructions rather than the discov-

ery of regular memory access patterns. This dissertation evaluates runahead execution on a

baseline processor that employs aggressive stream-based prefetching. A detailed compar-
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ison of runahead execution and stream-based prefetching is provided in Sections 4.1.3.1,

4.1.3.2, and 4.2.5.1. The results show that runahead execution is more effective than and

complementary to stream-based hardware prefetching.

3.2.3 Thread-based Prefetching

Thread-based prefetching techniques [27, 67, 132, 96] use idle thread contexts on

a multithreaded processor to run threads that help the primary thread [20]. These helper

threads execute code that prefetches for the primary thread. The advantage of these tech-

niques is they can prefetch irregular memory reference patterns. The main disadvantages of

these techniques are: (1) they require the generation of helper threads, (2) they require idle

thread contexts and spare resources (e. g., fetch and execution bandwidth), which are not

available when the processor is well used. These techniques also require hardware support

for executing multiple threads simultaneously. In contrast to these techniques, runahead

execution neither requires a separate active thread context nor contends with the main pro-

gram thread for resources, but it can still prefetch irregular memory access patterns.

3.3 Related Research in Out-of-order Processing

Out-of-order execution [116] has long been used to tolerate the latency of mem-

ory accesses. Precise exception support was first incorporated into out-of-order execution

by Patt et al. [90]. The latency tolerance provided by an out-of-order processor that sup-

ports precise exceptions is limited by the instruction window size. Although out-of-order

execution has been widely employed to achieve high performance, the instruction win-

dow of an out-of-order processor needs to be very large to tolerate current main memory

latencies, as shown in the previous section. Therefore, recent related research in out-of-

order execution focused on two major efforts: (1) More efficiently utilizing resources in

out-of-order processors by augmenting small instruction windows and (2) building large
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instruction windows to enhance out-of-order execution’s capability to tolerate long main

memory latencies.

3.3.1 Efficient Utilization of Small Instruction Windows

Several recent papers [73, 69, 30] proposed more efficient use of the resources in

out-of-order processors so that small instruction windows do not stall as frequently as they

do. These proposals allow the instructions to release the load buffer [69], store buffer [69],

and physical register file [73] entries before the instructions are retired, under certain con-

ditions. An orthogonal scheme that delays the allocation of physical registers until they

are needed was also proposed [44]. With these schemes, instructions do not unnecessarily

occupy resources that may be needed by other instructions in the instruction window. How-

ever, these mechanisms do not allow the instruction window (reorder buffer) entries to be

released, which reduces their memory latency tolerance. The evaluations of out-of-order

processors presented in this dissertation incorporate in the baseline processor the maximum

possible benefits that could be gained by these previous proposals. Section 4.2.5.3 shows

that runahead execution provides significant benefits on a small instruction window that

already utilizes its resources efficiently.

Balasubramonian et al. [6] proposed a mechanism to execute future instructions

when a long-latency instruction blocks retirement in an out-of-order processor. Their

mechanism dynamically allocates a portion of the register file to a future thread, which

is launched when the primary thread stalls. This mechanism requires partial hardware sup-

port for two different thread contexts. Unfortunately, when the resources are partitioned be-

tween the two threads, neither thread can make use of the machine’s full resources, which

decreases the future thread’s benefit and increases the primary thread’s stalls. Also, this

mechanism adds significant complexity to the register file and scheduler entries, requir-

ing counters that need to be incremented every cycle, and adds complex control structures
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to manage communication between the future thread and the primary thread. In contrast,

runahead execution does not require a separate active thread context and it does not sig-

nificantly increase processor complexity. In addition, both normal and runahead mode can

make use of the machine’s full resources, which helps the machine to get further ahead

during runahead mode.

Pai and Adve [86] proposed a compiler technique that increases the memory latency

tolerance of a small instruction window. In their mechanism, the compiler restructures the

code such that long-latency misses occur in clusters so that they can be captured by a

small instruction window that exists in current processors. Unfortunately, their proposed

algorithm is effective only for benchmarks where the memory reference pattern is regular

and predictable at compilation time. Pai and Adve’s mechanism can also be used to increase

the effectiveness of runahead execution. If the code is structured such that more long-

latency cache misses are clustered in a program, a runahead processor can discover more

long-latency misses during runahead mode.

3.3.2 Building Large Instruction Windows

3.3.2.1 The Problem

There has been significant amount of research in techniques to implement large in-

struction windows in recent years. Implementing a large instruction window is a difficult

problem because the size of several processor structures need to be increased proportionally

with the instruction window size in order to accommodate a larger number of instructions.

This results in increases in the energy/power consumption, design and verification com-

plexity, area, and access time of some structures that are on the critical path, which may

also result in the increase of the processor’s cycle time or pipeline depth. The following

structures need to be enlarged in order to build a large instruction window:
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• Reorder buffer: This buffer keeps ordering, control, and other bookkeeping infor-

mation about all the instructions in the window. The sizes of the reorder buffer and

structures used to store bookkeeping information about in-flight instructions need to

be scaled with the instruction window size. This increases the hardware cost and

power consumption of these structures. However, as reorder buffer is not on the crit-

ical path of normal execution, the design complexity is not significantly increased.

• Physical register file: In-flight instructions need to store their results in registers.

The physical register file is a multi-ported structure that stores the values written by

in-flight instructions so that dependent instructions can access those values. As the

window size gets larger, the size of the register file also needs to get larger. This

increases the area, power consumption, access time, and design complexity of the

register file significantly. Furthermore, increasing the access time of the register file

may result in performance loss because the register file is on the critical path of

execution.

• Store buffer (store queue): This structure keeps the ordered list of store instructions

in the window. Each entry in the store buffer stores the address and the data of the

corresponding store instruction. It is used for memory disambiguation (to determine

whether a load instruction can be scheduled for execution by comparing the address

of the load instruction to the addresses of the older store instructions) and data for-

warding (to supply the data of a store instruction to a dependent load instruction). To

determine whether a load instruction is dependent on an older store, the store buffer

needs to be associatively searched using the load instruction’s address. Such an as-

sociative search requires the store buffer to be implemented as content-addressable

memory (CAM) and is therefore very expensive in terms of hardware cost, complex-

ity, power consumption, and access time. As the size of the store buffer is increased,

the number of entries participating in the expensive associative search also increases.
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Furthermore, the size of the storage required for the data values of stores also needs

to increase.

• Load buffer (load queue): This structure keeps the ordered list of load instructions

in the window. It is used to guarantee the correct ordering of memory references in

both uniprocessors and multiprocessors. Modern processors speculatively schedule

and execute load instructions before making sure that there is no older store instruc-

tion (either from the same thread of execution or from a separate processor) that

writes to the same address. The purpose of the load buffer is to check the correct-

ness of this speculative execution. When a store instruction’s address is generated,

the load buffer is associatively searched using the store address to determine if any

younger load that accesses the same address was speculatively issued. Therefore, the

load buffer is also implemented as a CAM structure. Increasing its size significantly

increases the hardware cost and power consumption.

• Scheduling window (issue queues or reservation stations): As described in Sec-

tion 2.2.1, this structure is used to determine whether an instruction is ready for

execution. It is associatively searched every cycle. As the window size increases,

the scheduler size also needs to increase to accommodate more instructions. Increas-

ing the size of the scheduler is not an easy task because the complexity and power

consumption of the scheduler increases quadratically with the window size [87].

3.3.2.2 The Proposed Solutions

Recent proposals focused on enlarging the size of the described buffers without

having to increase the cycle time of the processor. Many of these proposals employ hierar-

chical buffers in which one level is small and fast, and the next level is large and slow.

53



Building Large Reorder Buffers

Akkary et al. [3] and Cristal et al. [33, 31] proposed using checkpointing [50] to

build large reorder buffers. These proposals replace the conventional reorder buffer with

a checkpoint-based structure that retires checkpoints (rather than instructions) in program

order. Compared to the previous proposal for checkpointing [50], these proposals take

checkpoints infrequently at either low-confidence branches [3] or at long-latency loads and

periodically every so many instructions [31] in order to reduce the hardware cost associated

with checkpoints. Although these proposals can increase the size of the reorder buffer, they

do not address the increases in design and verification complexity and power consumption

associated with supporting a large number of in-flight instructions.

The advantage of these approaches is that they allow information to be kept on a

per-checkpoint basis instead of per-instruction basis, which reduces the bookkeeping in-

formation tracked by the processor. Also, a physical register allocated to an architectural

register that is overwritten within the same checkpoint can be deallocated early if all in-

structions that need the value have already sourced the register (similarly to the previously

proposed early register release mechanism [73]). However, this introduces extra control

complexity because the processor needs to always correctly track the number of readers of

each physical register even in the presence of branch mispredictions and exceptions.

The checkpoint-based retirement approach also has several performance-related

disadvantages. First, if any of the instructions associated with a checkpoint causes an

exception or a branch misprediction, the processor recovers to the beginning of the check-

point and executes instructions one by one in order to recover to a precise architectural

state. This results in a performance loss if checkpoints are taken infrequently. Second,

the physical registers cannot be freed on a per-instruction basis. Rather, in order to free

a physical register, the checkpoint that overwrites the architectural register that maps to

the physical register needs to be committed. This increases the lifetime of physical reg-
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isters and results in a performance degradation over a processor that performs instruction

retirement and physical register deallocation on a per-instruction basis [31].

Building Large Register Files

Cruz et al. [34] proposed using a two-level register file [112] to keep the access time

of the register file small while providing storage for a large number of registers. A small

register file cache is used at the first level to provide fast access to recently-used registers.

The second level consists of a large and slow backup register file that is accessed when

there is a miss in the register file cache. Register file caches were previously proposed for

in-order processors that support a large number of architectural registers [128].

The disadvantage of a two-level register file is the performance degradation incurred

on a register file cache miss. Cruz et al. [34] showed that this approach degrades IPC by

10% on SPEC CPU95 integer benchmarks compared to a large monolithic register file.

Furthermore, already-scheduled instructions dependent on a result that misses in the reg-

ister file cache need to be re-scheduled, which increases the complexity of the scheduling

window. Extra complexity is also introduced to manage the two levels of the register file.

Research on designing two-level register files is ongoing with a focus on improved and less

complex management of the two levels [7, 13, 14].

Building Large Load/Store Buffers

The design of large and scalable load/store buffers has recently received consider-

able attention from researchers. Akkary et al. [3] proposed a two-level store buffer orga-

nization to allow a large number of in-flight store instructions without degrading the cycle

time. Two-level store buffers are conceptually similar to the two-level register files. The

first level is a small and fast CAM structure that holds the youngest few store instructions

in the window. The slow and large second-level CAM structure holds the remaining store

instructions. The disadvantage of this mechanism is the extra latency incurred to access
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the second level when a load requires the data of a store that resides in the second level.

Moreover, the scheme introduces extra complexity in the design of the store buffer be-

cause control mechanisms need to be provided to manage the two levels in the store buffer

hierarchy.

Sethumadhavan et al. [98] proposed using a Bloom filter to reduce the associative

searches in the load/store buffers. This reduces the power consumption of the load/store

buffers, but does not reduce the size and the complexity of the store buffer. Sethumadhavan

et al. also showed that it is possible to eliminate the load buffer using a conservative Bloom

Filter. However, this design causes a significant performance loss (34% on an aggressive

microarchitecture) even though it simplifies the design. Similarly, Cain and Lipasti [15]

proposed eliminating the load buffer. Their scheme re-executes every load instruction prior

to retirement in program order to ensure correct ordering between memory operations. If it

is determined that the load instruction got the wrong data in its speculative execution, the

instructions dependent on the load are re-executed. Even though this scheme eliminates the

load buffer, it causes every load instruction to be executed at least twice, which significantly

increases energy consumption and possibly degrades performance.

Sha et al. [99] recently proposed a promising approach to reduce the complexity

of the store buffer. Their mechanism eliminates the associative search of the store buffer.

When a load is fetched, it accesses a memory dependence predictor [72, 25] to predict

whether or not it is dependent on a store. The memory dependence predictor supplies the

index of the store buffer entry the load is predicted dependent on. This index is later used

by the load instruction to access the store buffer, which is organized as a RAM structure.

Load instructions are re-executed before they are retired to verify the prediction made by

the memory dependence predictor. The disadvantage of this scheme is that it causes the

re-execution of load instructions, which increases energy consumption and contention for

the data cache ports.
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Building Large Scheduling Windows

Lebeck et al. [63] proposed a scheduler design that requires only a small number of

entries to be associatively searched every cycle for ready instructions. All instructions are

initially inserted into this small scheduler when they are issued. If a load instruction incurs

a long-latency cache miss, it and the instructions that depend on it are removed from the

scheduler and inserted into a large waiting instruction buffer (WIB). This creates space in

the small scheduler for other instructions independent of the long-latency miss and allows

them to be scheduled in the presence of long-latency cache misses. Hence, long-latency

cache misses cannot block the scheduling window. When the long-latency load instruction

is serviced, it and its dependent instructions are re-inserted into the scheduling window so

that they are scheduled and executed. This approach, which is conceptually similar to the

replay scheduling implemented in the Pentium 4 [12], allows the performance of a large

scheduler without enlarging the CAM-based scheduling window. However, to be effective

it requires a large instruction window with its associated cost (large register files, load/store

buffers, and reorder buffer) since instructions that stay in the WIB still need to hold on to

their entries in the physical register files, load/store buffers, and reorder buffer.

Srinivasan et al. [109] improved the WIB design by deallocating the registers allo-

cated to instructions that are moved to the WIB (called Slice Data Buffer (SDB) in [109])

from the scheduler. When the long-latency cache miss is serviced, new registers are allo-

cated to the instructions in the SDB. Later, the instructions are re-inserted into the sched-

uler. With this scheme, L2-miss dependent instructions do not occupy scheduler or register

file entries while the L2 miss they are dependent on is in progress. However, the L2-miss

dependent instructions still occupy entries in the SDB and the load/store buffers. More-

over, structures needed to deallocate and re-allocate registers, as well as structures needed

to guarantee deadlock-free forward progress introduce additional control complexity into

the processor pipeline.
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3.3.2.3 Putting It All Together

Two recent papers [109, 32] proposed using large instruction windows by com-

bining the previously-proposed mechanisms for building large processor buffers. These

proposals combine mechanisms for building large processor buffers (described in Sec-

tion 3.3.2.2) and mechanisms for efficiently utilizing those buffers (described in Section 3.3.1)

to support a large number of in-flight instructions.

Even though the idea of building a large instruction window is promising and tech-

niques to build large processor buffers are worthy of research, previous research that com-

bined these mechanisms has not shown that implementing an instruction window that sup-

ports a large number of instructions is possible without unreasonably increasing the design

complexity, the verification complexity, and both the static and dynamic energy consump-

tion of current processors.1 The proposed solutions still require very large buffers, albeit

perhaps less complex than conventional ones, in the processor core. They also require

non-trivial control logic to manage the proposed hierarchical structures, which increases

the design and verification complexity of the processor. Therefore, it is not clear that en-

larging the instruction window to accommodate a large number of instructions is easy to

accomplish even when the previously described mechanisms are used.

Finally, the proposed mechanisms for building large processor buffers invariably re-

sult in an IPC performance loss compared to an idealized large instruction window which

has large, monolithic structures. For example, Cristal et al. [31] showed that combining the

proposed mechanisms for building a large reorder buffer using checkpointing and a large

scheduling window using a scheme similar to the WIB (while still having large, monolithic

1By “a large number of instructions,” we mean a number of instructions that is significantly larger than
what is supported by today’s aggressive out-of-order processors. Today’s processors support between 100-
128 in-flight instructions (e.g., Intel Pentium 4 [48] supports 126 and IBM POWER4 [113] supports 100).
By this definition, we consider a window that can hold at least 200 instructions a large window.
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structures for the register files and load/store buffers) results in an IPC loss of 10% com-

pared to a 4096-entry instruction window with a monolithic 4096-entry reorder buffer and

a monolithic 4096-entry scheduler.2

Large Instruction Windows vs. Runahead Execution

This dissertation proposes a cost- and complexity-effective alternative to large in-

struction windows. The purpose of our research is to design a simple mechanism that can

provide the latency tolerance provided by a large instruction window without having to

design and implement structures that support a large number of in-flight instructions. In

contrast to the proposals surveyed in the previous section, the runahead execution imple-

mentation described in Section 2.5 adds very little hardware cost and complexity to an

existing out-of-order execution processor.

A detailed performance comparison between large instruction windows and runa-

head execution is presented in Sections 4.1.3.3 and 4.2.5.3. The performance of runa-

head execution is compared to that of large instruction windows for both an x86 processor

modeled after the Intel Pentium 4 and a near-future processor model implementing the

Alpha ISA. The evaluations of large instruction windows do not assume a particular im-

plementation. Rather, they model monolithic register files, load/store buffers, scheduling

window, and reorder buffer, all of which are the same size as the evaluated instruction win-

dow. Therefore, the performance loss due to a particular proposed implementation of these

buffers is not factored in our experiments, which biases the performance results in favor of

the large window processors. Even so, the results presented in this dissertation show that

a runahead execution processor with a 128-entry instruction window can achieve the same

performance as a conventional out-of-order processor with a 384-entry instruction window

2Their experiments assumed a memory latency of 1000 cycles. For a comparison of the performance of
runahead execution and large instruction windows at a 1000-cycle memory latency, see Section 4.2.5.3.
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when the memory latency is 500 cycles. When the memory latency is increased to an ex-

pected near-future latency of 1000 cycles, a runahead processor with a 128-entry window

can achieve the same performance as a conventional processor with a 1024-entry window.

3.4 Related Research in Enhanced In-order Processing

In-order execution is unable to tolerate the latency of cache misses. To increase the

memory latency tolerance of in-order execution, two schemes have been proposed.

Runahead processing [36] was first proposed and evaluated as a method to improve

the data cache performance of a five-stage pipelined in-order execution machine. It was

shown to be effective at tolerating long-latency data cache and instruction cache misses

on an in-order processor that does not employ any hardware prefetching techniques [36,

37]. Unfortunately, runahead processing on an in-order execution machine suffers from the

major disadvantage of in-order execution: the inability to tolerate the latency of multi-cycle

operations, such as first-level cache misses and floating point operations. For this reason,

the performance of an in-order runahead processor is significantly worse than an out-of-

order processor especially when the performance of a program is execution-bound rather

than memory bound, as we show in Section 4.2.5.4. In our research, we aim to improve

the performance of the higher-performance out-of-order processors, which are the state-of-

the-art in high-performance computing. We provide a detailed performance comparison of

runahead execution on in-order and out-of-order processors in Sections 4.1.3.8 and 4.2.5.4.

Barnes et al. [9] proposed two-pass pipelining to reduce the stalls caused by data

cache misses in an in-order processor. In their proposal, the execution pipeline of an in-

order processor is replicated. Instructions that miss in the data cache do not stall the first

pipeline. Instead, they and their dependents are deferred to the second pipeline. While

instructions dependent on cache misses are executed in the second pipeline, independent
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instructions can continue to be executed in the first pipeline. This design increases the tol-

erance of an in-order processor to cache misses. There are three disadvantages of two-pass

pipelining. First, it requires a replicated back-end execution pipeline and auxiliary struc-

tures, which increases the complexity of the processor. Second, the performance of this

design is limited because there is no way to avoid stalls in the second pipeline even if the

instructions that are being processed in the second pipeline are independent of each other.

Hence, an out-of-order processor would have higher performance than two-pass in-order

execution. Third, the tolerance of the two-pass design to long main memory latencies is

limited by the size of structures that are on the critical path. To tolerate long main memory

latencies, the complexity of the two-pass pipeline would need to increase significantly.

Barnes et al. [10] recently proposed an improvement over their two-pass pipelin-

ing scheme, called multipass pipelining. This scheme eliminates the replication of the

back-end execution pipeline and allows an in-order processor to make multiple passes of

execution over instructions following a data cache miss. The number of instructions that

are processed in the shadow of a data cache miss is limited by the size of a structure called

Instruction Queue. Therefore, the latency that can be tolerated by a multipass processor is

limited by the Instruction Queue size.3 Barnes et al. showed that, on binaries aggressively

optimized for an in-order processor and with a relatively short 145-cycle memory latency,

an in-order processor augmented with multipass pipelining can achieve 77% of the perfor-

mance benefit of out-of-order execution relative to in-order execution. However, they did

not show performance comparisons to an out-of-order processor incorporating runahead

execution. Our evaluations in Section 4.2.5.4 show that an out-of-order processor with

runahead execution significantly outperforms both a conventional out-of-order processor

3Note that it is possible to combine runahead execution and multipass pipelining to increase the latency
tolerance of the multipass pipelining scheme. When the Instruction Queue is full, the processor can enter
runahead mode until the long-latency cache miss is serviced. This removes the size of the Instruction Queue
from being a performance bottleneck in the presence of a long-latency cache miss.
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and an in-order processor with runahead execution.

3.5 Related Research in Multithreading

Multithreading has been used to tolerate long main memory latencies. A multi-

threaded machine [114, 102, 89, 85, 49, 118] has the ability to process instructions from

several different threads without performing context switches. The processor maintains

a list of active threads and decides which thread’s instructions to issue into the machine.

When one thread is stalled waiting for a cache miss to be serviced, instructions from non-

stalled threads can be issued and executed. This improves the overall throughput of the

processor.

Multithreading has been shown to improve the overall performance of the proces-

sor. However, the performance of each individual thread is not improved by multithreading.

In fact, it is likely that the performance of each thread is degraded since resources must be

shared between all active threads. Hence, multithreading can tolerate main memory laten-

cies when running a multiprogrammed or multithreaded workload, but provides no benefit

on a single-threaded application. The goal of this dissertation is to improve the memory

latency tolerance of single-threaded applications or each individual thread in multithreaded

applications.

Hardware schemes to parallelize single-threaded applications have been proposed.

In multiscalar processors [39], a program’s instruction stream is divided into tasks that

are executed concurrently on several processing units. Processing units are organized as

a ring and values are communicated between different tasks using the ring interconnect.

Multiscalar processors can tolerate a long-latency cache miss in one task by executing

independent operations in other tasks. Unfortunately, multiscalar processors require signif-

icant hardware complexity to communicate register and memory values between different
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tasks. Also, how to break a single sequential instruction stream into parallel tasks is a hard

problem for many applications.

Dynamic multithreading [2] was also proposed to parallelize a single-threaded ap-

plication at run time. A dynamic multithreading processor creates threads automatically at

procedure and loop boundaries and executes them speculatively on a simultaneous multi-

threading pipeline. For example, when the processor reaches a call instruction, it spawns

a speculative thread that is executed on a separate hardware thread context, starting with

the next sequential instruction after the call. The non-speculative parent thread executes

the function call whereas the spawned speculative thread does not. A cache miss encoun-

tered in the non-speculative thread can be tolerated by executing independent instructions

in speculative threads. Dynamic multithreading, however, comes at a significant hard-

ware cost which includes a simultaneous multithreading pipeline, support for spawning

speculative threads, support for communicating data values between speculative and non-

speculative threads, and support for detecting value mispredictions in speculative threads.

3.6 Related Research in Parallelizing Dependent Cache Misses

Chapter 6 of this dissertation proposes a new mechanism, called address-value delta

(AVD) prediction, to parallelize dependent cache misses during runahead execution by pre-

dicting the values produced by pointer load instructions. Several previous papers focused

on predicting the addresses generated by pointer loads for value prediction or prefetching

purposes. Most of the previously proposed mechanisms require significant storage cost and

hardware complexity. The major contribution of AVD prediction is a simple and efficient

low-cost mechanism that allows the prediction of the values loaded by a subset of pointer

loads by exploiting stable address-value relationships. This section briefly discusses the

related research in value prediction and prefetching for pointer loads.

63



3.6.1 Related Research in Load Value/Address Prediction

The most relevant work to AVD prediction is in the area of predicting the desti-

nation register values of load instructions. Load value prediction [66] was proposed to

predict the destination register values of loads. Many types of load value predictors were

examined, including last value [66], stride [38, 97], FCM (finite context method) [97], and

hybrid [120] predictors. While a value predictor recognizes stable/predictable values, an

AVD predictor recognizes stable arithmetic differences (deltas) between the effective ad-

dress and data value of a load instruction. This dissertation evaluates the performance of

AVD prediction in comparison to a state-of-the-art stride value predictor in Section 6.6.6.

The analyses provided in that section and Section 6.3 show that AVD prediction provides

significant performance improvements over stride value prediction.

Load address predictors [38, 11] predict the effective address of a load instruction

early in the pipeline. The value at the predicted address can be loaded to the destination

register of the load before the load is ready to be executed. Memory latency can be partially

hidden for the load and its dependent instructions.

Complex (e.g., stride or context-based) value/address predictors need significant

hardware storage to generate predictions and significant hardware complexity for state re-

covery. Moreover, the update latency (i.e., the latency between making the prediction and

determining whether or not the prediction was correct) associated with stride and context-

based value/address predictors significantly detracts from the performance benefits of these

predictors over simple last value prediction [92, 64]. Good discussions of the hardware

complexity required for complex address/value prediction can be found in [11] and [92].

Pointer caches [26] were proposed to predict the values of pointer loads. A pointer

cache caches the values stored in memory locations accessed by pointer load instructions.

It is accessed with a load’s effective address in parallel with the data cache. A pointer cache

hit provides the predicted value for the load instruction. To improve performance, a pointer
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cache requires significant hardware storage (at least 32K entries where each entry is 36

bits [26]) because the pointer data sets of the programs are usually large. In contrast to

the pointer cache, an AVD predictor stores information based on pointer load instructions.

Since the pointer load instruction working set of a program is usually much smaller than

the pointer data working set, the AVD predictor requires much less hardware cost. Also, an

AVD predictor does not affect the complexity in critical portions of the processor because it

is small and does not need to be accessed in parallel with the data cache, as we will explain

in Section 6.4.

Zhou and Conte [130] proposed the use of value prediction only for prefetching

purposes in an out-of-order processor such that no recovery is performed in the processor

on a value misprediction. They evaluated their proposal using a 4K-entry stride value

predictor that predicts the values produced by all load instructions. Similar to their work,

we employ the AVD prediction mechanism only for prefetching purposes, which eliminates

the need for processor state recovery. In contrast to their work, we propose a new prediction

mechanism that requires little hardware cost by predicting only the values generated by

loads that lead to the address generation of dependent loads rather than predicting the values

generated by all loads.

3.6.2 Related Research in Pointer Load Prefetching

In recent years, substantial research has been performed in prefetching the addresses

generated by pointer load instructions. AVD prediction differs from pointer load prefetch-

ing in that it is more than just a prefetching mechanism. As we will show in Section 6.6.7,

AVD prediction can be used for simple prefetching. However, AVD prediction is more

beneficial when it is used as a targeted value prediction technique for pointer loads that

enables the pre-execution of dependent load instructions, which may generate prefetches.

Hardware-based pointer prefetchers [21, 55, 94, 95, 26] try to dynamically cap-
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ture the prefetch addresses generated by loads that traverse linked data structures. These

approaches usually require significant hardware cost to store a history (trace)of pointers.

For example, hardware-based jump pointer prefetching requires jump pointer storage that

has more than 16K entries (64KB) [95]. Compared to hardware-based pointer prefetch-

ers, AVD prediction has much less hardware overhead and complexity. A low-overhead

content-based hardware pointer prefetcher was proposed by Cooksey et al. [29]. It can

be combined with AVD prediction to further reduce the negative performance impact of

dependent L2 cache misses.

Software and combined software/hardware methods have also been proposed for

prefetching loads that access linked data structures [65, 68, 95, 125, 105, 22, 123, 1]. Of

these techniques, the one most relevant to AVD prediction is MS Delta [1], which is a purely

software-based prefetching technique. MS Delta uses the garbage collector in a run-time

managed Java system to detect regular distances between objects in linked data structures

whose traversals result in significant number of cache misses. A just-in-time compiler in-

serts prefetch instructions into the program using the identified regular distances in order

to prefetch linked objects in such traversals. Such software-based prefetching techniques

require non-trivial support from the compiler, the programmer, or a dynamic optimization

and compilation framework. Existing binaries cannot utilize software-based techniques un-

less they are re-compiled or re-optimized using a dynamic optimization framework. AVD

prediction, on the contrary, is a purely hardware-based mechanism that does not require any

software support and thus it can improve the performance of existing binaries. However,

as we will show in Section 6.7.2, AVD prediction can provide larger performance improve-

ments if software is written or optimized to increase the occurrence of stable AVDs.
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3.7 Recent Related Research in Runahead Execution

After the publication of our initial papers on runahead execution [83, 84], there has

been a vibrant interest in the computer architecture community on techniques building on

runahead execution. This section briefly discusses such related research.

Chou et al. [23] evaluated runahead execution on large commercial database ap-

plications on an out-of-order execution processor implementing the SPARC ISA. They

showed that runahead execution significantly improves memory-level parallelism [42] and

performance on such applications because it eliminates the instruction and scheduling win-

dows, as well as serializing instructions, from being performance bottlenecks in the pres-

ence of long memory latencies. Chou et al. [24] also recently showed that runahead exe-

cution can significantly improve the memory-level parallelism of store operations in com-

mercial database applications.

Iacobovici et al. [51] evaluated the interaction of runahead execution with different

stream-based prefetching techniques. They showed that runahead execution and stream-

based prefetching techniques interact positively when used together. Recently, Ganusov

and Burtscher [40] also showed that runahead execution interacts positively with both

stream-based prefetchers and an execution-based prefetching scheme they developed.

Three recent papers [23, 59, 17] combined runahead execution with value predic-

tion. Kirman et al. [59] and Ceze et al. [17] proposed a mechanism in which L2-miss load

instructions are value-predicted in runahead mode. If the predictions for those instructions

are correct the processor does not need to re-execute the instructions executed in runahead

mode when it returns to normal mode. While this approach requires more hardware than

the baseline runahead execution mechanism, it may improve performance on benchmarks

where the values of L2-miss loads are predictable. This dissertation evaluates the value

prediction of L2-miss instructions in Section 5.5.2.
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Zhou [129] proposed dual-core execution, in which one processor performs runa-

head execution for another in a dual-core chip multiprocessor with an L2 cache shared

by the cores. In Zhou’s proposal, two cores in a chip multiprocessor are connected using

a FIFO queue that transmits instructions from the front processor to the back processor.

The front processor is a purely speculative processor that enters runahead mode on an L2

cache miss and speculatively prefetches data into the shared L2 cache. The back proces-

sor is a conventional out-of-order processor that processes instructions it reads from the

FIFO queue and stalls when it encounters an L2 miss. The advantage of this mechanism

is that the front processor can continuously stay ahead of the back processor (similar to

slipstream processors [111]) and provide prefetching benefits to the back processor, which

is responsible for updating the architectural state of the program. This can result in more

effective prefetching than what can be accomplished with using runahead execution on a

single processing core during the cycles spent waiting for L2 misses. The disadvantage

is that the proposed mechanism requires an extra processor that speculatively executes all

instructions in the program. Hence, the hardware cost and the energy consumption of the

dual-core execution mechanism can be high.
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Chapter 4

Performance Evaluation of Runahead Execution

This chapter evaluates the performance of the runahead execution processor de-

scribed in Chapter 2. The performance of runahead execution is evaluated on processors

implementing two different instruction set architectures (ISAs), the x86 ISA [52] and the

Alpha ISA [101]. Section 4.1 presents the evaluation methodology and results for the x86

ISA and Section 4.2 presents the evaluation methodology and results for the Alpha ISA.

4.1 Evaluation of Runahead Execution on an x86 ISA Processor

The evaluation of runahead execution on the x86 ISA is performed using a detailed

cycle-accurate microarchitecture simulator and a wide variety of memory-intensive bench-

marks provided by Intel.

4.1.1 Simulation Methodology and Benchmarks

We used a simulator that was built on top of a micro-operation (uop) level x86 ar-

chitectural simulator that executes Long Instruction Traces (LIT). A LIT is not a trace in

the conventional sense of the term, but a checkpoint of the processor state, including mem-

ory, that can be used to initialize an execution-driven performance simulator. A LIT also

includes a list of LIT injections, which are system interrupts needed to simulate events like

DMA. Since the LIT includes the entire snapshot of memory, the simulator can simulate

both user and kernel instructions, as well as wrong-path instructions.
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Table 4.1 shows the benchmark suites used for evaluation. These benchmark suites

are selected from a set of 280 LITs that were carefully chosen for the design and evaluation

of the Intel Pentium 4 processor [48, 12]. We evaluated the performance of runahead exe-

cution on LITs that gain at least 10% IPC improvement with a perfect L2 cache compared

to our baseline model. In all, there are 80 benchmarks, comprising 147 LITs. Each LIT

is 30 million x86 instructions long and it is carefully selected to be representative of the

overall benchmark. Unless otherwise stated, all average IPC performance values (in retired

uops per cycle) reported in this section are harmonic averages over all 147 LITs.

Number of Number ofSuite
Benchmarks Traces

Benchmarks

SPEC CPU95 (S95) 10 10 vortex + all SPEC CPU95 FP except fppp [110]
wupwise, swim, mgrid, applu, galgel, equake,SPECfp2K (FP00) 11 18

facerec, ammp, lucas, apsi [110]
vpr, gcc, mcf, parser, vortex, twolf benchmarksSPECint2K (INT00) 6 9

from SPEC CPU2000 integer suite [110]
specjbb [110], webmark2001 [8],Internet (WEB) 18 32
volanomark [119], flash animation

MPEG encoder/decoder, speech recognition,Multimedia (MM) 9 16
quake game, 3D visualization

sysmark2k [8], winstone [131],Productivity (PROD) 17 31
Microsoft Office applications (word, excel, ppt)

Server (SERV) 2 17 TPC-C [117], timesten [115]
computer-aided design applications (e.g., nastran),Workstation (WS) 7 14

functional and gate-level Verilog simulation

Table 4.1: Simulated benchmark suites for the x86 processor.

4.1.2 Baseline Microarchitecture Model

The performance simulator is an execution-driven cycle-accurate simulator that

models a superscalar out-of-order execution microarchitecture similar to that of the In-

tel Pentium 4 microprocessor. An overview of the baseline machine is provided in Sec-

tion 2.5.1. More details on the baseline Pentium 4 microarchitecture can be found in Hinton
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et al. [48] and Boggs et al. [12].

We evaluate runahead execution for two baselines. The first is a 3-wide machine

with microarchitecture parameters similar to the Pentium 4, which we call the current base-

line. The second is a more aggressive 6-wide machine with a pipeline twice as deep and

buffers four times as large as those of the current baseline, which we call the future base-

line. Figure 4.1 shows the minimum branch misprediction pipeline of the current baseline.

Table 4.2 provides the machine parameters for both baselines.

Stage Cycles Summary
Fetch 5 generate next PC, access trace cache, read decoded uops

Allocate 3 allocate resources (window, load/store buffer, register file entries) for uops
Rename 5 compute source and destination register tags

Steer 2 steer instructions to clusters and insert them into respective queues
Drive 1 issue instructions into the scheduler

Schedule 3 find and select ready instructions for execution
Dispatch 1 send scheduled instructions to register file and functional units
RF Read 5 read the physical register file to fetch source operands
Execute 1 execute instructions in functional units

Br Check 1 compare branch results to predictions
Recover 2 send misprediction signal and re-direct the fetch engine

Total 29

Figure 4.1: Minimum branch recovery pipeline of the current baseline.

The baseline machine models include a detailed model of the memory subsystem

that faithfully models buses and bus contention. Bandwidth, port contention, bank con-

flicts, and queuing effects are faithfully modeled at all levels in the memory hierarchy.

Both baselines include an aggressive stream-based hardware prefetcher, which is described

in [48] and [53]. Unless otherwise noted, all performance results using the x86 processor

are relative to a baseline using this prefetcher, which will be referred to as HWP. In addi-

tion, the baseline models include a hardware instruction prefetcher that prefetches the next

two cache lines when an instruction fetch request misses in the L2 cache.
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PARAMETER CURRENT FUTURE

Processor frequency 4 GHz 8 GHz
Fetch/Issue/Retire width 3 6
Branch misprediction penalty 29 stages 58 stages
Instruction window size 128 512
Scheduling window size 16 int, 8 mem, 24 fp 64 int, 32 mem, 96 fp
Load and store buffer sizes 48 load, 32 store 192 load, 128 store
Physical register file size 136 int, 136 fp 136 int, 136 fp
Functional units 3 int, 2 mem, 1 fp 6 int, 4 mem, 2 fp

1K-entry, 32-bit history 3K-entry, 32-bit historyConditional branch predictor
perceptron predictor [54] perceptron predictor

1K-entry, tagged 1K-entry taggedIndirect branch predictor
last-target predictor last-target predictor

Hardware data prefetcher Stream-based (16 streams) Stream-based (16 streams)
HWP prefetch distance 16 cache lines ahead 32 cache lines ahead
Instruction prefetcher next-two-lines prefetch next-two-lines prefetch
Trace cache 12k uops, 8-way 64k uops, 8-way
Memory disambiguation Perfect Perfect

Memory Subsystem
L1 Data Cache 32 KB, 8-way, 64-byte line size 64 KB, 8-way, 64-byte line size
L1 Data Cache Hit Latency 3 cycles 6 cycles
L1 Data Cache Bandwidth 512 GB/s, 2 load/store accesses/cycle 4 TB/s, 4 load/store accesses/cycle
Max In-flight L1 Misses 64 256
L2 Unified Cache 512 KB, 8-way, 64-byte line size 1 MB, 8-way, 64-byte line size
L2 Unified Cache Hit Latency 16 cycles 32 cycles
L2 Unified Cache Bandwidth 128 GB/s, 1 access/cycle 256 GB/s, 1 access/cycle
Max In-flight L2 Misses 32 128
Main Memory Latency 495 processor cycles 1008 processor cycles
Bus Bandwidth 4.25 GB/s 8.5 GB/s
Max Pending Bus Transactions 10 20

Table 4.2: Processor parameters for current and future baselines.
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4.1.3 Performance Results on the x86 Processor

4.1.3.1 Runahead Execution vs. Hardware Data Prefetcher

We first evaluate how runahead execution performs compared to the stream-based

hardware prefetcher. Figure 4.2 shows the IPC of four different machine models. For each

suite, bars from left to right correspond to:

1. A model with no prefetcher and no runahead (current baseline without the prefetcher),

2. A model with stream-based prefetcher, but without runahead (current baseline)

3. A model with runahead but no prefetcher,

4. A model with stream-based prefetcher and runahead (current baseline with runa-

head).

Percentage numbers on top of the bars is the IPC improvement of runahead execu-

tion (model 4) over the current baseline (model 2).

The model with only runahead outperforms the model with only HWP for all bench-

mark suites except for SPEC95. This means that runahead is a more effective prefetching

scheme than the stream-based hardware prefetcher for most of the benchmarks. Overall,

the model with only runahead (IPC:0.58) outperforms the model with no HWP or runahead

(IPC:0.40) by 45%. It also outperforms the model with only the HWP (IPC:0.52) by 12%.

But, the model that gets the best performance is the one that leverages both the hardware

prefetcher and runahead (IPC:0.64). This model has 58% higher IPC than the model with

no HWP or no runahead. It has 22% higher IPC than the current baseline. This IPC im-

provement over the current baseline ranges from 52% for the Workstation suite to 12% for

the SPEC95 suite.
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Figure 4.2: Runahead execution performance on the current baseline. Percentage numbers
show the performance improvement of model (4) over model (2).

These results show that runahead execution provides significant benefits over an

aggressive stream-based prefetcher. Furthermore, runahead execution and the HWP inter-

act positively. One advantage of runahead execution is that it can capture irregular cache

miss patterns with no predictable stride as well as predictable striding patterns. There-

fore, runahead execution provides higher performance improvements than the HWP for

all benchmark suites except SPEC95. The SPEC95 suite consists mainly of floating-point

benchmarks whose access patterns are predominantly striding. The specialized stream-

based prefetcher is therefore more efficient and effective at capturing those patterns than

runahead execution.
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4.1.3.2 Interaction Between Runahead Execution and the Hardware Data Prefetcher

It is worthwhile to examine the interaction between runahead execution and the

hardware data prefetcher. If runahead execution is implemented on a machine with a hard-

ware prefetcher, the prefetcher tables can be trained and new prefetch streams can be cre-

ated while the processor is in runahead mode. Thus, runahead memory access instructions

not only can generate prefetches for the data they need, but also can trigger hardware data

prefetches. These triggered hardware data prefetches, if useful, would likely be initiated

much earlier than they would be on a machine without runahead execution. We found that if

the prefetcher is accurate, using runahead execution on a machine with a prefetcher usually

performs best. However, if the prefetcher is inaccurate, it may degrade the performance of

a processor implementing runahead execution.

Prefetches generated by runahead instructions are inherently quite accurate because

these instructions are likely on the program path. There are no traces whose performance

is degraded due to the use of runahead execution. The IPC improvement of runahead

execution ranges from 2% to 401% over a baseline that does not have a prefetcher for all

traces simulated. This range is from 0% to 158% over a baseline with the stream-based

prefetcher.

This section examines the behavior of some applications that demonstrate different

patterns of interaction between runahead execution and the hardware data prefetcher. Fig-

ure 4.3 shows the IPCs of a selection of SPECfp2k and SPECint2k benchmarks on four

models. The number on top of each benchmark denotes the percentage IPC improvement

of model 4 over model 2. For gcc, mcf, vortex, mgrid, and swim, both runahead execution

and the hardware prefetcher alone improve the IPC. When both are combined, the perfor-

mance of these benchmarks is better than their performance if runahead execution or the

hardware prefetcher is used alone. Especially in mgrid, the hardware prefetcher generates

very accurate prefetches during runahead mode. Therefore, the IPC of mgrid on a machine
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with runahead execution and prefetcher (IPC:1.28) is 13% better than it is on a model with

just runahead (IPC:1.13).

gcc mcf vortex twolf mgrid galgel ammp apsi swim
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Figure 4.3: Hardware prefetcher-runahead execution interaction. Percentage numbers show the
performance improvement of model (4) over model (2).

Sometimes, having a prefetcher on a machine that implements runahead execution

degrades performance. Galgel, twolf, and ammp are examples of this case. For galgel,

although the hardware prefetcher is accurate, it degrades performance on a machine with

runahead execution because the extra traffic generated by the prefetcher causes contention

for L2 cache and bus bandwidth. For twolf, the hardware prefetcher causes bandwidth

contention by sending useless prefetches. For ammp, the hardware prefetcher sends out

quite inaccurate prefetches, which causes the IPC of a machine with runahead and the

streaming prefetcher to be 12% less than that of a machine with runahead and no prefetcher.

The performance of a runahead execution processor can be improved by optimizing

the interaction between runahead execution and the HWP in order to reduce the perfor-

mance loss in cases described above. We examine such optimizations in Section 5.3.3.
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4.1.3.3 Runahead Execution vs. Large Instruction Windows

This section shows that, with the prefetching benefit of runahead execution, a pro-

cessor can attain the performance of a machine with a larger instruction window without

requiring the large, slow, and power-hungry buffers that are needed to implement a large-

window processor.

Figure 4.4 shows the IPCs of six different processors for each benchmark suite.

From left to right, the first bar shows the IPC of the baseline processor. The next bar shows

the IPC of the baseline with runahead execution. The other four bars show the IPC’s of

processors without runahead and instead with 256, 384, 512, and 1024-entry instruction

windows, respectively. The sizes of all other processor buffers (register files, load/store

queues, scheduling window) of these evaluated large-window machines are scaled pro-

portionally to the increase in the instruction window size to support the larger number of

in-flight instructions. The percentages on top of the bars show the IPC improvement of

runahead execution over the machine with 256-entry window.

On average, runahead execution on the 128-entry window baseline has an IPC 3%

greater than a model with a 256-entry window. Also, it has an IPC within 1% of that of a

machine with a 384-entry window. That is, runahead execution on a 128-entry window pro-

cessor attains almost the same IPC as a processor with three times the instruction window

size. For two suites, SPECint2k and Workstation, runahead on current baseline performs

1-2% better than the model with the 1024-entry window because the performance of these

suites is limited mainly by L2 cache misses.

For SPEC95, runahead execution on the 128-entry window has 6% lower IPC than

the machine with the 256-entry window. This is because the SPEC95 suite mostly contains

floating-point benchmarks that execute long-latency FP operations. A 256-entry window

can tolerate the latency of those operations better than a 128-entry one. Runahead execu-

tion, with its current implementation, does not offer any solution to tolerating the latency
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Figure 4.4: Performance of runahead execution versus processors with larger instruction
windows. Percentage numbers show the performance improvement of the model with runahead execution
and 128-entry window over the model with 256-entry window.

of such operations. Note that the behavior of SPECfp2k suite is different. For SPECfp2k,

runahead performs 2% better than the model with 256-entry window because traces for this

suite are more memory-limited than FP-operation limited.

Note that the probable increase in the cycle time and the almost inevitable increase

in pipeline depth due to increased instruction window size are not accounted for in the per-

formance results presented in this section. If these increases are taken into account the per-

formance of processors with larger instruction windows would be lower. Furthermore, the

processor buffers whose sizes are scaled with a larger window are kept as monolithic struc-

tures in our performance model. Implementing large cycle-critical monolithic structures

in a real processor is likely not feasible due to cycle-time constraints. If these structures

(especially the register files and load/store buffers) were implemented as hierarchical two-

level structures (as suggested by previous researchers [34, 3]), the performance of larger
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instruction windows would be lower. For these reasons, the performance results presented

in this section favor large instruction windows.

Qualitative Comparison of Runahead Execution and Large Instruction Windows

The instruction processing model of a runahead execution processor differs from

that of a processor with a fixed-size, large instruction window in three major aspects:

1. A runahead processor provides the prefetching benefits of a large instruction win-

dow only when an L2 cache miss is in progress. If no L2 cache miss is in progress,

a runahead processor is the same as a processor with a small instruction window.

In contrast, a large-window processor can provide latency tolerance for relatively

shorter-latency operations than L2 misses. For example, increasing the size of the

instruction window by implementing larger processor buffers increases a processor’s

latency tolerance to floating-point operations and L1 cache misses that hit in the L2

cache. However, if we instead implemented runahead execution, the latency toler-

ance to such operations would not increase. The effects of this can be seen in Fig-

ure 4.4 by examining the performance of SPEC95 and Productivity suites. For these

two suites, increasing the window size to 256 performs better than adding runahead

execution to a processor with a 128-entry window. In SPEC95 and Productivity

suites, a larger window increases the latency tolerance to respectively floating-point

operations and L1 misses that hit in the L2 cache, whereas runahead execution does

not.

2. The number of instructions that are speculatively executed in runahead mode is not

limited by the fixed instruction window size in a runahead processor. In contrast, the

number of instructions that are executed in a processor with a large window while

an L2 cache miss is in progress is limited by the fixed instruction window size. In

the presence of long memory latencies, an unrealistically large instruction window
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is needed so that the large-window processor does not stall. Therefore, a runahead

execution processor can provide better latency tolerance to long L2-miss latencies

than a large-window processor by providing the ability to look farther ahead in the

program to discover later L2 cache misses. Our analysis shows that this effect is

salient in SPECint2k and Workstation suites shown in Figure 4.4. For these two

suites, runahead execution on a 128-entry window provides higher performance than

a processor with a 1024-entry window because runahead mode can execute more

than 1024 instructions under an L2 cache miss and thus can generate more L2 cache

misses than what is possible with the fixed-size 1024-entry instruction window.

3. A runahead processor requires a pipeline flush at the end of runahead mode. After the

pipeline flush, the runahead processor re-executes some of the instructions executed

in runahead mode. No such flush or re-execution happens in a processor with a large

instruction window. As discussed in Section 2.5.5.1, this flush does not necessarily

result in a performance disadvantage for the runahead processor.

In terms of hardware cost and complexity, a large-window processor has signif-

icantly higher hardware cost than a runahead execution processor with a small window.

Runahead execution does not add large structures in the processor core, nor does it in-

crease the size of the structures that are on the critical path of execution. In contrast, a

large-window processor requires the size of the cycle-critical structures to be increased

proportionally to the instruction window size.

Table 4.3 shows that a runahead execution processor with a 128-entry instruction

window can provide 92.5% of the IPC performance of a processor with a 1024-entry win-

dow and 85.7% of the performance of a processor with a 4096-entry window. However, the

hardware required to add runahead execution to a 128-entry window is very small as de-

scribed in Section 2.5. In contrast, a 1024-entry window requires eight times the load/store
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256-entry 384-entry 512-entry 1024-entry 2048-entry 4096-entry infinite-entry
window window window window window window window
107.1% 98.9% 94.8% 92.5% 88.9% 85.7% 77.8%

Table 4.3: Percentage of the performance of a larger-window processor that is achieved
by a runahead execution processor with a 128-entry instruction window. Data shown is an
average over all evaluated benchmarks.

buffer entries, physical registers, and the entries in bookkeeping structures for in-flight in-

structions that exist in a 128-entry window. As such, runahead execution provides a cost-

and complexity-effective alternative that approximates the performance of a large instruc-

tion window with a very small increase in hardware cost and complexity.

4.1.3.4 Effect of a Better Frontend

There are two reasons why a more aggressive and effective frontend would increase

the performance benefit of runahead execution:

1. A better instruction supply increases the number of instructions executed during

runahead mode, which increases the likelihood of the discovery of additional L2

cache misses.

2. A better branch prediction mechanism decreases the likelihood of an INV branch

being mispredicted during runahead mode. Therefore, it increases the likelihood of

the discovery of correct-path L2 cache misses. In effect, it moves the divergence

point later in time during runahead.

If an unresolvable mispredicted INV branch is encountered during runahead mode,

it does not necessarily mean that the processor cannot generate useful prefetches that are on

the program path. The processor can reach a control-flow independent point, after which
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it continues on the correct program path again. Although this may be the case, our experi-

mental data shows that it is usually better to eliminate the divergence points. Averaged over

all traces, the number of runahead instructions pseudo-retired before the divergence point

is 431 per runahead mode entry, and the number of runahead instructions pseudo-retired

after the divergence point is 280. The number of useful L2 miss requests generated before

the divergence point is 2.38 per runahead mode entry, whereas this number is 0.22 after the

divergence point. Hence, far fewer useful memory-to-L2 prefetches are generated after the

divergence point than before.

Figure 4.5 shows the performance of runahead execution as the frontend of the

machine becomes more ideal. Models with perfect trace cache model a machine that never

misses in the trace cache and whose trace cache supplies the maximum instruction fetch

bandwidth possible. In this model, the traces are formed using a real branch predictor.
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Figure 4.5: Performance of runahead execution as the frontend of the machine is idealized.
Percentage numbers show the performance improvement of model (6) over model (5).
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As the frontend of the machine becomes more ideal, the performance improvement

of runahead execution increases. For all suites except for SPECint2k, IPC improvement

between bars 5 and 6 (as shown in percentages above the bars) is larger than the IPC

improvement between bars 1 and 2. As mentioned before, runahead execution improves

the IPC of current baseline by 22%. Runahead on the current baseline with perfect trace

cache and a real branch predictor improves the IPC of that machine by 27%. Runahead

on the current baseline with perfect trace cache and perfect branch prediction improves the

performance of that machine by 31%. On a machine with perfect branch prediction and

a perfect trace cache, the number of pseudo-retired instructions per runahead mode entry

goes up to 909 and the number of useful L2 misses discovered per runahead mode entry

increases to 3.18.

These results are promising because they show that there is significant potential

for performance improvement in a runahead execution processor. As computer architects

continue to improve branch prediction and instruction fetch units, the performance im-

provement provided by runahead execution will increase.

4.1.3.5 Effect of Store-Load Communication in Runahead Mode

This section evaluates the importance of handling store-to-load data communica-

tion during runahead execution. We evaluate the performance difference between a model

that uses a 512-byte, 4-way runahead cache with 8-byte lines versus a model that does not

perform memory data forwarding between pseudo-retired runahead stores and their depen-

dent loads (but still does perform data forwarding through the store buffer). In the latter

model, instructions dependent on pseudo-retired stores are marked INV. For this model,

we also assume that communication of INV bits through memory is handled correctly us-

ing oracle information without any hardware and performance cost, which gives an unfair

advantage to that model. Even with this advantage, a machine that does not perform data
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communication between pseudo-retired stores and dependent loads during runahead mode

loses much of the performance benefit of runahead execution.
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Figure 4.6: Performance of runahead execution with and without the runahead cache.

Figure 4.6 shows the results. In all suites but SPECfp2k, inhibiting store-load data

communication through memory significantly decreases the performance gain of runahead

execution. The overall performance improvement of runahead without using the runahead

cache is 11% versus 22% with the runahead cache. For all suites except SPECfp2k and

Workstation, the IPC improvement for the model without the runahead cache remains well

under 10%. The improvement ranges from 4% for SPEC95 to 31% for SPECfp2k. The

runahead cache used in this study correctly handles 99.88% of communication between

pseudo-retired stores and their dependent loads. We found that the runahead cache size can

be further decreased to 128 bytes without significantly losing the performance improve-

ment provided by a 512-byte runahead cache. A 128-byte, 4-way runahead cache correctly
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handles 91.25% of communication between pseudo-retired stores and their dependent loads

but still enables a performance improvement of 21.5% over the current baseline. Table 4.4

shows the sensitivity of the performance improvement of runahead execution to the runa-

head cache size.

no runahead cache 16 bytes 64 bytes 128-bytes 256 bytes 512 bytes 1 KB
11.4% 13.2% 17.4% 21.5% 21.8% 22.1% 22.1%

Table 4.4: Performance improvement of runahead execution with different runahead cache
sizes. Data shown is an average over all evaluated benchmarks.

4.1.3.6 Sensitivity of Runahead Execution Performance to the L2 Cache Size

L2 cache sizes are increasing as microprocessor designers push for higher perfor-

mance. This section evaluates runahead execution on processors with larger caches. The

results show that runahead execution continues to be effective with larger L2 caches.

We examine the IPC improvement of implementing runahead execution on our

baseline processor for three different cache sizes: 512 KB, 1 MB, and 4 MB. L2 cache

latency was kept the same in all these experiments. Figure 4.7 shows the performance im-

provement of adding runahead execution on top of each of these L2 cache sizes. The three

percentage numbers on top of each suite show respectively the IPC improvement of adding

runahead to the baseline processor with 512 KB, 1 MB, and 4 MB L2 cache. This figure

shows that implementing runahead execution improves the IPC by 17% and 16% respec-

tively on processors with 1 MB and 4 MB L2 caches. Thus, runahead execution remains

effective for large L2 caches.

In general, increasing the L2 cache size decreases the benefit gained from runahead

execution, as expected, because increasing the L2 cache size reduces the number of L2

misses, which reduces both the number of times the processor enters runahead mode and
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Figure 4.7: IPC improvement of runahead execution for 512 KB, 1 MB, and 4 MB L2
cache sizes. Percentage numbers show the performance improvement due to runahead execution when
implemented on a machine with the respective cache size.

the number of L2 misses it generates during runahead mode. The SPECint2k benchmark

suite is an interesting exception to this trend. Runahead execution becomes more effective

for this suite as the L2 cache size increases. The reason is that a larger L2 cache is more tol-

erant to the pollution caused by runahead execution due to inaccurate prefetches generated

in runahead mode. As the L2 cache size increases, the pollution caused by these inaccurate

prefetches is reduced and the performance improvement of runahead execution increases.

Note that the IPC of the processor with 512 KB L2 cache and runahead execu-

tion (IPC:0.64) is higher than the IPC of the processor with 1 MB L2 cache (IPC:0.59).

This suggests that runahead execution may also be used as an area-efficient alternative to

larger caches, if there is enough memory bandwidth available (Note that our simulations

realistically model limited bandwidth availability.)
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4.1.3.7 Analysis of the Benefits of Runahead Execution

The benefits of runahead execution can be divided into two: performance improve-

ment due to instruction prefetching and performance improvement due to data prefetching.

Instruction prefetching improvement comes from prefetching runahead instructions into

the L2 cache and the trace (or instruction) cache and training the conditional and indi-

rect branch predictors during runahead mode. Data prefetching improvement comes from

prefetching runahead load/store requests into the L2 cache and the L1 data cache and train-

ing the hardware data prefetcher buffers during runahead mode. Middle bars in Figure 4.8

show the IPC of runahead execution when the instruction prefetching benefits are removed.

Percentage numbers on top of the bars show the percentage of IPC improvement that is

due to data prefetching. On average, 88% of the IPC improvement of runahead execution

comes from data prefetching. All benchmark suites, except for the Server suite, owe most

of the performance improvement to data prefetching. Because the evaluated server applica-

tions are branch intensive and have large instruction footprints leading to high cache miss

rates as shown in [70], almost half of the benefit of runahead execution for the Server suite

comes from instruction prefetching.

Runahead execution improves performance because the processing during runahead

mode fully or partially eliminates the cache misses incurred during normal mode. On

average, our baseline processor incurs 13.7 L1 data cache misses and 4.3 L2 data misses

per 1000 instructions. If we add runahead execution to the baseline, the L1 data cache miss

rate during normal mode is reduced by 18%. With runahead, 15% of the L2 data misses

of the baseline processor are never seen during normal mode. Another 18% of the L2 data

misses seen in the baseline processor are initiated during runahead mode, but are not fully

complete by the time they are needed by instructions in normal mode. Therefore, they are

partially covered by runahead execution. We found that the performance improvement of

runahead execution correlates well with the reduction in L2 data misses, indicating that the
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Figure 4.8: Data vs. instruction prefetching benefits of runahead execution. Percentage
numbers show the fraction of the performance improvement due to only data prefetching.

main benefit of runahead execution comes from prefetching data from main memory to the

L2 cache.

Overall, the L2 data miss coverage (full and partial) of runahead execution is 33%.

The L2 data prefetch accuracy of runahead execution is 94% on average. This shows that

runahead execution is a very accurate data prefetching technique, as one would expect,

because it follows the path that would actually be followed by the instruction stream in

the future. The L2 instruction miss coverage of runahead execution is 14% and the L2

instruction prefetch accuracy is 98%. It is important to keep in mind that these coverage and

accuracy numbers are obtained on a baseline that already employs an aggressive stream-

based data prefetcher and a next-line instruction prefetcher that prefetches the next two

cache lines when an instruction fetch request misses in the L2 cache.
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4.1.3.8 Runahead Execution on In-order vs. Out-of-order Processors

An in-order processor is less tolerant to latency compared to an out-of-order pro-

cessor. Therefore, the performance impact of long-latency operations is worse on in-order

processors. This section compares the performance benefit of runahead execution on an

in-order processor with its performance benefit on an out-of-order processor. The in-order

processor we simulate has the same pipeline depth, issue width, cache sizes, latencies, re-

order buffer size, and supporting structures (e.g., hardware prefetchers) as the out-of-order

current baseline, except that it schedules instructions in program order. It also makes use of

register renaming to avoid stalling on write-after-write and write-after-read dependencies.

Runahead execution is initiated on an L1 data cache miss in the in-order processor because

in-order execution is unable to tolerate the latency of L1 cache misses.

Figure 4.9 shows the IPC of four machines from left to right for each suite: in-

order execution, in-order execution with runahead, out-of-order execution, out-of-order

execution with runahead. The two percentage numbers on top of the bars for each suite

indicate the IPC improvement of adding runahead execution to the in-order baseline and

the out-of-order baseline, respectively. On average, implementing runahead execution on

the in-order baseline improves the IPC of that processor by 40%. This IPC improvement

is much greater than the 22% IPC improvement obtained by implementing runahead on

the out-of-order baseline, confirming the intuition that runahead execution would be more

useful on a less latency-tolerant processor. It is also important to note that a significant

IPC difference exists between the in-order baseline and the out-of-order baseline (86% on

average). This difference is still significant, albeit smaller, between the in-order baseline

with runahead and the out-of-order baseline with runahead (62% on average).
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Figure 4.9: IPC improvement of runahead execution on in-order and out-of-order pro-
cessors. Percentage numbers show the performance improvement of runahead execution respectively on
in-order and out-of-order machines.

4.1.3.9 Runahead Execution on the Future Model

This section briefly evaluates the performance of runahead execution on a future

x86 processor model that is more aggressive than the current baseline. A more thorough

evaluation of runahead execution on aggressive future processors is provided in the rest of

this dissertation using the Alpha ISA processors.

Figure 4.10 shows the IPC of the future baseline machine, future baseline with

runahead execution, and future baseline with perfect L2 cache. The number on top of

each suite is the percentage improvement due to adding runahead execution over to the

future baseline. Due to their long simulation times, benchmarks art and mcf were excluded

from evaluation of the future model. Runahead execution improves the performance of the

future baseline by 23%, increasing the average IPC from 0.62 to 0.77. This data shows that
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runahead execution is effective on a wider, deeper, and larger machine.
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Figure 4.10: Runahead execution performance on the future baseline. Percentage numbers
show the performance improvement of runahead execution on the future baseline.

The importance of a better frontend in a runahead execution processor becomes

much more pronounced on a larger machine model, as shown in Figure 4.11. The number

on top of each suite is the percentage IPC improvement due to runahead execution. The

average IPC of the future baseline with a perfect instruction supply is 0.90 whereas the

IPC of the future baseline with a perfect instruction supply and runahead execution is 1.38,

which is 53% higher. Contrasting this number to the 31% IPC improvement provided by

runahead execution on the current baseline with a perfect frontend, we can conclude that

a better frontend is even more essential for runahead performance on the future processor.

This is because branch mispredictions and fetch breaks, which adversely affect the number

of useful instructions the processor can execute in runahead mode, are costlier on a wider,

deeper, and larger machine.

91



S95 FP00 INT00 WEB MM PROD SERV WS AVG
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Future baseline with perfect TC/BP
Future baseline with perfect TC/BP and Runahead
Future baseline with perfect TC/BP and Perfect L2

29%

68%

38%
39%

67%
34%

50%

81%

53%

.

Figure 4.11: Effect of a perfect frontend on runahead execution performance on the fu-
ture model. Percentage numbers show the performance improvement of runahead execution on the future
baseline with perfect frontend.

4.2 Evaluation of Runahead Execution on an Alpha ISA Processor

The experimental evaluations presented in the remainder of this dissertation are

performed using a cycle-accurate microarchitecture simulator that models an aggressive

future processor implementing the Alpha ISA.

4.2.1 Simulation Methodology

The simulator used is an execution-driven simulator that is developed by the mem-

bers of the High Performance Substrate (HPS) Research Group [19]. The machine model

used for evaluation is based on the HPS research project [90, 91]. The evaluated baseline

processor is an aggressive processor that implements wide superscalar execution, out-of-
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order instruction scheduling and execution, aggressive branch prediction mechanisms, deep

execution pipelines, and aggressive data prefetching techniques.

The simulator used faithfully models the execution of an aggressive execution en-

gine that is expected to be in development within the next decade. We have carefully

calibrated the parameters of the processor and especially the model of the memory system.

An accurate model of the memory system is necessary in performing an accurate evalua-

tion of runahead execution because runahead execution aims to improve the performance

of the memory system. Furthermore, an accurate model of the processor is also necessary

because runahead execution relies on the execution of instructions in the processing core

to improve performance.

It is important to emphasize that the machine model evaluated is an aggressive

baseline for experimenting with runahead execution. Aggressive prefetching techniques

are used so that the benefits of runahead execution are not inflated. An aggressive and

idealized model is used for out-of-order execution so that the baseline processor gains the

maximum possible latency tolerance benefits from a given instruction window size. The

next section describes the baseline machine model.

4.2.2 Baseline Microarchitecture Model

Table 4.5 shows the configuration of the baseline Alpha ISA processor. The register

files, load/store buffer, and the scheduling window are the same size as the instruction

window so that they do not cause the baseline processor to stall. This extracts the maximum

possible latency-tolerance benefits from the baseline 128-entry instruction window. An

aggressive late physical register allocation scheme [44] and an early register deallocation

scheme [73] are also employed in the baseline processor.

The baseline processor handles stores instructions aggressively. A store instruction

that misses in the caches does not block instruction retirement. Instead, it is removed from
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Pipeline 24-stage pipeline, 20-cycle minimum branch misprediction penalty
64KB, 4-way instruction cache with 2-cycle latency; 8-wide decoder with 1-cycleFront End
latency; 8-wide renamer with 4-cycle latency
64K-entry gshare [71], 64K-entry PAs [127] hybrid with a 64K-entry selector;
4K-entry, 4-way branch target buffer; 64-entry return address stack;Branch Predictors
64K-entry target cache [18] for indirect branches; wrong-path execution faithfully
modeled (including misprediction recoveries on the wrong path)
128-entry reorder buffer; 160-entry INT, 160-entry FP physical register files with

Instruction Window 4-cycle latency; 128-entry scheduling window; 128-entry load/store buffer, a store
miss does not block the instruction window unless the store buffer is full
8 general-purpose functional units, fully-pipelined except for FP divide; full bypass
network; all operate instructions have 1-cycle latency except for integer multiplyExecution Core
(8-cycles), FP operations (each 4-cycle), and FP divide (16 cycles);
AGEN (address generation) latency is 1 cycle for ld/st instructions
64KB, 4-way L1 data cache with 8 banks and 2-cycle latency, allows 4 load and
1 store accesses per cycle; 1MB, 32-way, unified L2 cache with 8 banks and

On-chip Caches 10-cycle latency, maximum 128 outstanding L2 misses; 1 L2 read port,
1 L2 write port, 8 L2 banks; all caches use LRU replacement and have 64B lines;
all intermediate queues and traffic are modeled
500-cycle minimum main memory latency; 32 DRAM banks; 32B-wide,
split-transaction core-to-memory bus at 4:1 frequency ratio; maximum 128Buses and Memory
outstanding misses to main memory; bank conflicts, port conflicts,
bandwidth, and queueing delays are faithfully modeled
Stream-based prefetcher [113]; 32 stream buffers; can stay 64 cache lines ahead ofHardware Prefetcher
the processor reference stream

Runahead Support 128-byte runahead cache for store-load data forwarding during runahead mode

Table 4.5: Machine model for the baseline Alpha ISA processor.

the instruction window if it is the oldest instruction in the window and if it is guaranteed

that it will not cause an exception. The store remains in the store buffer until its miss is

serviced. Once its miss is serviced, the store instruction writes its data into the L1 data

cache and is removed from the store buffer. Note that younger instructions can be placed in

the instruction window and can be executed and retired while the retired store instruction’s

miss is being serviced. This allows the baseline processor to make forward progress in the

presence of an L2-miss store.

Current processors spend a significant portion of their execution time on the wrong
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program path and future processors are expected to spend even more. Execution on the

wrong path was found to significantly affect a processor’s memory-related performance [77].

The baseline processor models wrong-path execution faithfully. Branch misprediction re-

coveries that occur on the wrong path are correctly modeled and the effects of wrong-path

memory references are correctly simulated.

4.2.3 Baseline Memory Model

The modeled memory system is shown in Figure 4.12. At most, 128 I-Cache and D-

Cache requests may be outstanding. These requests may reside in any of the four buffers in

the memory system (L2 Request Queue, Bus Request Queue, Memory Controller, and L2

Fill Queue). Two of these queues, L2 Request Queue and Bus Request Queue are priority

queues where requests generated by older instructions have higher priority. Such priori-

tization is fairly easy to implement on-chip and reduces the probability of a full window

stall by servicing older instructions’ requests earlier. The bus is pipelined, split-transaction,

256-bit wide, and has a one-way latency of 50 processor cycles. At most two requests can

be scheduled onto the bus every bus cycle, one from the Bus Request Queue and one from

the Memory Controller. Processor frequency is four times the bus frequency. The Memory

Controller takes memory requests from the bus and schedules accesses to DRAM banks.

Requests to independent banks can be serviced in parallel. Requests to the same bank are

serialized and serviced in FIFO order. We model 32 DRAM banks, each with an access

latency of 400 processor cycles. Hence, the round-trip latency of an L2 miss request is

a minimum of 500 processor cycles (400-cycle memory access + 100-cycle round-trip on

the bus) without any queuing delays or bank conflicts. On an L2 cache miss, the requested

cache line is brought into both the L2 cache and the first-level cache that initiated the re-

quest. The L2 cache is inclusive of the L1 caches. A store instruction request that misses

the data cache or the L2 cache allocates a line in the respective cache. A store instruction
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initiates a fetch request for the cache line it needs once its effective address is available.

Therefore, store instructions can generate speculative memory requests like load instruc-

tions do. Write-back requests from D-Cache are inserted into the L2 Request Queue and

write-back requests from the L2 Cache are inserted into the Bus Request Queue as band-

width becomes available from instruction and data fetch requests.

The baseline processor employs an aggressive stream-based prefetcher, similar to

the one described by Tendler et al. [113], that can detect and generate prefetches for

32 different access streams. The prefetcher prefetches into the L2 cache. The memory

system gives priority to load and store instruction requests over prefetcher requests. A

prefetch stream is created on an L2 cache load or store miss. After a stream is created,

the prefetcher monitors L2 accesses to nearby addresses to determine the direction of the

access stream.1 Once the direction of the access stream is determined, the prefetcher starts

monitoring L2 accesses to addresses that are nearby (within 8 cache lines of) the address

that was last accessed on the stream. If nearby addresses are accessed, the prefetcher pre-

dicts that subsequent addresses on the access stream will also be accessed and generates

prefetch requests. For each address accessed on the stream, prefetch requests for two sub-

sequent addresses are generated. The prefetch requests are buffered in the Prefetch Request

Queue (see Figure 4.12). Requests from the Prefetch Request Queue are inserted into the

L2 Request Queue when enough bandwidth is available from I-Cache and D-Cache re-

quests. We model an aggressive prefetcher that can stay up to 64 cache lines ahead of the

processor’s access stream.

1The direction of the access stream is determined by monitoring whether consecutive accesses are made
to increasing or decreasing memory addresses.
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Figure 4.12: The memory system modeled for evaluation. Shaded structures belong to the
hardware data prefetcher.
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4.2.4 Benchmarks

Experiments were performed using the SPEC CPU2000 benchmark suite [110]. All

benchmarks were compiled for the Alpha EV6 ISA with the -fast optimizations and pro-

filing feedback enabled. Pointer-intensive Olden integer benchmarks were used to evaluate

the address-value delta prediction mechanism presented in Chapter 6. Olden benchmarks

were simulated for all other experiments, but these experiments are not included for brevity.

The simulation results of the Olden benchmarks support the conclusions drawn in the rest

of this dissertation.

The input sets used for the SPEC CPU2000 integer benchmarks were taken from

the MinneSPEC suite [61] to reduce the simulation times. Official reference input sets pro-

vided by SPEC were used to simulate the SPEC CPU2000 floating-point benchmarks. The

initialization portion was skipped for each floating-point benchmark and detailed simula-

tion was performed for the next 250 million instructions. The input sets used for the Olden

benchmarks are described in Section 6.5. Table 4.6 describes the benchmarks used in the

evaluations of runahead execution on the Alpha processor.
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Benchmark Suite Description
bzip2 SPEC INT data compression algorithm
crafty SPEC INT chess game
eon SPEC INT probabilistic ray tracer
gap SPEC INT mathematical group theory program
gcc SPEC INT C programming language optimizing compiler
gzip SPEC INT data compression algorithm
mcf SPEC INT combinatorial optimization for vehicle scheduling
parser SPEC INT syntactic text parser for English
perlbmk SPEC INT perl programming language interpreter
twolf SPEC INT place and route simulator
vortex SPEC INT object-oriented database transaction program
vpr SPEC INT circuit place and route program for FPGAs
ammp SPEC FP computational chemistry and molecular modeling
applu SPEC FP computational fluid dynamics and physics
apsi SPEC FP weather and pollutant prediction program
art SPEC FP object recognition in thermal images
equake SPEC FP simulation of seismic wave propagation
facerec SPEC FP face recognition
fma3d SPEC FP finite element method crash simulation
galgel SPEC FP computational fluid dynamics
lucas SPEC FP primality testing of Mersenne numbers
mesa SPEC FP 3-D graphics library
mgrid SPEC FP multi-grid solver in a 3-D potential field
sixtrack SPEC FP high energy nuclear physics accelerator design
swim SPEC FP shallow water modeling for weather prediction
wupwise SPEC FP quantum chromodynamics
bisort Olden bitonic sequence sorter
health Olden simulation of a health care system
mst Olden finds the minimum spanning tree of a graph
perimeter Olden computes perimeters of regions in images
treeadd Olden sums values distributed on a tree
tsp Olden traveling salesman problem
voronoi Olden computes voronoi diagram of a set of points

Table 4.6: Evaluated benchmarks for the Alpha processor.
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4.2.5 Performance Results on the Alpha Processor

The remainder of this chapter repeats and extends some of the evaluations per-

formed for the x86 processor and shows that runahead execution’s performance benefit on

the Alpha processor is similar to that on the x86 processor.

4.2.5.1 Runahead Execution vs. Hardware Data Prefetcher

Figure 4.13 shows the IPC performance of four different Alpha processor models

on the SPEC CPU2000 benchmarks: 1) a model with no prefetcher and no runahead (base-

line without the prefetcher), 2) a model with the stream-based hardware prefetcher but no

runahead (baseline), 3) a model with runahead but no prefetcher, and 4) a model with the

prefetcher and runahead (baseline with runahead).
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Figure 4.13: Runahead execution performance on the baseline Alpha processor.

Similarly to the results on the x86 processor, the model with only runahead outper-

100



forms the model with only the prefetcher for both integer and floating-point benchmarks.

Again similarly to the results on the x86 processor, adding runahead execution to the base-

line processor with the aggressive prefetcher improves the IPC by 22.6% on average. Ta-

ble 4.7 shows the percentage IPC improvement across different models averaged separately

over integer (INT) and floating-point (FP) benchmarks. These results support the following

conclusions about runahead execution:

• Runahead execution is a more effective prefetching mechanism than the stream prefetcher

especially on the INT benchmarks that have irregular memory access patterns.

• Runahead execution provides significant performance benefits over a baseline with

an aggressive prefetcher. Thus, the benefits of runahead execution and stream prefetch-

ing are complementary.2

• Runahead execution is more effective on FP benchmarks than on INT benchmarks

because FP benchmarks have a large amount of memory-level parallelism available

and INT benchmarks have relatively low branch prediction accuracy.

Comparison INT FP Average
IPC delta with only prefetcher (over no prefetcher) 8.8% 162.6% 90.5%
IPC delta with only runahead (over no prefetcher) 14.8% 172.3% 99.2%

IPC delta with runahead and prefetcher (over no prefetcher) 20.8% 254.6% 133.6%
IPC delta with perfect L2 cache (over no prefetcher) 50.7% 385.6% 204.7%

IPC delta of using runahead (over the baseline) 10.9% 35.0% 22.6%
IPC delta with perfect L2 cache (over the baseline) 38.6% 84.9% 59.9%

Table 4.7: IPC improvement comparisons across different prefetching models.

2The results presented in Table 4.7 also show that a baseline without a prefetcher performs very poorly
especially on FP benchmarks. The modeled prefetcher improves the average IPC of FP benchmarks by
162.6%. If we had not used this aggressive prefetcher in our baseline model, the average IPC improvement
of runahead execution would be 172.3% on FP benchmarks instead of the 35.0% on the baseline with the
prefetcher. Serious studies of large instruction windows and techniques to increase memory latency tolerance
must therefore include a state-of-the-art prefetcher. Otherwise, the results presented would be meaningless to
the designers of aggressive processors.
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4.2.5.2 Sensitivity of Runahead Execution Performance to Main Memory Latency

Runahead execution is a mechanism for tolerating long main memory latencies. As

the main memory latency increases, one would expect the performance benefit of runahead

execution to increase due to two reasons:

• With a longer memory latency, the performance loss due to main memory latency

becomes more significant and therefore tolerating the increased latency would result

in larger performance improvements.

• With a longer memory latency, the time a processor spends in runahead mode in-

creases. Hence, the processor can execute more instructions in runahead mode fur-

ther ahead in the instruction stream. This results in the discovery of L2 misses further

in the instruction stream, which could not have been discovered with a shorter mem-

ory latency.

Figure 4.14 shows the average IPC performance of processors with different min-

imum main memory latencies with and without runahead execution. The numbers on top

of each pair of bars shows the IPC improvement due to runahead execution for the cor-

responding memory latency. As expected, as memory latency increases, the IPC of the

baseline processor decreases. Also, the performance improvement due to runahead ex-

ecution increases. Runahead execution improves the IPC by 2.1% on a machine with a

relatively short, 100-cycle memory latency and by 37.7% on a machine with a long, 900-

cycle memory latency. The IPC performance of a runahead execution processor with 900-

cycle memory latency is 1% higher than that of a non-runahead processor with 500-cycle

memory latency. Thus, runahead execution can preserve the absolute performance of a

non-runahead processor with a short memory latency as the memory latency gets longer.

Figure 4.15 provides a closer look at the IPC improvement of runahead execution

with different memory latencies by examining each benchmark. For all benchmarks, in-
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Figure 4.14: Runahead execution performance on baselines with different minimum main
memory latency. Data is averaged over INT, FP, and all (AVG) benchmarks.

creased memory latency results in increased performance improvement due to runahead

execution. It is worthy to note that runahead execution slightly degrades the IPC for short

memory latencies in some benchmarks (notably parser). With a short memory latency

the processor does not execute enough instructions to discover a new L2 miss in runa-

head mode. The pipeline flush at the end of runahead mode results in performance loss

since runahead mode does not provide any benefits to outweigh the performance cost of

the flush. Even so, runahead execution provides a performance improvement on average,

albeit small, on a processor with 100-cycle memory latency.

We expect that runahead execution will become more effective in future proces-

sors. As processor and system designers continue to push for shorter cycle times and larger

memory modules, and memory designers continue to push for higher bandwidth and den-

sity, main memory latencies will continue to increase in terms of processor cycles. As main

memory latency increases, the performance of runahead execution would also increase, as

we have shown.
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Figure 4.15: IPC improvement due to runahead execution on baselines with different min-
imum main memory latency.

4.2.5.3 Runahead Execution vs. Large Instruction Windows

Figure 4.16 shows the IPC of processors with instruction window sizes ranging

from 64 to 8192, with and without runahead execution. The three graphs show the av-

erage IPC over INT, FP, and all (AVG) benchmarks. Runahead execution on a 128-entry

instruction window achieves 1% higher performance than the conventional processor with

384-entry window. Similarly, runahead execution on a 256-entry window achieves 1%

higher performance than the conventional processor with 512-entry window. Similar to the

results shown for the x86 processor, runahead execution on the Alpha processor is able to

achieve the performance of a larger window without requiring the implementation of large

structures.

Figure 4.16 also shows that runahead execution is more effective (i.e., provides

larger performance improvements) when implemented on a baseline processor with smaller
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instruction windows. For example, runahead execution improves the average IPC by 38%

when implemented on a 64-entry window processor whereas it degrades the average IPC

by 1.4% when implemented on a 2048-entry window processor. A 2048-entry instruction

window is already able to tolerate most of the main memory latency. Therefore, adding

runahead execution does not provide significant performance benefits and it degrades per-

formance due to the performance overhead of exiting from runahead mode.

We note that the runahead execution implementation proposed in this dissertation,

in particular the runahead mode entry and exit policies, is optimized assuming that runa-

head execution is implemented on a processor with a relatively small (128-entry) window.

If runahead execution is to be implemented on a large-window processor with better toler-

ance to memory latency, the runahead mode entry and exit policies may need to be revis-

ited. For example, entry into runahead mode can be delayed until the instruction window

becomes full on a large-window processor to avoid entering runahead mode on relatively

shorter-latency L2 cache misses that can already be fully tolerated by the large instruction

window. The data shown in Figure 4.16 is obtained without performing such optimizations

specific to large-window processors. Even so, runahead execution improves the average

IPC by 1% when implemented on a processor with 1024-entry instruction window.

Effect of a Longer Main Memory Latency

As described in Section 4.2.5.2, runahead execution becomes more effective as the

main memory latency gets longer. As future processors are expected to have significantly

longer main memory latencies than current processors, we evaluate the performance of

runahead execution versus large instruction windows on processors with longer main mem-

ory latencies. The minimum main memory latency of the processors evaluated in this sec-

tion is 1000 or 2000 cycles.3

3Note that a 1000-cycle main memory latency is not unrealistic in a near future processor. A 10 GHz
processor with a 100-nanosecond main memory would face and need to tolerate a 1000-cycle memory latency.
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Figure 4.16: Performance of runahead execution vs. large windows (minimum main mem-
ory latency = 500 cycles).
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Figure 4.17 shows the IPC of processors with instruction window sizes ranging

from 64 to 8192, with and without runahead execution, for a minimum main memory

latency of 1000 cycles. The sizes of the load/store buffer, register file, and scheduling

windows are the same as the instruction window size for the evaluated processors and

these structures are modeled as monolithic structures. Thus, the performance of a given

processor is the maximum performance achievable by the modeled instruction window,

since we do not consider the performance loss imposed by specific implementations.

When the memory latency is 1000 cycles, runahead execution on a 128-entry in-

struction window achieves 0.1% higher performance than the conventional processor with

1024-entry window. Similarly, runahead execution on a 256-entry window achieves 0.2%

higher performance than the conventional processor with 2048-entry window. In other

words, with a longer memory latency, runahead execution provides the same performance

as a processor with 8 times the instruction window size. Given that runahead execution

adds very little hardware to a state-of-the-art processor, it provides a cost- and complexity-

effective alternative to building a processor with 8 times the instruction window size of

today’s processors.

When the memory latency is 1000 cycles, runahead execution still provides signif-

icant performance benefits if it is implemented on a large instruction window. Figure 4.17

shows that implementing runahead execution on processors with 512, 1024, 2048, and

4096-entry windows improves the average performance of the respective baseline proces-

sor by 10%, 6.5%, 2.8%, and 0.8%. Therefore, designers of processors with large instruc-

tion windows can also utilize runahead execution to increase the latency tolerance of a large

window to long main memory latencies.
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Figure 4.17: Performance of runahead execution vs. large windows (minimum main mem-
ory latency = 1000 cycles).
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Figure 4.18 shows the IPC of processors with instruction window sizes ranging

from 64 to 8192, with and without runahead execution, for a minimum main memory

latency of 2000 cycles. With a 2000-cycle main memory latency, the performance of a

runahead execution processor with 128-entry window is 3% higher than that of the con-

ventional processor with 2048-entry window and within 1% of that of the conventional

processor with 4096-entry window. Also, runahead execution on a 256-entry window pro-

cessor achieves 1.7% higher performance than the conventional processor with 4096-entry

window. Hence, with a 2000-cycle main memory latency, a runahead execution processor

with a relatively small instruction window is able to provide higher performance than a

conventional processor with 16 times the instruction window size.

When the memory latency increases to 2000 cycles, the effectiveness of runahead

execution on a processor with a large instruction window also increases. With a 2000-

cycle memory latency, implementing runahead execution on a processor with a 4096-entry

window improves performance by 4.2%.

We conclude that, with increasing memory latencies, the performance benefit pro-

vided by runahead execution approximates and surpasses the performance benefit provided

by a very large instruction window that can support thousands of in-flight instructions.

Therefore, implementing runahead execution on a small instruction window without sig-

nificantly increasing hardware cost and complexity becomes a more attractive alternative

to building large instruction windows as main memory latencies increase.
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Figure 4.18: Performance of runahead execution vs. large windows (minimum main mem-
ory latency = 2000 cycles).
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4.2.5.4 Runahead Execution on In-Order vs. Out-of-order Processors

Figure 4.19 shows the IPC of four processors: 1) an in-order execution processor, 2)

in-order execution with runahead execution, 3) the out-of-order baseline processor, and 4)

out-of-order baseline with runahead execution. The evaluated in-order processor is aggres-

sive because it performs register renaming to eliminate stalls due to write-after-write and

write-after-read dependencies. Runahead execution is initiated on an L1 data cache miss

on the in-order processor because in-order execution cannot tolerate the latency of an L1

data cache miss. Furthermore, the pipeline depth of the in-order processor was modeled as

8 stages (instead of 20), assuming that an out-order processor would require extra stages to

perform out-of-order scheduling. Thus, the evaluated processor models favor the in-order

processor. All other parameters of the in-order processor were kept the same as the baseline

out-of-order Alpha processor.
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Figure 4.19: Runahead execution performance on in-order vs. out-of-order processors.
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Similarly to the results on the x86 processor, runahead execution provides larger

IPC improvements on an in-order processor than on an out-of-order processor. Table 4.8

summarizes the average IPC improvements across different models. Runahead execution’s

IPC improvement is 60.9% on the in-order processor versus 22.6% on the out-of-order

processor. However, using runahead execution on an in-order processor cannot approxi-

mate the performance of out-of-order execution. An out-of-order processor outperforms an

in-order processor with runahead execution by 53.7%.4 Moreover, an out-of-order proces-

sor with runahead execution outperforms an in-order processor with runahead execution

by 88.4%. These results suggest that runahead execution significantly improves the mem-

ory latency tolerance of both in-order and out-of-order processors, but a large performance

gap remains between in-order and out-of-order execution when both are augmented with

runahead execution.

Comparison INT FP Average
IPC delta of IO+runahead (over IO) 59.9% 61.8% 60.9%

IPC delta of OOO+runahead (over OOO) 10.9% 35.0% 22.6%
IPC delta of OOO (over IO) 156.2% 139.3% 147.2%

IPC delta of OOO (over IO+runahead) 60.2% 47.9% 53.7%
IPC delta of OOO+runahead (over IO+runahead) 77.7% 99.8% 88.4%

Table 4.8: IPC improvement comparisons across in-order, out-of-order, and runahead exe-
cution models. IO stands for in-order, OOO for out-of-order.

Effect of Memory Latency

Figure 4.20 compares the performance of in-order and out-of-order execution pro-

4For two FP benchmarks, art and swim, an in-order processor with runahead execution outperforms a
non-runahead out-of-order processor. The performance of these two benchmarks is mainly limited by L2
cache misses. Therefore, the major benefit of out-of-order execution is due to the parallelization of L2 cache
misses. As runahead execution can achieve this parallelization more efficiently without being limited by the
window size, an in-order processor with runahead execution is able to parallelize more L2 misses than a 128-
entry window. That is why an in-order runahead processor performs better than an out-of-order processor
that does not implement runahead execution.
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cessors with and without runahead execution using different main memory latencies. As

the main memory latency increases, the performance of the in-order processor with runa-

head execution gets closer to and surpasses the performance of the out-of-order processor

without runahead execution, especially for FP benchmarks. For a 900-cycle minimum main

memory latency, the average performance of the in-order processor with runahead execu-

tion is only 22% less than the performance of the out-of-order processor without runahead

execution. For a 1900-cycle memory latency, the in-order processor with runahead exe-

cution actually outperforms the conventional out-of-order processor by 9.5%. With longer

memory latencies, the 128-entry instruction window’s ability to tolerate the memory la-

tency diminishes. As runahead execution’s latency tolerance is not limited by the size

of any buffer, the in-order runahead processor’s latency tolerance (and performance) gets

close to and surpasses that of the out-of-order processor. This is especially true for FP

benchmarks, which are more limited by memory performance than INT benchmarks. On

integer benchmarks, a large chunk of the benefits of an out-of-order processor comes from

its ability to extract instruction-level parallelism. As this cannot be achieved by an in-order

runahead processor, a significant performance gap still remains between the two processors

for the INT benchmarks even at longer latencies.

The performance of the out-of-order processor with runahead execution is signifi-

cantly higher than that of the in-order processor with runahead execution, even though the

performance gap between the two reduces as the main memory latency increases. For a

900-cycle memory latency, the out-of-order runahead processor outperforms the in-order

runahead processor by 68% on average. For a 1900-cycle memory latency, the out-of-order

runahead processor still outperforms the in-order runahead processor by 47%. We conclude

that out-of-order execution augmented with runahead execution provides the best memory

latency tolerance across a wide variety of main memory latencies.
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Figure 4.20: Effect of main memory latency on the runahead execution performance on in-
order and out-of-order execution processors. OOO stands for out-of-order, IO for in-order,
and RA for runahead execution.
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4.3 Summary of Results and Conclusions

This chapter evaluated the proposed runahead execution mechanism on both x86

and Alpha processors and a wide variety of machine configurations. Our empirical analyses

on a variety of processor models and a wide variety of benchmarks provide strong support

for the following major conclusions:

• Runahead execution is more effective than and complementary to hardware-based

prefetching which is commonly employed in current high-performance processors.

• Runahead execution provides the performance benefit of much larger instruction win-

dows without the additional cost and complexity of the large structures needed to im-

plement large instruction windows. With a 500-cycle memory latency, runahead exe-

cution on a 128-entry window processor achieves the performance of a conventional

out-of-order execution processor with 3 times the instruction window size (384-entry

window). With a 1000-cycle memory latency, it achieves the performance of a con-

ventional processor with 8 times the instruction window size (1024-entry window).

• Although runahead execution is also very effective on in-order processors, an out-of-

order processor with runahead execution by far provides the best performance.

• The performance benefit of runahead execution improves as main memory latency

and the effectiveness of instruction supply increase. Since future processors will

have longer memory latencies and better instruction supplies, we expect runahead

execution to become more effective in future processors.
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Chapter 5

Techniques for Efficient Runahead Execution

A runahead processor executes significantly more instructions than a traditional

out-of-order processor in order to discover L2 cache misses in runahead mode. Because

of the increase in executed instructions, a runahead processor can consume significantly

more dynamic energy than a conventional processor. This section examines the causes

of energy-inefficiency in runahead execution and proposes techniques to make a runahead

processor more efficient. By making runahead execution more efficient, our goal is to

reduce the dynamic energy consumption of a runahead processor and possibly increase its

performance. In order to achieve this goal, this section seeks answers to the following

questions:

• As a runahead processor speculatively executes portions of the instruction stream, it

executes more instructions than a traditional high-performance processor, resulting

in higher dynamic energy consumption. How can the processor designer decrease

the number of instructions executed in a runahead processor, while still preserving

the performance improvement provided by runahead execution? In other words, how

can the processor designer increase the efficiency of a runahead processor?

• As the speculative execution of instructions in runahead mode targets the discovery

of useful L2 cache misses, instruction processing during runahead mode should be

optimized for maximizing the number of useful L2 misses generated during runahead

execution. What kind of techniques increase the probability of the generation of

116



useful L2 misses and hence increase the performance of a runahead processor, while

reducing or not significantly increasing the number of instructions executed?

• Speculative pre-execution of the instruction stream in runahead mode generates the

correct result values for some of the pre-executed instructions in addition to the L2

misses that will later be used by the application program. Our proposed runahead

execution implementation discards the result values of all pre-executed instructions

even though some of those result values are correct. Is it worthwhile to design a

hardware mechanism to reuse the results of pre-executed instructions to improve

both the performance benefit and the efficiency of runahead execution?

5.1 The Problem: Inefficiency of Runahead Execution

Runahead execution increases processor performance by pre-executing the instruc-

tion stream while an L2 cache miss is in progress. At the end of a runahead execution

period, the processor restarts its pipeline beginning with the instruction that caused entry

into runahead mode. Hence, a runahead processor executes some instructions in the in-

struction stream more than once. As each execution of an instruction consumes dynamic

energy, a runahead processor consumes more dynamic energy than a processor that does

not implement runahead execution. To reduce the energy consumed by a runahead proces-

sor, it is desirable to reduce the number of instructions executed during runahead mode.

Unfortunately, reducing the number of instructions executed during runahead mode may

significantly reduce the performance improvement of runahead execution, since runahead

execution relies on the execution of instructions during runahead mode to discover useful

prefetches. Our goal is to increase the efficiency of a runahead processor without signifi-

cantly decreasing its IPC performance improvement. We define efficiency as follows:

Efficiency =

Percent Increase In IPC

Percent Increase In Executed Instructions
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Percent Increase In IPC is the percentage IPC increase after the addition of runa-

head execution to the baseline processor. Percent Increase In Executed Instructions is the

percentage increase in the number of executed instructions after the addition of runahead

execution.1 We use this definition, because it is congruent with the ∆Performance/∆Power

metric used in power-aware design to decide whether or not a new microarchitectural fea-

ture is power aware [43].

A runahead processor’s efficiency can be increased in two ways:

• The number of executed instructions (the denominator) can be reduced without af-

fecting the increase in IPC (the numerator) by eliminating the causes of inefficiency.

• The IPC improvement can be increased without increasing the number of executed

instructions. This can be accomplished by increasing the usefulness of each runahead

execution period by extracting more useful prefetches from the executed instructions.

This chapter proposes techniques that increase efficiency in both ways. We examine

techniques that increase efficiency by reducing the Percent Increase In Executed Instruc-

tions in Section 5.2. Techniques that increase efficiency by increasing the Percent Increase

In IPC are examined in Section 5.3.

Note that efficiency by itself is not a very meaningful metric since it does not show

the performance improvement. Observing the increase in the executed instructions and

the increase in IPC together gives a better view of both efficiency and performance, espe-

cially because our goal is to increase efficiency without significantly reducing performance.

1There are other ways to define efficiency. We also examined a definition based on Percent In-
crease In Fetched Instructions. This definition gave similar results to the definition used in this dissertation,
since the increase in the number of fetched instructions due to runahead execution is very similar to the
increase in the number of executed instructions.
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Therefore, we always report changes in these two metrics. Efficiency values can be easily

computed using these two metrics.

Figure 5.1 shows the increase in IPC and increase in the number of executed instruc-

tions due to the addition of runahead execution to our baseline processor. All instructions

executed in the processor core, INV or valid, are counted to obtain the number of executed

instructions. On average, runahead execution increases the IPC by 22.6% at a cost of in-

creasing the number of executed instructions by 26.5%. Unfortunately, runahead execution

in some benchmarks results in a large increase in the number of executed instructions with-

out yielding a correspondingly large IPC improvement. For example, in parser, runahead

increases the number of executed instructions by 47.8% while decreasing the IPC by 0.8%

(efficiency = −0.8/47.8 = −0.02). In art, there is an impressive 108.4% IPC increase,

only to be overshadowed by a 235.4% increase in the number of executed instructions

(efficiency = 108.4/235.4 = 0.46)

5.2 Eliminating the Causes of Inefficiency

We have identified three major causes of inefficiency in a runahead processor: short,

overlapping, and useless runahead periods. Runahead execution episodes with these prop-

erties usually do not provide performance benefit but result in unnecessary speculative

execution of instructions. As exit from runahead execution is costly in terms of perfor-

mance (it requires a full pipeline flush), such runahead periods can actually be detrimental

to performance.

This section describes these causes and proposes techniques to eliminate them. For

the purposes of these studies, we only consider those benchmarks with an IPC increase of

more than 5% or with an executed instruction increase of more than 5%, since only those

benchmarks that show significant changes in IPC or executed instructions can be affected
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Figure 5.1: Increase in IPC and executed instructions due to runahead execution.

by techniques designed for improving efficiency. Results for all benchmarks are reported

in Section 5.2.4.

5.2.1 Eliminating Short Runahead Periods

One cause of inefficiency in runahead execution is short runahead periods, where

the processor stays in runahead mode for tens, instead of hundreds, of cycles. A short

runahead period can occur because the processor may enter runahead mode due to an L2

miss that was already prefetched by the prefetcher, a wrong-path instruction, or a previous

runahead period, but that has not completed yet.

Figure 5.2 shows a short runahead period that occurs due to an incomplete prefetch

generated by a previous runahead period. Load B generates an L2 miss when it is specula-

tively executed in runahead period A. When the processor executes Load B again in normal
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mode, the associated L2 miss (L2 Miss B) is still in progress. Therefore, Load B causes the

processor to enter runahead mode again. Shortly after, L2 Miss B is completely serviced

by the memory system and the processor exits runahead mode. Hence, the runahead period

caused by Load B is short. Short runahead periods are not desirable because the processor

may not be able to execute enough instructions far ahead into the instruction stream and

hence may not be able to discover any useful L2 cache misses during runahead mode.

L2 Miss B Being Serviced From Memory

COMPUTE

L2 Miss A Being Serviced From Memory

Load B Misses
in L2 Cache

Pipeline Flush

Load A Re−executed
(Cache Hit)

Load B Re−executed

COMPUTE

Load A Misses
in L2 Cache

COMPUTE

(Still L2 Miss!)
Load B Re−executed

(Cache Hit)

RUNAHEAD PERIOD A

SHORT RUNAHEAD PERIOD
(RUNAHEAD PERIOD B)

Figure 5.2: Example execution timeline illustrating the occurrence of a short runahead
period.

Ideally, we would like to know when an L2 cache miss is going to return back from

main memory. If the L2 miss is going to return soon enough, the processor can decide

not to enter runahead mode on that L2 miss. Unfortunately, in a realistic memory system,

latencies to main memory are variable and are not known beforehand due to bank conflicts,

queueing delays, and contention in the memory system.2 To eliminate the occurrence of

short runahead periods, we propose a simple heuristic to predict that an L2 miss is going to

return back from main memory soon.

In the proposed mechanism, the processor keeps track of the number of cycles each

L2 miss has spent after missing in the L2 cache. Each L2 Miss Status Holding Register

2While it is possible to have the memory system communicate the estimated latency of an L2 miss to the
processor core after the DRAM access for that L2 miss is started, such communication would add unnecessary
complexity to the memory system and buses between the core and main memory. Moreover, the estimate
provided by the memory system cannot be exact due to the queueing delays the data may encounter on its
way back to the processing core.
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(MSHR) [62] is augmented with a counter to accomplish this. When the request for a cache

line misses in the L2 cache, the counter in the MSHR associated with the cache line is reset

to zero. This counter is incremented periodically until the L2 miss for the cache line is

complete. When a load instruction at the head of the instruction window is an L2 miss,

the counter value in the associated L2 MSHR is compared to a threshold value T. If the

counter value in the MSHR is greater than T, the processor does not enter runahead mode,

predicting that the L2 miss will return back soon from main memory. We considered both

statically and dynamically determined thresholds. A static threshold is fixed for a processor

and can be set based on design-time estimations of main memory latency. As the memory

latency in our baseline processor is 500 cycles, we examined thresholds between 250 to

500 cycles. A dynamic threshold can be set by computing the average latency of the last

N L2 misses and not entering runahead execution if the current L2 miss has covered more

than the average L2 miss latency (N is varied from 4 to 64 in our experiments). The best

dynamic threshold we looked at did not perform as well as the best static threshold. Due to

the variability in the L2 miss latency, it is not feasible to get an accurate prediction on the

latency of the current miss based on the average latency of the last few misses.

Figures 5.3 and 5.4 show the increase in number of executed instructions and IPC

over the baseline processor if the proposed thresholding mechanisms are employed. We

show results for the best static and dynamic thresholds out of all we evaluated. The best

heuristic, in terms of efficiency, prevents the processor from entering runahead mode if the

L2 miss has been in progress for more than 400 cycles. The increase in the number of

executed instructions on the selected benchmarks is reduced from 45.6% to 26.4% with the

best static threshold and to 30.2% with the best dynamic threshold, on average. Average

IPC improvement is reduced slightly from 37.6% to 35.4% with the best static threshold

and to 36.3% with the best dynamic threshold. Hence, eliminating short runahead periods

using a simple miss latency thresholding mechanism significantly increases the efficiency.
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Figure 5.3: Increase in executed instructions after eliminating short runahead periods using
static and dynamic thresholds.
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Figure 5.4: Increase in IPC after eliminating short runahead periods using static and dy-
namic thresholds.
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Figure 5.5 shows the distribution of the runahead period length and the useful L2

misses prefetched by runahead load instructions for each period length in the baseline runa-

head processor (left graph) and after applying the static threshold 400 mechanism (right

graph). The data shown in this figure is an average over all benchmarks. A useful miss

is defined as an L2 load miss that is generated in runahead mode and later used in normal

mode and that could not be captured by the processor’s instruction window if runahead

execution was not employed. Without the efficiency optimization, there are many short

runahead periods that result in very few useful prefetches. For example, the runahead pro-

cessor enters periods of shorter than 50 cycles 4981 times, but a total of only 22 useful

L2 misses are generated during these periods (the leftmost points in the left graph in Fig-

ure 5.5). Using the static threshold 400 mechanism eliminates all occurrences of periods

that are shorter than 100 cycles, as shown in the right graph. Eliminating short periods

also increases the occurrence of relatively longer periods (450-500 cycles), which are more

efficient and effective in terms of the number of useful L2 misses they generate.3 This

mechanism also eliminates some of the very long runahead periods (longer than 600 cy-

cles) that are useful, but we found that the loss in efficiency due to eliminating a smaller

number of long useful periods is more than offset by the gain in efficiency due to eliminat-

ing a larger number of short useless periods.

3Many of the L2 misses that are discovered and started by a short runahead period are not complete
when they are later needed in normal mode. Therefore, they cause entries into more short runahead periods.
Once short runahead periods are eliminated using the thresholding mechanism, these L2 misses do not occur
in runahead mode because the runahead periods that used to lead to them are eliminated. Instead, they
are discovered in normal mode and cause entries into longer runahead periods. Hence the increase in the
occurrence of relatively longer runahead periods.
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Figure 5.5: Distribution of runahead period length (in cycles) and useful misses generated
for each period length.

5.2.2 Eliminating Overlapping Runahead Periods

Two runahead periods are defined to be overlapping if some of the instructions the

processor executes in both periods are the same dynamic instructions. Overlapping periods

occur due to two reasons:

1. Dependent L2 misses (Figure 5.6a): The execution timeline showing the occurrence

of overlapping periods due to dependent L2 misses is given in Figure 5.7. Load A

causes entry into runahead period A. During this period, the processor executes Load

B and finds that it is dependent on the miss caused by Load A. Because the processor

has not serviced the miss caused by Load A yet, it cannot calculate Load B’s address

and therefore it marks Load B as INV. The processor executes and pseudo-retires N

instructions after Load B, and exits runahead period A when the miss for Load A

returns from main memory. The pipeline is flushed and fetch is redirected to Load

A. In normal mode, the processor re-executes Load B and finds it to be an L2 miss,
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which causes runahead period B. In runahead period B, the processor executes the

same N instructions that were executed in period A.

2. Independent L2 misses with different latencies (Figure 5.6b): This is similar to the

previous case, except Load A and Load B are independent. The L2 miss caused

by Load B takes longer to service than the L2 miss caused by Load A. Note that

runahead period B may or may not also be a short period, depending on the latency

of the L2 cache miss due to Load B.

.....

.....

.....

..... ....Overlapping N instructions

....Overlapping N instructions

A:  ld [r5 + 8] −> r1 A:  ld [r5 + 8] −> r1

ld [r5 + 12] −> r2

add r1, r2 −> r9

ld [r5 + 20] −> r8

add r9, r8 −> r9

R
un

ah
ea

d 
pe

ri
od

 B

R
un

ah
ea

d 
pe

ri
od

 A

R
un

ah
ea

d 
pe

ri
od

 A

R
un

ah
ea

d 
pe
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od

 B

(a) Due to dependent L2 misses (b) Due to independent L2 misses

add r9, r6 −> r9
B:  ld [r1 + 0] −> r6

add r9, r6 −> r8 add r9, r6 −> r8
B:  ld [r1 + 0] −> r6

add r9, r6 −> r9
B:  ld [r7 + 0] −> r6 B:  ld [r7 + 0] −> r6

Figure 5.6: Code example showing overlapping runahead periods.

L2 Miss B Being Serviced From Memory

COMPUTE

L2 Miss A Being Serviced From Memory

Load A Re−executed
(Cache Hit)

COMPUTE

Load A Misses
in L2 Cache

Load B Misses
in L2 Cache

COMPUTE

OVERLAP OVERLAP

RUNAHEAD PERIOD A RUNAHEAD PERIOD B

(dependent on Load A)
Load B INV Load B Re−executed

(Cache Hit)

Figure 5.7: Example execution timeline illustrating the occurrence of an overlapping runa-
head period.
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Overlapping runahead periods can benefit performance because the completion of

Load A may result in the availability of data values for more instructions in runahead

period B, which may result in the generation of useful prefetches that could not have been

generated in runahead period A (because the result of Load A was not available in runahead

period A). However, in the benchmark set we examined, overlapping runahead periods

rarely benefited performance. On the other hand, if the availability of the result of Load A

does not lead to the generation of new load addresses that generate L2 misses, the processor

will execute the same N instructions twice in runahead mode without obtaining any benefit.

In any case, overlapping runahead periods can be a major cause of inefficiency because they

result in the execution of the same instruction multiple times in runahead mode, especially

if many L2 misses are clustered together in the program.

Our solution to reducing the inefficiency due to overlapping periods involves not

entering a runahead period if the processor predicts it to be overlapping with a previous

runahead period. During a runahead period, the processor counts the number of pseudo-

retired instructions. During normal mode, the processor counts the number of instructions

fetched since the exit from the last runahead period. When an L2 miss load at the head of

the reorder buffer is encountered during normal mode, the processor compares these two

counts. If the number of instructions fetched after the exit from runahead mode is less than

the number of instructions pseudo-retired in the previous runahead period, the processor

does not enter runahead mode (full threshold policy). This technique can be implemented

with two simple counters and a comparator.

Note that this mechanism is predictive. The processor may pseudo-retire instruc-

tions on the wrong path during runahead mode due to the existence of an unresolvable

mispredicted INV branch. Therefore, it is not guaranteed that a runahead period caused

before fetching the same number of pseudo-retired instructions in the previous runahead

period overlaps with the previous runahead period. Hence, this mechanism may elimi-
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nate some non-overlapping runahead periods. To reduce the probability of eliminating

non-overlapping periods, we examined two other policies (half threshold policy and 75%

threshold policy) where the processor does not enter runahead mode if it has not fetched

more than half (or 75%) of the number of instructions pseudo-retired during the last runa-

head period.

Figures 5.8 and 5.9 show the increase in number of executed instructions and IPC

over the baseline processor if we employ the half threshold and full threshold policies.

Eliminating overlapping runahead periods reduces the increase in the number of executed

instructions from 45.6% to 28.7% with the half threshold policy and to 20.2% with the

full threshold policy, on average. This reduction comes with a small impact on IPC im-

provement, which is reduced from 37.6% to 36.1% with the half threshold policy and to

35% with the full threshold policy. Art, ammp, and swim are the only benchmarks that

see relatively significant reductions in IPC improvement because overlapping periods due

to independent L2 misses sometimes provide useful prefetching benefits in these bench-

marks. It is possible to recover the performance loss in these benchmarks by predicting

the usefulness of overlapping periods and eliminating only those periods predicted to be

useless, using schemes similar to those described in the next section.
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Figure 5.8: Increase in executed instructions after eliminating overlapping runahead peri-
ods using thresholding.
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Figure 5.9: Increase in IPC after eliminating overlapping runahead periods periods using
thresholding.
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5.2.3 Eliminating Useless Runahead Periods

Useless runahead periods are those runahead periods in which no useful L2 misses

that are needed by normal mode execution are generated, as shown in Figure 5.10. These

periods exist due to the lack of memory-level parallelism [42, 23] in the application pro-

gram, i.e. due to the lack of independent cache misses under the shadow of an L2 miss.

Useless periods are inefficient because they increase the number of executed instructions

without providing any performance benefit. To eliminate a useless runahead period, we

propose four simple, novel prediction mechanisms that predict whether or not a runahead

period will be useful (i.e., generate an L2 cache miss).

COMPUTE

L2 Miss A Being Serviced From Memory

Load A Re−executed
(Cache Hit)

Load A Misses
in L2 Cache

COMPUTE

NO L2 MISSES DISCOVERED

RUNAHEAD PERIOD A

Figure 5.10: Example execution timeline illustrating a useless runahead period.

To eliminate a useless runahead period, the processor needs to know whether or not

the period will provide prefetching benefits before initiating runahead execution on an L2

miss. As this is not possible without knowledge of the future, we use techniques to predict

the future. We propose four simple mechanisms for predicting whether or not a runahead

period generate a useful L2 cache miss.

5.2.3.1 Predicting Useless Periods Based on Past Usefulness of Runahead Periods
Initiated by the Same Static Load

The first technique makes use of past information on the usefulness of previous

runahead periods caused by a load instruction to predict whether or not to enter runahead
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mode due to that static load instruction again. The usefulness of a runahead period is

approximated by whether or not the period generated at least one L2 cache miss.4 The

insight behind this technique is that the usefulness of future runahead periods tend to be

predictable based on the recent past behavior of runahead periods caused by the same static

load. The processor uses a table of two-bit saturating counters called Runahead Cause

Status Table (RCST) to collect information on the usefulness of runahead periods caused

by each L2-miss load. The state diagram for an RCST entry is shown in Figure 5.11.

0 0 0 1
Runahead
1 0
ENTER

Runahead
1 1
ENTER

during runahead periodat ROB headat ROB head

No L2 miss

during runahead period
Allocate Load is L2 miss Load is L2 miss At least one L2 miss At least one L2 miss

during runahead period
No L2 miss

during runahead period

Figure 5.11: State diagram of the RCST counter.

When an L2-miss load is the oldest instruction in the instruction window, it accesses

RCST using its instruction address to check whether it should initiate entry into runahead

mode. If there is no counter associated with the load, runahead mode is not initiated,

but a counter is allocated and reset. During each runahead period, the processor keeps

track of the number of L2 load misses that are generated and cannot be captured by the

processor’s instruction window.5 Upon exit from runahead mode, if there was at least

one such L2 load miss generated during runahead mode, the two-bit counter associated

4Note that this is a heuristic and not necessarily an accurate metric for the usefulness of a runahead period.
The generated L2 cache miss may actually be on the wrong path during runahead mode and may never be
used in normal mode. However, we found that the heuristic works well because wrong-path L2 cache misses
generated in runahead mode tend to be useful for normal mode execution [77].

5An L2 miss caused by a load that is pseudo-retired at least N instructions after the runahead-causing
load, where N is the instruction window size, cannot be captured by the instruction window. N=128 in our
simulations.
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with the runahead-causing load is incremented. If there was no such L2 miss, the two-

bit counter is decremented. When the same static load instruction is an L2-miss at the

head of the instruction window later, the processor accesses the counter associated with the

load in RCST. If the counter is in state 00 or 01, runahead is not initiated, but the counter is

incremented. We increment the counter in this case because we do not want to ban any load

from initiating entry into runahead. If the counter is not incremented, the load will never

cause entry into runahead mode until its counter is evicted from RCST, which we found to

be detrimental to performance because it eliminates many useful runahead periods along

with useless ones. In our experiments, we used a 4-way RCST containing 64 counters.6

5.2.3.2 Predicting Useless Periods Based on INV Dependence Information

The second technique we propose makes use of information that becomes avail-

able while the processor is in runahead mode. The purpose of this technique is to predict

the available memory-level parallelism during the existing runahead period. If there is not

enough memory-level parallelism, the processor exits runahead mode right away. To ac-

complish this, the processor keeps a count of the number of load instructions executed in

runahead mode and a count of how many of those were INV (i.e., dependent on an L2

miss). After N cycles of execution during runahead mode, the processor starts checking the

fraction INV loads out of all executed loads in the ongoing runahead mode. If the fraction

of INV loads is greater than some threshold T, the processor initiates exit from runahead

mode (We found that good values for N and T are 50 and 0.75, respectively. Waiting for

50 cycles before deciding whether or not to exit runahead mode reduces the probability of

prematurely incorrect predictions). In other words, if too many of the loads executed dur-

6We examined other two, three, and four-bit state machines with various update policies and found that
the one shown in Figure 5.11 performs the best in terms of efficiency. We also examined a tagless RCST
organization. This resulted in lower performance than the tagged organization due to destructive interference
between different load instructions.
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ing runahead mode are INV, this is used as an indication that the current runahead period

will not generate useful L2 cache misses and therefore the processor is better off exiting

runahead mode. This technique is called the INV Load Count technique.

5.2.3.3 Coarse-Grain Uselessness Prediction Via Sampling

The previous two approaches (RCST and INV Load Count) aim to predict the use-

fulness of a runahead period in a fine-grain fashion. Each possible runahead period is

predicted as useful or useless. In some benchmarks, especially in bzip2 and mcf, we found

that usefulness of runahead periods exhibits more coarse-grain, phase-like behavior. Runa-

head execution tends to consistently generate or not generate L2 cache misses in a large

number of consecutive periods. This behavior is due to: (1) the phase behavior in bench-

marks [35] where some phases show high memory-level parallelism and others do not, (2)

the clustering of L2 cache misses [23].

To capture the usefulness (or uselessness) of runahead execution over a large num-

ber of periods, we propose the use of sampling-based prediction. In this mechanism, the

processor periodically monitors the total number of L2 load misses generated during N

consecutive runahead periods. If this number is less than a threshold T, the processor does

not enter runahead mode for the next M cases where an L2-miss load is at the head of the

instruction window. Otherwise, the processor enters runahead mode for the next N peri-

ods and monitors the number of misses generated in those periods. This mechanism uses

the number of misses generated in the previous N runahead periods as a predictor for the

usefulness of the next M runahead periods. The pseudo-code for the sampling algorithm

is given in Figure 5.12. In our simulations, we set N to 100, T to 25, and M to 1000. We

did not tune the values of these parameters. It is possible to vary the values of the param-

eters dynamically to increase the efficiency even more, but a detailed study of parameter

tuning or phase detection is out of the scope of this dissertation. However, this dissertation
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demonstrates that even with untuned values of parameters, it is possible to significantly

increase the efficiency of a runahead execution processor without significantly impacting

performance.

{
   if (mode == MONITOR_MODE) {
      ENTER runahead;
   } else {
      DO NOT ENTER runahead;
      opportunities_seen++;

      if (opportunities_seen == M) {
         periods_monitored = 0;

         mode = MONITOR_MODE;
      }
   }
}

         L2_misses_seen = 0;

When exit from runahead mode is complete DO
{
   ASSERT(mode == MONITOR_MODE);
  
   periods_monitored++;

   if (periods_monitored == N) {

         periods_monitored = 0
      } else {
         opportunities_seen = 0;
         mode = SLEEP_MODE;    
      }
   }
}

   L2_misses_seen += L2_misses_seen_in_this_period;

      if (L2_misses_seen >= T) {

of the instruction window DO
When an L2 miss load is at the head

{
   mode = MONITOR_MODE;
   periods_monitored = 0;

}
   L2_misses_seen = 0;

When a process is loaded after context switch DO

Figure 5.12: Pseudo-code for the sampling algorithm.

Figures 5.13 and 5.14 show the effect of applying the three uselessness prediction

techniques individually and together on the increase in executed instructions and IPC. The

RCST technique increases the efficiency in many INT and FP benchmarks. In contrast, the

INV Load Count technique increases the efficiency significantly in only one INT bench-

mark, mcf. In many other benchmarks, load instructions are usually not dependent on

other loads and therefore the INV Load Count technique does not affect these benchmarks.

We expect the INV Load Count technique to work better in workloads with significant

amount of pointer-chasing code. The Sampling technique results in significant reductions

in executed instructions in especially bzip2 and parser, two benchmarks for which runa-

head execution is very inefficient. This technique increases the IPC improvement slightly

in bzip2. All three techniques together increase the efficiency more than each individual

technique, indicating that the techniques identify different useless runahead periods. On

average, all techniques together reduce the increase in executed instructions from 45.6% to

27.1% while reducing the IPC increase from 37.6% to 34.2%.
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Figure 5.13: Increase in executed instructions after eliminating useless runahead periods
with the dynamic uselessness prediction techniques.
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Figure 5.14: Increase in IPC after eliminating useless runahead periods with the dynamic
uselessness prediction techniques.
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5.2.3.4 Compile-Time Techniques to Eliminate Useless Runahead Periods Caused
by a Static Load

Some static load instructions rarely lead to the generation of useful L2 cache misses

when they cause entry into runahead mode. For example, in bzip2, one load instruction

causes 62,373 entries into runahead mode (57% of all runahead entries), which result in

only 561 useful L2 misses that cannot be captured by the processor’s instruction window.

If the runahead periods caused by such static loads are useless due to some inherent reason

in the program structure or behavior, these load instructions can be designated as non-

runahead loads (loads that cannot cause entry into runahead mode) by the compiler af-

ter code analysis and/or profiling runs. This section examines improving efficiency using

compile-time profiling techniques to identify non-runahead loads.

We propose a technique in which the compiler profiles the application program by

simulating the execution of the program on a runahead processor. During the profiling run,

the compiler keeps track of the number of runahead periods initiated by each static load

instruction and the total number of L2 misses generated in the runahead periods initiated

by each static load instruction. If the ratio of the number of L2 misses generated divided by

the number of runahead periods initiated is less than some threshold T for a load instruction,

the compiler marks that load as a non-runahead load, using a single bit that is augmented

in the load instruction format of the ISA.7 At run-time, if the processor encounters a non-

runahead load as an L2-miss instruction at the head of the instruction window, it does

not enter runahead mode. If loads identified as non-runahead exhibit similar behavior

in the profiling runs and the normal runs, the efficiency and perhaps the performance of

the runahead processor would be improved. In our experiments, we examined threshold

values of 0.1, 0.25, and 0.5, and found that 0.25 yields the best average efficiency value. In

7If a load instruction never causes entry into runahead during the profiling run, it is not marked as a
non-runahead load.
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general, a larger threshold yields a larger reduction in the number of executed instructions

by reducing the number of runahead periods, but it also reduces performance because it

results in the elimination of some useful periods.

Figures 5.15 and 5.16 show the increase in executed instructions and IPC after using

profiling by itself (second and third bars from the left for each benchmark) and in combi-

nation with the previously discussed three uselessness prediction techniques (fourth and

fifth bars from the left). When profiling is used by itself, the processor always enters runa-

head mode when the L2-miss load at the head of the instruction window is not marked as

non-runahead. When profiling is used in combination with the other uselessness prediction

techniques, the processor dynamically decides whether or not to enter runahead on a load

that is not marked as non-runahead. In both cases, loads marked as non-runahead never

cause entry into runahead mode. For comparison, the rightmost bar shows the effect of

only using the previous three uselessness prediction techniques without profiling.

The figures show that profiling by itself can significantly increase the efficiency

of a runahead processor. Also, the input set used for profiling does not significantly af-

fect the results.8 However, profiling is less effective than the combination of the dynamic

techniques. Combining profiling with the three dynamic techniques reduces the increase in

executed instructions from 45.6% to 25.7%, while reducing the IPC increase from 37.6% to

34.3%. These results are better than what can be achieved only with the dynamic useless-

ness prediction techniques, indicating that there is room for improvement if compile-time

information is utilized in combination with dynamic information.

8In Figures 5.15 and 5.16, “same input set” means that the same input set was used for the profiling run
and the simulation run; “different input set” means that different input sets were used for the two runs. For
the “different input set” case, we used the train input set provided by SPEC for the profiling run.
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Figure 5.15: Increase in executed instructions after using compile-time profiling to elimi-
nate useless runahead periods.
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Figure 5.16: Increase in IPC after using compile-time profiling to eliminate useless runa-
head periods.
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5.2.4 Combining the Efficiency Techniques

So far, we have considered individually each technique that aims to eliminate a

particular cause of inefficiency. The causes of efficiency are sometimes not disjoint from

each other. For example, a short runahead period may also be a useless runahead period

because fewer instructions tend to be executed in short periods, probably resulting in the

generation of no useful L2 misses during that period. Similarly, an overlapping runahead

period may also be a short runahead period especially if it occurs due to independent L2

misses with different latencies (See Section 5.2.2). However, in some cases these causes

of inefficiency can be disjoint from each other and therefore combining the techniques

proposed in previous sections may result in increased efficiency. This section examines the

effect of combining the different proposed techniques. The results show that a combination

of all the proposed techniques increases efficiency more than each technique by itself.

Figures 5.17 and 5.18 show the increase in executed instructions and IPC after ap-

plying the proposed techniques to eliminate short, overlapping, and useless runahead peri-

ods individually and together on all SPEC CPU2000 benchmarks. The rightmost two bars

for each benchmark show the effect of using the efficiency-increasing techniques together,

with the rightmost bar including the profiling technique.9 The average increase in the num-

ber of executed instructions is minimized when all techniques are applied together rather

than when each technique is applied in isolation. This is partly because different bench-

marks benefit from different efficiency-increasing techniques and partly because different

techniques sometimes eliminate disjoint causes of inefficiency. When all techniques but

profiling are applied, the increase in executed instructions is reduced from 26.5% to 7.3%

(6.7% with profiling), whereas the IPC improvement is only reduced from 22.6% to 20.0%

(20.1% with profiling).

9We examine profiling separately since it requires modifications to the ISA or a dynamic optimization
framework.
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Figure 5.17: Increase in executed instructions after using the proposed efficiency tech-
niques individually and together.
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Figure 5.18: Increase in IPC after using the proposed efficiency techniques individually
and together.
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5.3 Increasing the Usefulness of Runahead Periods

Techniques we have considered so far focused on increasing the efficiency of runa-

head execution by reducing the number of extra instructions executed, without significantly

reducing the performance improvement. Another way to increase efficiency, which is per-

haps harder to accomplish, is to increase the performance improvement without signif-

icantly increasing or while reducing the number of executed instructions. As the perfor-

mance improvement of runahead execution is mainly due to the useful L2 misses prefetched

during runahead mode [84, 23], it can be increased with optimizations that lead to the dis-

covery of more L2 misses during runahead mode. This section examines optimizations

that have the potential to increase efficiency by increasing performance. The three tech-

niques we examine are: (1) turning off the floating point unit during runahead mode, (2)

early wake-up of INV instructions, and (3) optimization of the hardware prefetcher update

policy during runahead mode.

5.3.1 Turning Off the Floating Point Unit During Runahead Mode

Since the purpose of runahead execution is to generate L2 cache misses, instructions

that do not contribute to the generation of L2 cache misses are essentially “useless” for

the purposes of runahead execution. Therefore, the usefulness of a runahead period can

be increased by eliminating instructions that do not lead into the generation of L2 cache

misses during runahead mode.

One example of such useless instructions are floating-point (FP) operate instruc-

tions, which do not contribute to the address computation of load instructions. Thus, we

propose that the FP unit be turned off during runahead mode and FP operate instructions be

dropped after being decoded. Not executing the FP instructions during runahead mode has

two advantages. First, it enables the turning off of the FP unit, including the FP physical

register file, during runahead mode, which results in dynamic and static energy savings.
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Second, it enables the processor to make further progress in the instruction stream dur-

ing runahead mode, since FP instructions can be dropped before execution, which spares

resources for potentially more useful instructions.10 On the other hand, turning off the

FP unit during runahead mode has one disadvantage that can reduce performance. If a

control-flow instruction that depends on the result of an FP instruction is mispredicted dur-

ing runahead mode, the processor would have no way of recovering from that misprediction

if the FP unit is turned off, since the source operand of the branch would not be computed.

This case happens rarely in the benchmarks we examined.

Turning off the FP unit may increase the number of instructions executed by a

runahead processor, since it allows more instructions to be executed during a runahead

period by enabling the processor to make further progress in the instruction stream. On

the other hand, this optimization reduces the number of FP instructions executed during

runahead mode, which may increase efficiency.

To examine the performance and efficiency impact of turning off the FP unit during

runahead mode, we simulate a processor that does not execute the operate and control-flow

instructions that source FP registers during runahead mode. An operate or control-flow

instruction that sources an FP register and that either has no destination register or has an

FP destination register is dropped after being decoded.11 With these optimizations, FP in-

structions do not occupy any processor resources in runahead mode after they are decoded.

Note that FP loads and stores, whose addresses are generated using integer registers, are

executed and are treated as prefetch instructions so that they can potentially generate cache

10In fact, FP operate instructions can be dropped immediately after fetch during runahead mode, if extra
decode information is stored in the instruction cache indicating whether an instruction is an FP instruction.

11An FTOI instruction that moves the value in an FP register to an INT register is not dropped. It is
immediately made ready to be scheduled once it is placed into the instruction window. After it is scheduled,
it marks its destination register as INV and it is considered to be an INV instruction. An FTOI instruction is
handled this way so that its INT destination register is marked as INV.
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misses. Their execution is accomplished in the load/store unit, just like in a traditional out-

of-order processor. The impact of turning off the FP unit in runahead mode on performance

and efficiency is evaluated in the next section.

5.3.2 Early Wake-up of INV Instructions

If one source operand of an instruction is INV, that instruction will produce an INV

result. Therefore, the instruction can be scheduled right away once any source operand

is known to be INV, regardless of the readiness of its other source operands. The base-

line runahead execution implementation does not take advantage of this property. In the

baseline implementation, an instruction waits until all its source operands become ready

before being scheduled, even if the first-arriving source operand is INV because INV bits

exist only in the physical register file, which is accessed only after the instruction is sched-

uled. Alternatively, a runahead processor can keep track of the INV status of each source

operand of an instruction in the scheduler and wake up the instruction when any of its

source operands becomes INV. We call this scheme early INV wake-up. This optimization

has the potential to improve performance because an INV instruction can be scheduled be-

fore its other source operands become ready. Early wake-up and scheduling will result in

the early removal of the INV instruction from the scheduler. Hence, scheduler entries will

be spared for valid instructions that can potentially generate L2 misses.12 Another advan-

tage of this mechanism is that it allows for faster processing of the INV dependence chains,

which results in the fast removal of useless INV instructions from the reorder buffer. A

disadvantage of this scheme is that it increases the number of executed instructions, which

may result in a degradation in efficiency, if the performance improvement is not sufficient.

In the baseline runahead execution implementation, INV bits were only present in

12Note that this mechanism may not always result in the early wake-up of an INV instruction, since other
sources of an instruction may already be ready at the time a source becomes INV.
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the physical register file. In contrast, early INV wake-up requires INV bits to be also present

in the wake-up logic, which is possibly on the critical path of the processor. The wake-up

logic is extended with one more gate that takes the INV bit into account. Although we eval-

uate early INV wake-up as an optimization, whether or not it is worthwhile to implement

in a runahead processor needs to be determined after critical path analysis, which depends

on the implementation of the processor.

Figures 5.19 and 5.20 show the increase in executed instructions and IPC over the

baseline processor when we apply the FP turn-off and early INV wake-up optimizations in-

dividually and together to the runahead processor. Turning off the FP unit increases the av-

erage IPC improvement of the runahead processor from 22.6% to 24%. Early INV wakeup

increases the IPC improvement of the runahead processor to 23.4%. Turning off the FP unit

reduces the increase in executed instructions from 26.5% to 25.5%, on average. Both of the

optimizations are more effective on the FP benchmarks. INT benchmarks do not have many

FP instructions, therefore turning off the FP unit does not help their performance. Early

INV wake-up benefits benchmarks where at least one other source operand of an instruction

is produced later than the first INV source operand. FP benchmarks show this characteristic

more than the INT benchmarks since they have more frequent data cache misses and long-

latency FP instructions. Data cache misses and FP instructions are frequently the causes

of the late-produced sources. Performing both optimizations together adds little gain to the

performance improvement obtained by only turning off the FP unit. This is because turn-

ing off the FP unit reduces the latency with which late-arriving operands of an instruction

are produced and therefore reduces the opportunities for early INV wake-up. These results

suggest that turning off the FP unit during runahead mode is a valuable optimization that

both increases performance and saves energy. In contrast, early INV wake-up is not worth-

while to implement since its performance benefit is more efficiently captured by turning off

the FP unit and its implementation increases the complexity of the scheduling logic.
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Figure 5.19: Increase in executed instructions after turning off the FP unit in runahead
mode and using early INV wake-up.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130

Pe
rc

en
t I

nc
re

as
e 

in
 IP

C
 (%

)

Baseline with runahead
Turn-off FP
Early INV wake-up
Turn-off FP and Early INV wake-up

bz
ip2

cra
fty eo

n
ga

p
gc

c
gz

ip
mcf

pa
rse

r

pe
rlb

mk

tw
olf

vo
rte

x
vp

r
am

mp
ap

plu ap
si art

eq
ua

ke

fac
ere

c

fm
a3

d
ga

lge
l
luc

as
mesa

mgri
d

six
tra

ck

sw
im
wup

wise

hm
ea

n

Figure 5.20: Increase in IPC after turning off the FP unit in runahead mode and using early
INV wake-up.
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5.3.3 Optimizing the Prefetcher Update Policy

One of the potential benefits of runahead execution is that the hardware prefetcher

can be updated during runahead mode. If the updates are accurate, the prefetcher can gen-

erate prefetches earlier than it would in the baseline processor. This can improve the time-

liness of the accurate prefetches and hence improve performance. Update of the prefetcher

during runahead mode may also create new prefetch streams, which can result in perfor-

mance improvement. On the other hand, if the prefetches generated by updates during runa-

head mode are not accurate, they will waste memory bandwidth and may cause cache pol-

lution. Moreover, inaccurate hardware prefetcher requests can cause resource contention

for the more accurate runahead load/store memory requests during runahead mode and thus

reduce runahead execution’s effectiveness.

This dissertation showed that runahead execution and hardware prefetching have

synergistic behavior (see Sections 4.1.3.1 and 4.2.5.1), a result that was independently

verified by other researchers [51]. This section optimizes the prefetcher update policy to

increase the synergy between the two prefetching mechanisms. We experiment with three

different policies to determine the impact of prefetcher update policy on the performance

and efficiency of a runahead processor.

The baseline runahead execution implementation assumes no change to the prefetcher

hardware. Just like in normal mode, L2 accesses during runahead mode train the existing

streams and L2 misses during runahead mode create new streams (train and create policy).

We also evaluate a policy where the prefetcher is turned off during runahead mode. That

is, L2 accesses do not train the stream buffers and L2 misses do not create new streams in

runahead mode (no train, no create policy). The last policy we examine allows the training

of existing streams, but disables the creation of new streams in runahead mode (only train

policy).

Figures 5.21 and 5.22 show the increase in executed instructions and IPC over the
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baseline processor with the three update policies. On average, the only train policy per-

forms best with a 25% IPC improvement while also resulting in the smallest (24.7%) in-

crease in executed instructions. Hence, the only train policy increases both the efficiency

and the performance of the runahead processor. This suggests that creation of new streams

during runahead mode is detrimental for performance and efficiency. In benchmarks art

and ammp, creating new streams during runahead mode reduces performance compared

to only training the existing streams, due to the low accuracy of the prefetcher in these

two benchmarks. For art and ammp, if new streams are created during runahead mode,

they usually generate useless prefetches that cause cache pollution and resource contention

with the more accurate runahead memory requests. Cache pollution caused by the new

streams results in more L2 misses during normal mode (hence, more entries into runahead

mode), which do not exist with the only train policy. That is why the increase in executed

instructions is smaller with the only train policy.

The no train, no create policy significantly reduces the performance improvement

of runahead execution in benchmarks applu, equake, facerec, lucas, mgrid, and swim. It

also increases the number of instructions executed in these benchmarks because it increases

the number of L2 cache misses, which results in increased number of entries into runahead

mode that are not beneficial. In these benchmarks, the main benefit of useful runahead

execution periods comes from increasing the timeliness of the prefetches generated by the

hardware prefetcher. If runahead mode does not update the prefetcher, it results in little

benefit and pipeline flushes at the end of these useless runahead periods reduce the IPC

significantly.
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Figure 5.21: Increase in executed instructions based on prefetcher training policy during
runahead mode.
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Figure 5.22: Increase in IPC based on prefetcher training policy during runahead mode.
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5.4 Putting It All Together: Efficient Runahead Execution

This section evaluates the overall effect of the efficiency and performance enhance-

ment techniques proposed for efficient runahead execution in Sections 5.2 and 5.3. We

consider implementing the following efficiency and performance optimizations together on

the baseline runahead execution processor:

• The static threshold 400 (Section 5.2.1) to eliminate short runahead periods

• The full threshold policy (Section 5.2.2) to eliminate overlapping runahead periods

• RCST, INV Load Count, and Sampling (Section 5.2.3) to eliminate useless runahead

periods

• Turning off the FP unit (Section 5.3.1) to increase performance and save energy

• The only train policy (Section 5.3.3) to increase the usefulness of runahead periods

We also evaluate the impact of using profiling to eliminate useless runahead periods

(Section 5.2.3.4) in addition to these dynamic techniques.

Figures 5.23 and 5.24 show the increase in executed instructions and IPC over the

baseline processor when the mentioned techniques are applied. Applying the proposed

techniques significantly reduces the average increase in executed instructions in a runahead

processor, from 26.5% to 6.7% (6.2% with profiling). The average IPC increase of a runa-

head processor that uses the proposed techniques is reduced slightly from 22.6% to 22.0%

(22.1% with profiling). Hence, a runahead processor employing the proposed techniques is

much more efficient than a traditional runahead processor, but it still increases performance

almost as much as a traditional runahead processor does.
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Figure 5.23: Increase in executed instructions after all efficiency and performance opti-
mizations.
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Figure 5.24: Increase in IPC after all efficiency and performance optimizations.
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5.4.1 Effect of Main Memory Latency

This section examines the effectiveness of using the proposed dynamic techniques

with different memory latencies. The left graph in Figure 5.25 shows the increase in IPC

over the baseline processor if runahead execution is employed with or without all the dy-

namic techniques. The data shown are averaged over INT and FP benchmarks. The right

graph in Figure 5.25 shows the increase in executed instructions. We used a static thresh-

old of 50, 200, 400, 650, and 850 cycles for main memory latencies of 100, 300, 500, 700,

and 900 cycles respectively, in order to eliminate short runahead periods. Other parameters

used in the techniques are the same as described in the previous sections. As memory la-

tency increases, both the IPC improvement and extra instructions due to runahead execution

increase. For almost all memory latencies, employing the proposed dynamic techniques in-

creases the average IPC improvement on the FP benchmarks while only slightly reducing

the IPC improvement on the INT benchmarks. For all memory latencies, employing the

proposed dynamic techniques significantly reduces the increase in executed instructions.

We conclude that the proposed techniques are effective for a wide range of memory laten-

cies, even when the parameters used in the techniques are not tuned.

5.4.2 Effect of Branch Prediction Accuracy

Section 4.1.3.4 showed that the performance improvement due to runahead execu-

tion increases significantly with a better branch predictor. Here, we examine the effective-

ness of the proposed efficiency techniques on a baseline with perfect branch prediction.

Figures 5.26 and 5.27 show the increase in executed instructions and IPC due to

runahead execution on a baseline with perfect branch prediction. Runahead execution on

this baseline increases the IPC by 29.7% at a cost of 30.8% extra instructions. Comparing

this to the IPC increase (22.6%) and extra instructions (26.5%) due to runahead on the base-

line with a real branch predictor, we can conclude that runahead execution is more efficient
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Figure 5.25: Increase in IPC and executed instructions with and without the proposed tech-
niques (no profiling).

on a machine with improved branch prediction. This is expected because perfect branch

prediction significantly increases the performance improvement of runahead execution (as

shown in Section 4.1.3.4) and it also eliminates the wrong-path instructions executed in

runahead mode.

Incorporating the proposed efficiency techniques on a runahead processor with per-

fect branch prediction significantly reduces the extra instructions down to 7.4% while

slightly reducing the IPC improvement to 27.9%. We conclude that the proposed efficiency

techniques remain very effective on a runahead processor with better branch prediction.

5.4.3 Effect of the Efficiency Techniques on Runahead Periods

The proposed efficiency techniques were designed to increase efficiency by reduc-

ing the number of ineffective runahead periods and increasing the usefulness of runahead

periods. Figures 5.28 and 5.29 provide supporting data showing that the techniques are

effective in achieving these goals.

152



0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110

In
cr

ea
se

 in
 E

xe
cu

te
d 

In
st

ru
ct

io
ns

 (%
)

Baseline with runahead and perfect BP
All dynamic efficiency techniques

125 257

bz
ip2

cra
fty eo

n
ga

p
gc

c
gz

ip
mcf

pa
rse

r

pe
rlb

mk

tw
olf

vo
rte

x
vp

r
am

mp
ap

plu ap
si art

eq
ua

ke

fac
ere

c

fm
a3

d
ga

lge
l
luc

as
mesa

mgri
d

six
tra

ck

sw
im
wup

wise

am
ea

n

Figure 5.26: Increase in executed instructions with and without the proposed efficiency
techniques on a baseline with perfect branch prediction.
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Figure 5.27: Increase in IPC with and without the proposed efficiency techniques on a
baseline with perfect branch prediction.
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Figure 5.28 shows the number of useful and useless runahead periods per 1000 re-

tired instructions before and after applying the proposed dynamic efficiency techniques.

The baseline runahead processor enters runahead mode 0.2 times per 1000 instructions, on

average. Only 36% of all these periods are useful (i.e., they lead to the generation of at

least one L2 cache miss that will be used in normal mode). When the proposed efficiency

techniques are applied, the efficient runahead processor enters runahead mode 0.04 times

per 1000 instructions. Hence, 79% of the runahead periods are eliminated using the effi-

ciency techniques. Only 15% of the periods in the efficient runahead processor are useless.

Therefore, the efficiency techniques are effective at eliminating useless runahead periods

which do not result in the discovery of L2 misses that are beneficial for performance.
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Figure 5.28: The number of useful and useless runahead periods per 1000 instructions with
and without the proposed dynamic efficiency techniques.

Figure 5.29 shows the effect of the efficiency techniques on the average number

of useful L2 cache misses parallelized in a useful runahead period. The baseline runa-
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head processor discovers an average of 7.05 useful L2 misses in a useful runahead period.

In contrast, the efficient runahead processor discovers useful 13.8 L2 misses in a useful

runahead period. Thus, the effectiveness of each useful runahead period is increased with

efficient runahead execution. This is due to two reasons. First, techniques that are designed

to increase the usefulness of runahead periods increase the number of L2 cache misses

discovered by useful runahead periods. Second, techniques that are designed to eliminate

the causes of efficiency result in the elimination of some relatively less useful periods that

discover only a single L2 cache miss. For example, eliminating short runahead periods

eliminates not only useless short runahead periods, but also some relatively less useful

short runahead periods as shown in Figure 5.5. Eliminating the relatively less useful runa-

head periods increases the average number of L2 misses discovered in a runahead period,

but it does not impact performance because the performance loss due to it is balanced by

the performance gain due to increased usefulness in other runahead periods.
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Figure 5.29: Average number of useful L2 misses discovered in a useful runahead period
with and without the proposed dynamic efficiency techniques.
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5.5 Other Considerations for Efficient Runahead Execution

The proposed efficiency techniques are effective at improving the efficiency of a

runahead execution processor. This section describes orthogonal ways of improving runa-

head efficiency. We found that these techniques could potentially be useful for improving

runahead efficiency, but their current implementations either are not cost-effective or they

do not improve efficiency significantly.

5.5.1 Reuse of Instruction Results Generated in Runahead Mode

The evaluations in this dissertation so far took runahead execution for granted as

a prefetch-only technique. Even though the results of most instructions independent of an

L2 miss are correctly computed during runahead mode, the described runahead implemen-

tation discards those results instead of trying to utilize them in normal mode execution.

Discarding the instruction results generated during runahead mode, as opposed to buffer-

ing them and reusing them in normal mode, is very appealing due to two reasons. First, it

simplifies the implementation of a runahead processor. Any attempt at reusing the results

generated during runahead mode needs to provide storage for those results and needs to

provide a mechanism through which those results are incorporated into the processor state

(register file and memory) during normal mode. These requirements increase the area,

design complexity, and probably the peak power consumption of the runahead processor.

Second, discarding the instruction results generated during runahead mode de-

creases the verification complexity of a runahead processor. If results of instructions are not

reused, runahead execution does not require any correctness guarantees, since it is purely

speculative (i.e., it never updates the architectural state of the processor). Reusing instruc-

tion results requires correctness guarantees in the form of mechanisms that make sure that

the reused values used to update the architectural state are correct. This requirement is

likely to increase the design verification time of a runahead processor.
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On the other hand, reuse of instruction results is also appealing in two ways. First, it

has the potential to increase performance, since instructions that are valid during runahead

mode do not need to be executed during normal mode and therefore they do not need to

consume processor resources during normal mode. This frees up space in the processor

for other instructions and possibly enables the processor to make faster progress through

the instruction stream. Second, the reuse of instruction results increases the efficiency of a

runahead processor. An aggressive reuse scheme reduces the total number of instructions

executed by a runahead processor, thereby increasing its efficiency.13

To quantify the advantages of the reuse of instruction results generated during runa-

head mode, this section examines the effects of reuse on the performance of a runahead

processor. If the reuse of results could improve the performance of a runahead proces-

sor significantly, perhaps it would be worthwhile to research techniques for implementing

reuse. We examine two different models of reuse: ideal and simple reuse.

5.5.1.1 Ideal Reuse Model

We consider the hypothetical ideal reuse model to assess the performance potential

of runahead result reuse. In this mechanism, if an instruction was valid (correctly executed)

during runahead mode, it consumes no processor resources (including fetch bandwidth)

during normal mode and updates the architectural state of the processor with the value it

computed during runahead mode. Note that this mechanism is not implementable. We only

simulate it to get an upper bound on the performance improvement that can be achieved.

In the ideal reuse mechanism, the instructions pseudo-retired during runahead mode

write their results and INV status into a FIFO reuse queue, the size of which is sufficiently

large (64K entries) in our experiments. At the end of a runahead period, the reuse queue

13However, such an aggressive reuse scheme may require complex control and large storage hardware
whose energy consumption may offset the energy reduction gained by increased efficiency.
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contains a trace of all instructions pseudo-retired in the runahead period along with their

program counters, results, and INV status. During normal mode, the simulator reads in-

structions from this queue, starting with the first instruction pseudo-retired during runahead

mode. If the processor encounters an INV instruction in the queue, it is inserted into the

pipeline to be executed, since the result for an INV instruction was not generated dur-

ing runahead mode. If the processor encounters a valid instruction, the instruction is not

inserted into the pipeline, but the simulator makes sure that its results are correctly incor-

porated into the architectural state at the right time, without any latency cost. Hence, the

processor is able to fetch a fetch-width worth of INV instructions from the reuse queue

each cycle, regardless of the number of intervening valid instructions. If an INV branch

that was fetched from the reuse queue is found out to be mispredicted after it is executed

in normal mode, the reuse queue is flushed and the fetch engine is redirected to the correct

next instruction after the mispredicted INV branch. An INV branch is mispredicted if the

program counter of the next instruction fetched from the reuse queue does not match the

address of next instruction as calculated by the execution of the branch. When the reuse

queue is empty, the simulator fetches from the I-cache just like in a normal processor.14

As an optimization, if the processor enters runahead mode again while fetching

from the reuse queue, the processor continues fetching from the reuse queue. Therefore,

valid instructions that are executed in the previous runahead period do not need to be ex-

ecuted again in the next entry into runahead mode. A runahead period overlapping with

a previous runahead period can thus reuse the instruction results generated in the previous

period. This allows for further progress in the instruction-stream during runahead mode.

We use this optimization in both the ideal and simple reuse models.

14Note that this mechanism does not allow the reuse of results generated by instructions executed on the
wrong path during runahead mode. Section 5.5.1.5 examines the impact of ideal reuse on a processor with
perfect branch prediction, which gives the ultimate upper bound on the performance achievable by reusing
the results of all valid instructions pre-executed in runahead mode.
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5.5.1.2 Simple Reuse Model

We consider the simple reuse model to assess the performance potential of a more

realistic reuse mechanism that is similar to the previously proposed dynamic instruction

reuse technique [104]. Similar to the ideal reuse model, the simple reuse model makes

use of a reuse queue, which is populated by pseudo-retired runahead mode instructions.

However, in the simple reuse model, a valid instruction that is fetched from the reuse queue

actually consumes resources, including fetch bandwidth. It is inserted into the pipeline as

a move instruction that moves an immediate value (the correct result produced in runahead

mode) into its destination (register or memory location) in a single cycle. Hence, a valid

instruction fetched from the reuse queue is independent of any other instruction and can

be executed immediately after it is placed into the scheduler. This allows for the paral-

lel execution of valid instructions during normal mode, which can result in performance

improvement. However, the simple reuse mechanism is unlikely to reduce the number of

executed instructions because reused instructions are still executed as move operations.

5.5.1.3 Performance and Efficiency Potential of Result Reuse

Figure 5.30 shows the IPC increase of the simple and ideal reuse models over the

baseline processor, along with the IPC increase of runahead execution. On average, sim-

ple reuse increases the baseline IPC by 23.1% and ideal reuse by 24.7%. Hence, adding

simple reuse to a runahead execution processor improves the average IPC by 0.38% and

adding ideal reuse improves the average IPC by 1.64%. Unfortunately, such a small per-

formance improvement, even with an ideal mechanism, probably does not justify the cost

and complexity of adding a reuse mechanism to a runahead execution processor. We ex-

amine the reasons for the poor performance improvement of the ideal reuse mechanism in

Section 5.5.1.4.

Figure 5.31 shows increase in executed instructions over the baseline processor for
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Figure 5.30: Increase in IPC with the simple and ideal reuse mechanisms.

the simple and ideal reuse models. Simple reuse actually increases the number of executed

instructions because it does not eliminate the re-execution of reused instructions. The con-

version of reused instructions to short-latency move operations enables the fast removal

of reused instructions from the instruction window in runahead mode, which results in the

execution of more instructions than a runahead processor without simple reuse. Ideal reuse

reduces the increase in number of executed instructions from 26.5% to 16.6%, leading to

a more efficient runahead execution processor. However, compared to the reduction in ex-

ecuted instructions obtained using the techniques proposed in Sections 5.2 and 5.3, this

reduction is small. Therefore, employing result reuse as an efficiency-increasing technique

is perhaps too complex and costly when there are simpler techniques that achieve better

efficiency.

We also evaluated combining ideal reuse with the efficiency-increasing techniques

proposed in Sections 5.2 and 5.3. Combining the dynamic efficiency techniques evaluated
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Figure 5.31: Effect of the simple and ideal reuse mechanisms on the percent increase in
executed instructions.

in Section 5.4 with ideal reuse results in a decrease in the number of executed instruc-

tions compared to what is achieved solely by using the proposed dynamic efficiency tech-

niques, from 6.7% (see Section 5.4) to 3.8%. This also results in an increase in the IPC im-

provement from 22.0% to 23.0%. Even when combined with other efficiency techniques,

ideal reuse does not provide benefits significant enough to justify a costly implementa-

tion. Therefore, we conclude that runahead execution should be employed as a prefetching

mechanism without reuse.

5.5.1.4 Why Does Reuse Not Increase Performance Significantly?

We analyzed why ideal result reuse does not increase the IPC of a runahead execu-

tion processor significantly. We identify four reasons as to why this is the case.
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First, the percentage of retired instructions that are ideally reused is very low in

many benchmarks. Result reuse can only be effective if it significantly reduces the number

of retired instructions by eliminating those that are executed in runahead mode. Figure 5.32

shows the breakdown of retired instructions based on where they were fetched from. An in-

struction that is “Reuse queue fetch - ideally reused” does not consume processor resources

in normal mode. All other instructions need to be executed as described in Section 5.5.1.1.

Figure 5.32 shows that only 8.5% of the instructions are eliminated (ideally reused) during

normal mode.15 The percentage of ideally reused instructions is low because: (1) For many

benchmarks, the processor spends a small amount of time during runahead mode, which

means only a small number of instructions are pre-executed in runahead mode. Hence,

there are not a lot of opportunities for reuse. (2) The results of instructions after a mis-

predicted INV branch cannot be reused. This limits the number of reused results espe-

cially in integer benchmarks, where 43% of all instructions pseudo-retired during runahead

mode are after a mispredicted INV branch. Unfortunately, even in FP benchmarks, where

only 5% of instructions pseudo-retired during runahead mode are after a mispredicted INV

branch, ideal reuse does not result in a large IPC increase due to the reasons explained in

the following paragraphs.

Second, and more importantly, eliminating an instruction does not guarantee in-

creased performance because eliminating the instruction may not reduce the critical path

of program execution. The processor still needs to execute the instructions that cannot

be eliminated because they were INV in runahead execution. After eliminating the valid

instructions, instructions that are INV become the critical path during normal mode execu-

tion.16 If this INV critical path is longer than or as long as the critical path of the eliminated

15Only in perlbmk, ammp, art, equake, lucas, and swim does the percentage of eliminated instructions
exceed 10%. With the exception of lucas, these are the benchmarks that see the largest IPC improvements
over the runahead processor with the ideal reuse mechanism.

16In some cases they were already on the critical path, regardless of the elimination of valid instructions.
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Figure 5.32: Classification of retired instructions in the ideal reuse model.

valid instructions, we should not expect much performance gain unless the processor is lim-

ited by execution bandwidth. Our analysis of the code shows that the execution of valid

instructions after runahead mode is actually much faster than the execution of INV instruc-

tions, in general. Instructions that were valid in runahead mode can be executed much faster

in normal mode because they do not incur any L1 or L2 cache misses in normal mode.17

In contrast, instructions that were INV can and do incur L1 and L2 misses during nor-

mal mode, making them more expensive to execute. We found that the average execution

time of a valid instruction is only 2.48 cycles after runahead mode, whereas the average

execution time of an INV instruction is 14.58 cycles. Thus, ideal reuse eliminates valid

17Except in the rare case when the runahead period was so long that it caused thrashing in the L1 cache.
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instructions that do not take long to execute. Therefore, it cannot reduce the critical path

of the program significantly and results in small performance improvements.18 Table 5.1

provides supporting data showing that although most of the instructions pre-executed in

runahead mode are valid (row 6), an important percentage of INV instructions incur very

long latency L2 misses and relatively long latency L1 misses in normal mode (rows 7-8)

and therefore take much longer to execute than valid instructions (rows 12-13).

Row Statistic INT FP Average
1 Percent cycles in runahead mode 13.7% 27.1% 21.2%
2 Cycles per runahead (RA) period 474 436 454
3 L2 misses captured per RA period 1.45 3.4 2.5
4 Pseudo-retired instructions per RA period 1240 1169 1201
5 Correct-path instructions per RA period 712 (57%) 1105 (95%) 923 (77%)
6 INV instructions per RA period 544 (44%) 264 (23%) 393 (33%)
7 % of INV/valid inst. that are L2 miss 1.4%/0% 2.1%/0% 1.9%/0%
8 % of INV/valid inst. that are D-cache miss 3.0%/0% 2.8%/0% 2.9%/0%
9 % of INV/valid inst. that are D-cache hit 38%/38% 36%/44% 36%/43%

10 % of INV/valid inst. that are FP 0.8%/0.4% 60%/25% 43%/20%
11 % of INV/valid inst. that are 1-cycle 59%/61% 2%/31% 18%/37%
12 Avg. latency of valid instructions (after RA) 1.78 cycles 2.66 cycles 2.48 cycles
13 Avg. latency of INV instructions (after RA) 10.16 cycles 16.31 cycles 14.58 cycles
14 IPC improvement of ideal reuse 0.90% 2.45% 1.64%

Table 5.1: Runahead execution statistics related to ideal reuse.

Figure 5.33 shows an example data-flow graph from the mcf benchmark demon-

strating why reuse may not increase performance. In this example, shaded instructions

were INV during runahead mode. Numbers by the data-flow arcs show the latency of the

instructions. After exit from runahead mode, the second INV load takes 13 cycles because

it incurs an L1 data cache miss. Therefore, the INV dependence chain takes 17 cycles to

18Note that ideal reuse is more effective in FP benchmarks than in INT benchmarks because it eliminates
some FP dependence chains that take a long time to execute due to the relatively long-latency FP instructions.
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execute. If there is no result reuse, valid instructions take only 6 cycles to execute because

there are enough execution resources in the processor core. Hence, eliminating these valid

instructions via ideal reuse does not affect the critical path and does not increase perfor-

mance, even though the number of valid instructions is larger than the number of INV

ones.
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Figure 5.33: Example showing why reuse does not increase performance.

Third, if the execution time of a benchmark is dominated by long-latency mem-

ory accesses (memory-bound), the performance potential of result reuse is not very high

since reuse can only speed up the smaller execution-bound portion. That is, the ideal reuse

of valid instructions cannot reduce the number of cycles spent on long-latency memory

accesses. Note that this is a special case of Amdahl’s Law [4]. If the optimization we

apply (reuse) speeds up only a small fraction of the program (execution-bound portion

of the program), the performance gain due to that optimization will be small. Unfortu-

nately, memory-bound benchmarks are also the benchmarks that execute many instructions

in runahead mode. Art is a very good example of a memory-bound benchmark. We find
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that, in art, 86% of all cycles are spent waiting for long-latency L2 load misses to be ser-

viced. Hence, even if all other execution cycles are magically eliminated, only a 16% IPC

improvement can be achieved. This constitutes a loose upper bound on the IPC improve-

ment that can be attained by the ideal reuse scheme. In our simulations, the ideal reuse

scheme only increases the IPC of art on the runahead processor by 3.3%, even though it

eliminates 51% of all retired instructions.

Fourth, a processor that implements ideal reuse enters some performance-degrading

short runahead periods that do not exist in the baseline runahead processor. The ideal reuse

processor reaches an L2-miss load faster than the baseline runahead processor because of

the elimination of valid instructions in normal mode. If there is a prefetch pending for

this load, the ideal reuse processor provides less time than the baseline runahead processor

for the prefetch to complete before the load is executed (since it reaches the load quicker),

which makes the ideal reuse processor more likely to enter runahead mode for the load than

the baseline runahead processor. This runahead period is usually very short and results in

a pipeline flush without any performance benefit. Such periods, which do not exist in the

baseline runahead processor, reduce the performance benefit due to ideal reuse.

5.5.1.5 Effect of Main Memory Latency and Branch Prediction Accuracy

Memory latency is an important factor on the performance impact of result reuse,

since it affects the number of instructions executed during runahead mode (hence, the num-

ber of instructions that can possibly be reused) and it affects how much of a program’s total

execution time is spent on servicing L2 cache misses. Branch prediction accuracy is also an

important factor because it affects the number of useful instructions that can be reused (by

affecting the number of mispredicted INV branches during runahead mode or by affecting

when they occur during runahead mode).

The left graph in Figure 5.34 shows the average IPC improvement of runahead exe-
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cution and runahead with ideal reuse over the respective baseline processor for four differ-

ent memory latencies. As the memory latency becomes shorter, the processor spends less

time and executes fewer instructions during runahead mode. This reduces the percentage

of retired instructions that are ideally reused in a program. For all four memory latencies,

the IPC improvement of ideal reuse is not very promising.
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Figure 5.34: Effect of memory latency and branch prediction on reuse performance.

The right graph in Figure 5.34 shows the average IPC improvement of runahead

execution and runahead with ideal reuse over the respective baseline processor with perfect

branch prediction for the same four memory latencies. Ideal reuse on a processor with

perfect branch prediction shows more performance potential for INT benchmarks than ideal

reuse on a processor with realistic branch prediction. On INT benchmarks, with perfect

branch prediction, runahead execution by itself improves the IPC of the baseline processor

with 500-cycle main memory latency by 18%, whereas ideal reuse improves the IPC of the

same processor by 23%. Therefore, even if an ideal reuse mechanism is implemented in

a runahead processor with perfect branch prediction, the prefetching benefit of runahead

execution would provide most of the performance improvement obtained over the baseline

processor. The additional performance improvement due to ideal reuse is still perhaps
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not large enough to warrant the implementation of a realistic reuse mechanism, even with

perfect branch prediction.

5.5.2 Value Prediction of L2-miss Load Instructions in Runahead Mode

The baseline runahead execution implementation marks the results of L2-miss load

instructions as INV during runahead mode. An alternative option is to predict the results

of such instructions. There are two major advantages to this if the value of the instruction

is correctly predicted. First, mispredicted branch instructions dependent on the result can

correctly compute their outcomes and can initiate misprediction recovery. Second, load

and store instructions whose addresses depend on the result can correctly compute their

addresses and possibly generate useful cache misses in runahead mode. Therefore, correct

prediction of the result values of L2-miss instructions can improve performance. Further-

more, the discovery of new L2 misses with value prediction can eliminate runahead periods

that would otherwise be caused by those misses, thereby eliminating extra instructions that

would otherwise be executed.

On the other hand, if the result of an L2-miss instruction is mispredicted, the perfor-

mance of a runahead processor can be degraded. Correctly predicted branches dependent

on the result can be overturned and they can result in inaccurate misprediction recoveries.

Load and stores dependent on the incorrect value can generate inaccurate memory requests,

possibly causing bandwidth contention and cache pollution.

Even if the value of an L2-miss is correctly predicted, performance may not be im-

proved because of two reasons. First, the predicted value may not lead to the resolution of

any mispredicted branches or generation of cache misses. In such cases, the performance

of a runahead processor can actually be degraded because the prediction of the value causes

slower execution of the L2-miss dependent instructions as also noted by Kirman et al. [59].

For example, if the value of an L2-miss FP load is predicted, the dependent FP operate
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instructions are executed. Their execution is slower than the propagation of the INV sta-

tus among those instructions. This results in slower progress in runahead mode and can

reduce the number of L2 misses discovered. Second, perfect value prediction results in

the resolution of mispredicted L2-miss dependent branches. This causes the runahead pro-

cessor to flush its pipeline and return to the correct path instead of continuing to execute

on the wrong path. If wrong-path instructions provide useful prefetching benefits and the

processor is already at a control-flow independent point on the wrong path, then recovering

to the correct path may actually degrade performance compared to staying on the wrong

path and making further progress to discover wrong-path L2 cache misses. We found that

this effect is very significant in the mcf benchmark where wrong-path instructions generate

very useful L2 cache misses [77].19

We evaluated the effect of using value prediction for L2-miss instructions on the

performance and efficiency of runahead execution using different value predictors for L2-

miss instructions. Four value predictors were modeled: 1) zero VP always predicts the

value as 0, which requires no extra storage, 2) last VP [66] predicts the value of the cur-

rent instance of the instruction to be the same as the value in its previous instance (if the

same value was produced by the instruction consecutively at least in the last two dynamic

instances of the instruction), 3) stride VP [97] predicts the value of the instruction if the

values produced by the instruction have shown a striding pattern, and 4) perfect VP al-

ways predicts the value correctly using oracle information. Figures 5.35 and 5.36 show the

increase in executed instructions and IPC using these predictors.

A perfect value predictor improves the performance benefit of runahead execution

from 22.6% to 24% while decreasing the extra instructions from 26.5% to 22.1%. Realistic

4K-entry stride and last value predictors provide even smaller benefits. In some cases, even

19For this very reason, mcf loses performance when the values of all L2-miss instructions in runahead
mode are correctly predicted (See Figure 5.36).
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a perfect value predictor degrades performance because of the reasons described above.

This suggests that using value prediction has limited potential to improve runahead perfor-

mance and efficiency on the benchmark set we examined. One of the reasons for this is the

lack of L2-miss dependent cache misses and L2-miss dependent branches in the examined

benchmarks (except for parser and bzip2 which see large IPC improvements with perfect

value prediction). In Chapter 6, we focus on a pointer-intensive benchmark set and show

that a new value prediction mechanism designed for predicting pointer values in runahead

mode can significantly improve both performance and efficiency.

We also note that the performance and efficiency of a runahead processor using the

zero VP is very similar to those of the baseline runahead processor, which uses INV bits.

Using the zero VP slightly reduces the performance improvement of runahead execution

from 22.6% to 21.9% but it also reduces the extra instructions from 26.5% to 25.1%. Since

predicting the values of L2 miss load instructions as 0 does not require any hardware stor-

age or any INV bits, a runahead processor using a zero value predictor for L2-miss load

instructions is simpler than the baseline runahead implementation and therefore should be

considered as a viable option by the designers of a runahead processor.
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Figure 5.35: Increase in executed instructions with different value prediction mechanisms
for L2-miss instructions.
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Figure 5.36: Increase in IPC with different value prediction mechanisms for L2-miss in-
structions.
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5.5.3 Optimizing the Exit Policy from Runahead Mode

The baseline runahead implementation exits runahead mode when the runahead-

causing L2 cache miss is serviced. This exit policy is not optimal for performance or

efficiency. If the processor stays in runahead mode a number of cycles after the runahead-

causing L2 miss is serviced, it may discover an L2 cache miss down in the instruction

stream. The performance benefit of initiating that L2 cache miss may outweigh the per-

formance cost of staying in runahead mode at the expense of normal mode execution.

Therefore, extending runahead mode execution after the return of the L2 miss can yield

performance benefits. Moreover, extending runahead mode might also reduce the number

of instructions executed in a runahead processor by reducing the number of entries into

runahead mode and eliminating short runahead periods that would otherwise be entered if

a previous period were not extended.

On the other hand, if no L2 cache misses are discovered during the extended portion

of the runahead period, performance will degrade because the processor stays in runahead

mode without any benefit instead of doing useful work in normal mode. Also, if the ex-

tension of a runahead period does not eliminate other runahead periods, the number of

executed instructions will increase. Therefore, the decision of whether or not to extend a

runahead period should be made very carefully.

We developed a simple mechanism that predicts whether or not extending the on-

going runahead period would be beneficial for performance based on the usefulness of

the ongoing runahead period. This mechanism counts the number of L2 cache misses

generated in a runahead period. If this number is greater than a threshold M when the

runahead-causing L2 miss is serviced, the processor stays in runahead mode for C more

cycles. Otherwise, the processor exits runahead mode. If the runahead period is extended,

the processor counts the L2 misses generated during the extra C cycles in runahead mode.

At the end of C cycles, the processor again checks if the number of L2 misses generated

172



during C cycles is greater than M. If so, runahead mode is extended for C more cycles.

This process is repeated until either the number of generated L2 misses is less than M or

the ongoing runahead period is already extended E times (E was fixed at 10 in our exper-

iments). We impose a limit on the number of extensions to prevent the starvation of the

running program and ensure its forward progress.

Figures 5.37 and 5.38 show the increase in executed instructions and IPC when this

mechanism is used with varying values for M and C. Extending the runahead periods us-

ing this simple prediction mechanism increases the performance improvement of runahead

execution from 22.6% to 24.4% while also reducing the extra instructions from 26.5% to

21.1% (with M=3 and C=500). Extending the runahead periods is especially effective in

improving the IPC of art and swim. These two benchmarks have very large numbers of

L2 misses clustered close together in program execution. Staying in runahead mode longer

enables the runahead processor to initiate many of the misses that are clustered without sig-

nificant performance cost because normal mode execution would not have made significant

progress due to the occurrence of large number of L2 misses in clusters.

We conclude that predictive mechanisms for extending runahead mode have poten-

tial to improve both the performance and efficiency of runahead execution. The mecha-

nism described here is a simple and implementable technique that provides some benefits

through the use of simple heuristics. It may be possible to design even more effective tech-

niques by developing an aggressive cost-benefit analysis scheme in hardware. However,

determining the exact or even approximate costs and benefits of events that happen in the

future may prove to be a difficult task.
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Figure 5.37: Increase in executed instructions after extending the runahead periods.
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Figure 5.38: Increase in IPC after extending the runahead periods.
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5.6 Summary and Conclusions

Runahead execution can significantly increase energy consumption because it in-

creases the number of speculatively executed instructions. This chapter examined the effi-

ciency of runahead execution and described new and simple techniques to make a runahead

processor more efficient.

Three major causes of inefficiency were identified: short, overlapping, and use-

less runahead periods. Techniques that reduce the occurrence of these causes significantly

reduce the extra instructions due to runahead execution without significantly affecting per-

formance. Techniques that increase the usefulness of runahead periods by increasing the

number of useful L2 misses generated in runahead mode increase the performance of runa-

head execution without significantly increasing and sometimes decreasing the executed

instructions. Incorporating all the proposed efficiency techniques in a runahead processor

reduces the extra instructions from 26.5% to 6.2% while only slightly reducing runahead

execution’s IPC improvement from 22.6% to 22.1%.

Reuse of runahead instruction results, value prediction of runahead L2-miss in-

structions, and extension of runahead periods were examined as possible techniques to im-

prove performance and efficiency. Augmenting runahead execution with aggressive reuse

and value prediction mechanisms does not significantly improve performance or efficiency

while it likely adds significant hardware cost and complexity. Predicting the values of L2-

miss load instructions as zero instead of marking them as INV eliminates the INV bits

needed by the baseline runahead execution without significantly degrading performance

and therefore can reduce the complexity of a runahead processor. Finally, extending runa-

head periods with a simple prediction mechanism has potential to improve both the perfor-

mance and efficiency of runahead execution.
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Chapter 6

Address-Value Delta (AVD) Prediction

The proposed runahead execution mechanism cannot parallelize dependent long-

latency cache misses. A runahead processor cannot execute instructions that are dependent

on the pending long-latency cache misses during runahead mode, since the data values

they are dependent on are not available. These instructions are designated as INV and they

mark their destination registers as INV so that the registers they produce are not used by

instructions dependent on them. Hence, runahead execution is not able to parallelize two

long-latency cache misses if the load instruction generating the second miss is dependent

on the load instruction that generated the first miss.1 These two misses need to be serviced

serially. Therefore, the full-latency of each miss is exposed and the latency tolerance of the

processor cannot be improved by runahead execution. Applications and program segments

that heavily utilize linked data structures (where many load instructions are dependent on

previous loads) therefore cannot significantly benefit from runahead execution. In fact,

for some pointer-chasing applications, runahead execution reduces performance due to its

overheads and significantly increases energy consumption due to the increased activity

caused by the runahead mode pre-processing of useless instructions.

In order to overcome the serialization of dependent long-latency cache misses, tech-

niques to parallelize dependent load instructions are needed. These techniques need to fo-

cus on predicting the values loaded by address (pointer) loads, i.e. load instructions that

1Two dependent load misses cannot be serviced in parallel in a conventional out-of-order processor either.
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load an address that is later dereferenced. Previous researchers have proposed several dy-

namic techniques to predict the values of address loads [66, 97, 11, 26] or to prefetch the

addresses generated by them [94, 95, 26]. Unfortunately, to be effective, these techniques

require a large amount of storage and complex hardware control. As energy/power con-

sumption becomes more pressing with each processor generation, simple techniques that

require small storage cost become desirable and necessary. The purpose of this chapter is to

devise a technique that reduces the serialization of dependent long-latency misses without

significantly increasing the hardware cost and complexity.

This chapter describes a new, simple, implementable mechanism, address-value

delta (AVD) prediction, that allows the parallelization of dependent long-latency cache

misses in runahead mode. The proposed technique learns the arithmetic difference (delta)

between the effective address and the data value of an address load instruction based on the

previous executions of that load instruction. Stable address-value deltas are stored in a pre-

diction buffer. When a load instruction incurs a long-latency cache miss in runahead mode,

if it has a stable address-value delta in the prediction buffer, its data value is predicted

by subtracting the stored delta from its effective address. This predicted value enables the

pre-execution of dependent instructions, including load instructions that incur long-latency

cache misses. We provide source-code examples showing the common code structures that

cause stable address-value deltas, describe the implementation of a simple address-value

delta predictor, and evaluate its performance benefits on a runahead execution processor.

We show that augmenting a runahead processor with a simple, 16-entry (102-byte) AVD

predictor improves the execution time of a set of pointer-intensive applications by 14.3%

and reduces the number of executed instructions by 15.5%.
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6.1 Motivation for Parallelizing Dependent Cache Misses

The goal of this chapter is to increase the effectiveness of runahead execution with

a simple prediction mechanism that overcomes the inability to parallelize dependent long-

latency cache misses during runahead mode. We demonstrate that focusing on this limi-

tation of runahead execution has potential to improve processor performance. Figure 6.1

shows the potential performance improvement possible if runahead execution were able to

parallelize all the dependent long-latency cache misses that can be generated by instructions

that are pre-processed during runahead mode. This graph shows the execution time for four

processors on memory- and pointer-intensive benchmarks from Olden and SPEC INT 2000

benchmark suites:2 from left to right, (1) a processor with no runahead execution, (2) the

baseline processor, which employs runahead execution, (3) an ideal runahead processor

that can parallelize dependent L2 cache misses (This processor is simulated by obtaining

the correct effective address of all L2-miss load instructions using oracle information dur-

ing runahead mode. Thus, L2 misses dependent on previous L2 misses can be generated

during runahead mode using oracle information. This processor is not implementable, but

it is intended to demonstrate the performance potential of parallelizing dependent L2 cache

misses.), (4) a processor with perfect L2 cache. Execution times are normalized to the

baseline processor. The baseline runahead processor improves the average execution time

of the processor with no runahead execution by 27%. The ideal runahead processor im-

proves the average execution time of the baseline runahead processor by 25%, showing

that significant performance potential exists for techniques that enable the parallelization

of dependent L2 misses. Table 6.1, which shows the average number of L2 cache misses

initiated during runahead mode, provides insight into the performance improvement possi-

ble with the ideal runahead processor. This table shows that the ideal runahead processor

2Section 6.5 describes the benchmarks used in this chapter.
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significantly increases the memory-level parallelism (the number of useful L2 cache misses

parallelized3) in a runahead period.
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Figure 6.1: Performance potential of parallelizing dependent L2 cache misses in a runahead
execution processor.

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg
baseline runahead 2.01 0.03 7.93 1.45 1.02 0.19 0.81 11.51 0.12 0.84 0.94 2.44

ideal runahead 4.58 8.43 8.77 2.06 2.87 4.42 1.43 12.75 1.56 2.79 1.19 4.62

Table 6.1: Average number of useful L2 cache misses generated (parallelized) during a
runahead period. Only L2 line (block) misses that cannot already be generated by the
processor’s fixed-size instruction window are counted.

Figure 6.1 also shows that for two benchmarks (health and tsp) runahead exe-

cution is ineffective. These two benchmarks have particularly low levels of memory-level

3A useful L2 cache miss is an L2 cache miss generated during runahead mode that is later needed by a
correct-path instruction in normal mode. Only L2 line (block) misses that are needed by load instructions and
that cannot already be generated by the processor’s fixed-size instruction window are counted.
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parallelism, since their core algorithms consist of traversals of linked data structures in

which almost all load instructions are dependent on previous load instructions. Due to the

scarcity of independent long-latency cache misses (as shown in Table 6.1), conventional

runahead execution cannot significantly improve the performance of health and tsp. In

fact, the overhead of runahead execution results in 4% performance loss on health. In

contrast, the ideal runahead processor provides significant performance improvement on

these two benchmarks (88% on health and 32% on tsp), alleviating the ineffectiveness

of conventional runahead execution.

6.2 AVD Prediction: The Basic Idea

We have observed that some load instructions exhibit stable relationships between

their effective addresses and the data values they load. We call this stable relationship the

address-value deltas (AVDs). We define the address-value delta of a dynamic instance of a

load instruction L as:

AV D(L) = Effective Address of L − Data V alue of L

Figure 6.2 shows an example load instruction that has a stable AVD and how we

can utilize AVD prediction to predict the value of that load in order to enable the execu-

tion of a dependent load instruction. The code example in this figure is taken from the

health benchmark. Load 1 frequently misses in the L2 cache and causes the processor

to enter runahead mode. When Load 1 initiates entry into runahead mode in a conventional

runahead execution processor, it marks its destination register as INV. Load 2, which is

dependent on Load 1, therefore cannot be executed during runahead mode. Unfortunately,

Load 2 is also an important load that frequently misses in the L2 cache. If it were possible

to correctly predict the value of Load 1, Load 2 could be executed and the L2 miss it causes

would be serviced in parallel with the L2 miss caused by Load 1.

180



while (list != NULL) {
     // ...

     // ...

     // ...

}

     p = list−>patient; 

     t = p−>time; 

     list = list−>forward; 

// Load 1 − causes 67% of all runahead entries

// Load 3

// Load 2 − dependent on load 1, frequently causes L2 misses

Iteration

Iteration 1

Iteration 3
Iteration 2

Iteration 4

L2 miss 

No
No
No

Value AVD

0x40
0x40
0x40

Yes

Causes entry into 
runahead mode

Effective Addr

0x8e2bd44 0x8e2bd04
0x8e31274 0x8e31234
0x8e18c74 0x8e18c34
0x8e1a584

Predicted to be
0x40

Predicted to be
0x8e1a584 − 0x40 = 0x8e1a544

(a) Code example (b) Execution history of Load 1

Figure 6.2: Source code example showing a load instruction with a stable AVD (Load 1)
and its execution history.

Figure 6.2b shows how the value of Load 1 can be accurately predicted using an

AVD predictor. In the first three executions of Load 1, the processor calculates the AVD

of the instruction. The AVD of Load 1 turns out to be stable and it is recorded in the AVD

predictor. In the fourth execution, Load 1 misses in the L2 cache and causes entry into

runahead mode. Instead of marking the destination register of Load 1 as INV, the processor

accesses the AVD predictor with the program counter of Load 1. The predictor returns the

stable AVD corresponding to Load 1. The value of Load 1 is predicted by subtracting the

AVD returned by the predictor from the effective address of Load 1 such that:

Predicted V alue = Effective Address − Predicted AV D

The predicted value is written into the destination register of Load 1. The dependent in-

struction, Load 2, reads this value and is able to calculate its address. Load 2 accesses

the cache hierarchy with its calculated address and it may generate an L2 cache miss that

would be serviced in parallel with the L2 cache miss generated by Load 1.

Note that Load 1 in Figure 6.2 is an address (pointer) load. We distinguish between

address loads and data loads. An address load is a load instruction that loads an address

into its destination register that is later used to calculate the effective address of itself or

another load instruction (Load 3 is also an address load). A data load is a load whose
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destination register is not used to calculate the effective address of another load instruction

(Load 2 is a data load). We are interested in predicting the values of only address loads, not

data loads, since address loads -by definition- are the only load instructions that can lead

to the generation of dependent long-latency cache misses. In order to distinguish address

loads from data loads in hardware, we bound the values AVD can take. We only consider

predicting the values of load instructions that have -in the past- satisfied the equation:

−MaxAV D ≤ AV D(L) ≤ MaxAV D

where MaxAV D is a constant set at the design time of the AVD predictor. In other words,

in order to be identified as an address load, the data value of a load instruction needs to

be close enough to its effective address. If the AVD is too large, it is likely that the value

that is being loaded by the load instruction is not an address.4 Note that this mechanism

is similar to the mechanism proposed by Cooksey et al. [29] to identify address loads in

hardware. Their mechanism identifies a load as an address load if the upper N bits of the

effective address of the load match the upper N bits of the value being loaded.

6.3 Why Do Stable AVDs Occur?

Stable AVDs occur due to the regularity in the way data structures are allocated in

memory by the program, which is sometimes accompanied by the regularity in the input

data to the program. We examine the common code constructs in application programs that

give rise to regular memory allocation patterns that result in stable AVDs for some address

loads. For our analysis, we distinguish between what we call traversal address loads and

4An alternative mechanism is to have the compiler designate the address loads with a single bit augmented
in the load instruction format of the ISA. We do not explore this option since our goal is to design a simple
purely-hardware mechanism that requires no software or ISA support.
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leaf address loads. A traversal address load is a static load instruction that produces an

address that is later consumed by itself or another address load, such as in a linked list or

tree traversal, p = p->next (e.g., Load 3 in Figure 6.2 is a traversal address load). A

leaf address load produces an address that is later consumed by a data load (e.g., Load 1 in

Figure 6.2 is a leaf address load).

6.3.1 Stable AVDs in Traversal Address Loads

A traversal address load may have a stable AVD if there is a pattern to the alloca-

tion and linking of the nodes of a linked data structure. If the allocation of the nodes is

performed in a regular fashion, the nodes will have a constant distance in memory from

one another. If a traversal load instruction later traverses the linked data structure nodes

that have the same distance from one another, the traversal load can have a stable AVD.

Figure 6.3 shows an example from treeadd, a benchmark whose main data struc-

ture is a binary tree. In this benchmark, a binary tree is allocated in a regular fashion using

a recursive function in which a node is allocated first and its left child is allocated next

(Figure 6.3a). Each node of the tree is of the same size. The layout of an example resulting

binary tree is shown in Figure 6.3b. Due to the regularity in the allocation of the nodes, the

distance in memory between each node and its left child is constant. The binary tree is later

traversed using another recursive function (Figure 6.3c). Load 1 in the traversal function

traverses the nodes by loading the pointer to the left child of each node. This load instruc-

tion has a stable AVD as can be seen from its example execution history (Figure 6.3d).

Load 1 has a stable AVD because the distance in memory between a node and its left child

is constant. We found that this load causes 64% of all entries into runahead mode and pre-

dicting its value correctly enables the generation of dependent L2 misses (generated by the

same instruction) during runahead mode. Similar traversal loads with stable AVDs exist in

twolf, mst, and vpr, which employ linked lists, and bisort, perimeter, tsp, and

183



int TreeAdd(treeNode *t) {
if (t == 0)

return 0;
else {

leftval = TreeAdd(tleft);

rightval = TreeAdd(tright);
// ...

}
}

tright = t−>right;  // Load 2

if (level == 0)
    return NULL;
else {
    new = (treeNode *) malloc (...);
    left = TreeAlloc(...);
    right = TreeAlloc(...);
    new−>left = left;
    new−>right = right;
    return new;
}

}

treeNode* TreeAlloc(level) {
// ...

(a) Source code of the recursive function
      that allocates the binary tree

(b) Layout of the binary tree in memory 
(A is the address of the root node)

(c) Source code of the recursive function (d) Execution history of
Load 1that traverses the tree 

Eff. Addr

A

Value

A+k

A+2k

AVD

−k

−k

−k

A

A+k

A+2k

k = size of each node

A+3kA+2k

A+k
...A+5k

A+8k

A+4k A+6kA+3k A+7k

NULL

tleft = t−>left;  // Load 1

Figure 6.3: An example from the treeadd benchmark showing how stable AVDs can
occur for traversal address loads.

voronoi, which employ binary- or quad-trees.

As evident from this example, the stability of AVDs in traversal address loads is de-

pendent not only on the way the programmer sizes the data structures and allocates memory

for them but also on the behavior of the memory allocator. If the memory allocator allocates

chunks of memory in a regular fashion (e.g., allocating fixed-size chunks from a contigu-

ous section of memory), the likelihood of the occurrence of stable AVDs increases. On the

other hand, if the behavior of the memory allocator is irregular, the distance in memory

between a node and the node(s) it is linked to may be totally unpredictable; hence, the

resulting AVDs would not be stable.

We also note that stable AVDs occurring due to the regularity in the allocation and

linking of the nodes can disappear if the linked data structure is significantly re-organized

(e.g., sorted) during run-time, unless the re-organization of the data structure is performed

in a regular fashion. Therefore, AVD prediction may not work for traversal address loads

in applications that require extensive modifications to the linkages in linked data structures.
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6.3.2 Stable AVDs in Leaf Address Loads

A leaf address load may have a stable AVD if the allocation of a data structure node

and the allocation of a field that is linked to the node via a pointer are performed in a regular

fashion. We show two examples to illustrate this behavior.

Figure 6.4 shows an example from parser, a benchmark that parses an input file

and looks up the parsed words in a dictionary. The dictionary is constructed at the startup

of the program. It is stored as a sorted binary tree. Each node of the tree is a Dict node

structure that contains a pointer to the string corresponding to it as one of its fields.

Both Dict node and string are allocated dynamically as shown in Figure 6.4a. First,

memory space for string is allocated. Then, memory space for Dict node is allocated

and it is linked to the memory space of string via a pointer. The layout of an example

dictionary is shown in Figure 6.4b. In contrast to the binary tree example from treeadd,

the distance between the nodes of the dictionary in parser is not constant because the

allocation of the dictionary nodes is performed in a somewhat irregular fashion (not shown

in Figure 6.4) and because the dictionary is kept sorted. However, the distance in memory

between each node and its associated string is constant. This is due to the behavior of the

xalloc function that is used to allocate the strings in combination with regularity in

input data. We found that xalloc allocates a fixed-size block of memory for the string,

if the length of the string is within a certain range. As the length of most strings falls

into that range (i.e., the input data has regular behavior), the memory spaces allocated for

them are of the same size.5

Words are later looked up in the dictionary using the rabridged lookup func-

5The code shown in Figure 6.4a can be re-written such that memory space for a Dict node is allocated
first and the memory space for its associated string is allocated next. In this case, even though the input
data may not be regular, the distance in memory between each node and its associated string would be
constant. We did not perform this optimization in our baseline evaluations. However, the effect of this
optimization is evaluated separately in Section 6.7.2.
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int dict_match (char *s, char *t) {
    while((*s != ’\0’) && (*s == *t))
     {s++; t++;}
    if ((*s == ’*’) || (*t == ’*’)) return 0;
    // ...
}

    // ...
rabridged_lookup(Dict_node *dn, char *s) {

}

    if (dn == NULL) return;

    if (m<=0) rabridged_lookup(dn−>left, s);
    if (m>=0) rabridged_lookup(dn−>right, s);

Eff. Addr. Value AVD

A A−k
C−kC

F F−k

k
k
k

Dict_node *read_word_file(...) {
    // ...
    char *s;
    while ((s = get_a_word(...)) != NULL) {
         dn = (Dict_node *) xalloc(sizeof(Dict_node));
         dn−>string = s;
         // ...
    }
    return dn;
}

char *get_a_word(...) {
    // read a word from file
    s = (char *) xalloc(strlen(word) + 1);
    strcpy(s, word);

}
    return s;

(a) Source code that allocates the nodes of the
      dictionary (binary tree) and the strings

struct Dict_node {
    char *string;
    Dict_node *left, *right;
    // ...
}

A

B C

B−k
D E F G

G−kE−k

A−k

C−k

D−k F−k

(c) Source code of the recursive function
      that performs the dictionary lookup and

denotes the memory address of the structure that is pointed to)
(b) Layout of the dictionary in memory (the value on an arc

      the execution history of Load 1

    t = dn−>string; // Load 1

    m = dict_match(s, t); 

Figure 6.4: An example from the parser benchmark showing how stable AVDs can occur
for leaf address loads.

tion (Figure 6.4c). This function recursively searches the binary tree and checks whether

the string of each node is the same as the input word s. The string in each node is

loaded by Load 1 (dn->string), which is a leaf address load that loads an address that

is later dereferenced by data loads in the dict match function. This load has a stable

AVD, as shown in its example execution history, since the distance between a node and its

associated string is constant. The values generated by Load 1 are hard to predict using a tra-

ditional value predictor because they do not follow a pattern. In contrast, the AVDs of Load

1 are quite easy to predict. We found that this load causes 36% of the entries into runahead

mode and correctly predicting its value enables the execution of the dependent load in-

structions and the dependent conditional branch instructions in the dict match function.

Enabling the correct execution of dependent load instructions result in the generation of

cache misses that could otherwise not be generated if Load 1’s result were marked as INV.
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Enabling the correct execution of dependent branch instructions results in the initiation of

misprediction recovery for dependent mispredicted branches. This allows the processor to

stay on the correct program path (i.e., to traverse the correct nodes in the dictionary) during

runahead mode.

Note that stable AVDs occurring in leaf address loads continue to be stable even

if the linked data structure is significantly re-organized at run-time. This is because such

AVDs are caused by the regularity in the links between nodes and their fields rather than

the regularity in the links between nodes and other nodes. The re-organization of the linked

data structure changes the links between nodes and other nodes, but leaves intact the links

between nodes and their fields.

Figure 6.5 shows an example from health, demonstrating the occurrence of stable

AVDs in a linked list. This benchmark simulates a health care system in which a list of

patients waiting to be serviced is maintained in a linked list. Each node of the linked

list contains a pointer to the patient structure it is associated with. Each node and the

patient structure are allocated dynamically as shown in Figure 6.5a. The allocation of

these structures is performed in a regular fashion. First, memory space for a patient is

allocated. Right after that, memory space for a List node is allocated and it is linked to

the patient via a pointer. Since List node and Patient structures are of fixed size,

the distance in memory between a node and its associated patient is constant as shown

in the layout of the resulting linked list (Figure 6.5b). The linked list is later traversed in

the check patients waiting function (Figure 6.5c). The patient associated with

each node is loaded by Load 1 (p = list->patient), which is a leaf address load that

is later dereferenced by a data load, Load 2 (t = p->time). Load 1 has a stable AVD

as shown in its execution history. It causes 67% of the entries into runahead mode and

predicting its value correctly enables the servicing of dependent L2 cache misses caused

by Load 2.
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struct List_node {

    List_node *forward;
    struct Patient *patient;

    // ...
}

struct Patient *generate_patient(...) {
    // ...

    return patient;
}

    patient = (struct Patient *) malloc(sizeof(struct Patient));

addList (struct List_node *l, struct Patient *patient) {
    // ...
    list = (struct List_node *)malloc(sizeof(struct List_node));
    list−>patient = patient;
    // ...
}

    // ...
    addList(list, patient);
}

put_in_hosp(struct Patient *patient, ...) {

Effective Addr. Value AVD

A A−k
B B−k
C C−k

k
k
k    // simulation functions called

        // ...

    // ...
    }

}

    if ((patient = generate_patient(...)) != NULL) {

        put_in_hosp(patient, ...);

sim (...) { patient
forward

patient
forward

patient
forward

A B C

A−k B−k C−k

(a) Source code that allocates the nodes of the linked list.
(c) Source code of the function that traverses

the linked list and the execution history of Load 1

    while (list != NULL) {

}
    }

check_patients_waiting(struct List_node *list)

        // ...

        list = list−>forward;
        // ...

        // ...
        t = p−>time; // Load 2

(b) Layout of the linked list in memory (the value on
an arc denotes the address of the structure)

        p = list−>patient; // Load 1

Figure 6.5: An example from the health benchmark showing how stable AVDs can occur
for leaf address loads.

6.4 Design and Operation of a Recovery-Free AVD Predictor

An AVD predictor records the AVDs and information about the stability of the

AVDs for address load instructions. The predictor is updated when an address load is

retired. The predictor is accessed when a load misses in the L2 cache during runahead

mode. If a stable AVD associated with the load is found in the predictor, the predicted

value for the load is calculated using its effective address and the stable AVD. The predicted

value is then returned to the processor to be written into the register file. The high-level

organization of a processor employing an AVD predictor is shown in Figure 6.6.

Figure 6.7 shows the organization of the AVD predictor along with the hardware

support needed to update/train it (Figure 6.7a) and the hardware support needed to make

a prediction (Figure 6.7b). Each entry of the predictor consists of three fields: Tag, the

upper bits of the program counter of the load that allocated the entry; AVD, the address-
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Figure 6.6: Organization of a processor employing an AVD predictor.

value delta that was recorded for the last retired load associated with the entry; Confidence

(Conf), a saturating counter that records the confidence of the recorded AVD (i.e., how

many times the recorded AVD was seen consecutively). The confidence field is used to

eliminate incorrect predictions for loads with unstable AVDs.

AVDConfTag

Confidence
Update/Reset

Logic

Effective Address of Data Value of
Retired Load Retired Load

<=
 MaxAVD?

>=
−MaxAVD?

Program Counter of
Retired Load

==?

Program Counter of

Predicted?
(not INV?)

L2−miss Load in
Runahead Mode

L2−miss Load in
Runahead Mode

Effective Address of

Predicted Value

AVDConfTag

valid AVD?

= Effective Addr − AVD

computed AVD = Effective Addr − Data Value

(a) Update Logic for the AVD Predictor (b) Prediction Logic for the AVD Predictor

Figure 6.7: Organization of the AVD predictor and the hardware support needed for updat-
ing/accessing the predictor.
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6.4.1 Operation

At initialization, the confidence counters in all the predictor entries are reset to zero.

There are two major operations performed on the AVD predictor: update and prediction.

The predictor is updated when a load instruction is retired during normal mode.

The predictor is accessed with the program counter of the retired load. If an entry does not

already exist for the load in the predictor and if the load has a valid AVD, a new entry is

allocated. To determine if the load has a valid AVD, the AVD of the instruction is computed

and compared to the minimum and the maximum allowed AVD. If the computed AVD is

within bounds [-MaxAVD, MaxAVD], the AVD is considered valid. On the allocation of a

new entry, the computed AVD is written into the predictor and the confidence counter is

set to one. If an entry already exists for the retired load, the computed AVD is compared

with the AVD that is stored in the existing entry. If the two match, the confidence counter is

incremented. If the AVDs do not match and the computed AVD is valid, the computed AVD

is stored in the predictor entry and the confidence counter is set to one. If the computed

AVD is not valid and the load instruction has an associated entry in the predictor, the

confidence counter is reset to zero, but the stored AVD is not updated.6

The predictor is accessed when a load instruction misses in the L2 cache during

runahead mode. The predictor is accessed with the program counter of an L2-miss load. If

an entry exists for the load and if the confidence counter is saturated (i.e., above a certain

confidence threshold), the value of the load is predicted. The predicted value is computed

by subtracting the AVD stored in the predictor entry from the effective virtual address of

the L2-miss load. If an entry does not exist for the load in the predictor, the value of the

6As an optimization, it is possible to not update the AVD predictor state, including the confidence coun-
ters, if the data value of the retired load is zero. A data value of zero has a special meaning for address
loads, i.e., NULL pointer. This optimization reduces the training time or eliminates the need to re-train the
predictor and thus helps benchmarks where loads that perform short traversals are common. The effect of
this optimization on AVD predictor performance is evaluated in Section 6.7.1.
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load is not predicted. Two outputs are generated by the AVD predictor: a predicted bit that

informs the processor whether or not a prediction is generated for the load and the predicted

value. If the predicted bit is set, the predicted value is written into the destination register

of the load so that its dependent instructions read it and are executed. If the predicted bit is

not set, the processor discards the predicted value and marks the destination register of the

load as INV in the register file (as in conventional runahead execution) so that dependent

instructions are marked as INV and their results are not used.

The AVD predictor does not require any hardware for state recovery on AVD or

branch mispredictions. Branch mispredictions do not affect the state of the AVD predictor

since the predictor is updated only by retired load instructions (i.e., there are no wrong-path

updates). The correctness of the AVD prediction cannot be determined until the L2 miss

that triggered the prediction returns back from main memory. We found that it is not worth

updating the state of the predictor on an AVD misprediction detected when the L2 cache

miss returns back from main memory, since the predictor will anyway be updated when

the load is re-executed and retired in normal execution mode after the processor exits from

runahead mode.

An AVD misprediction can occur only in runahead mode. When it occurs, instruc-

tions that are dependent on the predicted L2-miss load can produce incorrect results. This

may result in the generation of incorrect prefetches or the overturning of correct branch pre-

dictions. However, since runahead mode is purely speculative, there is no need to recover

the processor state on an AVD misprediction. We found that an incorrect AVD prediction

is not necessarily harmful for performance. If the predicted AVD is close enough to the

actual AVD of the load, dependent instructions sometimes still generate useful L2 cache

misses that are later needed by the processor in normal mode. Hence, we do not initiate

state recovery on AVD mispredictions that are resolved during runahead mode.
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6.4.2 Hardware Cost and Complexity

Our goal in the design of the AVD predictor is to avoid high hardware complexity

and large storage requirements, but to still improve performance by focusing on predicting

the addresses of an important subset of address loads. Since the AVD predictor filters out

the loads for which the absolute value of the AVD is too large (using the MaxAVD thresh-

old), the number of entries required in the predictor does not need to be large. In fact,

Section 6.6 shows that a 4-entry AVD predictor is sufficient to get most of the performance

benefit of the described mechanism. The storage cost required for a 4-entry predictor is

very small (212 bits7). The logic required to implement the AVD predictor is also rela-

tively simple as shown in Figure 6.7. Furthermore, neither the update nor the access of

the AVD predictor is on the critical path of the processor. The update is performed after

retirement, which is not on the critical path. The access (prediction) is performed only

for load instructions that miss in the L2 cache and it does not affect the critical L1 or L2

cache access times. Therefore, the complexity of the processor or the memory system is

not significantly increased with the addition of an AVD predictor.

6.5 Performance Evaluation Methodology

We evaluate AVD prediction on eleven pointer-intensive and memory-intensive

benchmarks from Olden [93] and SPEC CPU2000 integer benchmark suites. We examine

seven memory-intensive benchmarks from the Olden suite which gain at least 10% perfor-

mance improvement with a perfect L2 cache and the four relatively pointer-intensive bench-

marks (mcf, parser, twolf, vpr) from the SPEC CPU2000 integer suite. All bench-

marks were compiled for the Alpha EV6 ISA with the -O3 optimization level. Twolf

7Assuming a 4-entry, 4-way AVD predictor with 53 bits per entry: 32 bits for the tag, 17 bits for the
AVD (i.e. MaxAVD=65535), 2 bits for confidence, and 2 bits to support a True LRU (Least Recently Used)
replacement policy.

192



and vpr benchmarks are simulated for 250 million instructions after skipping the program

initialization code using a tool developed to identify a representative simulation interval in

the benchmark (similar to SimPoint [100]). To reduce simulation time, mcf is simulated

using the MinneSPEC reduced input set [61]. Parser is simulated using the test input

set provided by SPEC. We used the simple, general-purpose memory allocator (malloc)

provided by the standard C library on an Alpha OSF1 V5.1 system. We did not consider a

specialized memory allocator that would further benefit AVD prediction.

Table 6.2 shows information relevant to our studies about the simulated bench-

marks. Unless otherwise noted, performance improvements are reported in terms of execu-

tion time normalized to the baseline processor throughout this chapter. IPCs of the evalu-

ated processors, if needed, can be computed using the baseline IPC performance numbers

provided in Table 6.2 and the normalized execution times. In addition, the fraction of L2

misses that are due to address loads is shown for each benchmark since our mechanism

aims to predict the addresses loaded by address loads. We note that in all benchmarks

except vpr, at least 25% of the L2 cache data misses are caused by address loads. Bench-

marks from the Olden suite are more address-load intensive than the set of pointer-intensive

benchmarks in the SPEC CPU2000 integer suite. Hence, we expect AVD prediction to per-

form better on Olden applications.

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr
250,000 5 levels 512 4K x 4K 1024K 100,000 20,000 smallInput Data Set
integers 500 iters nodes image nodes cities points red

test.in ref ref

Simulated instruction count 468M 197M 88M 46M 191M 1050M 139M 110M 412M 250M 250M
Baseline IPC 1.07 0.05 1.67 0.92 0.90 1.45 1.31 0.97 1.33 0.73 0.88

L2 misses per 1K instructions 1.03 41.59 5.60 4.27 4.33 0.67 2.41 29.60 1.05 2.37 1.69
% misses due to address loads 72.1% 73.5% 33.8% 62.9% 57.6% 46.2% 78.6% 50.3% 30.1% 26.3% 2.1%

Table 6.2: Relevant information about the benchmarks with which AVD prediction is eval-
uated. IPC and L2 miss rates are shown for the baseline runahead processor.
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The baseline microarchitecture model used for the evaluation of AVD prediction is

an Alpha processor (described in Section 4.2) that implements runahead execution. The

machine model of the processor simulated is the same as detailed in Table 4.5 except the

processor does not employ the stream-based prefetcher. Our initial evaluations of AVD

prediction excludes the prefetcher from the model because we would like to isolate and

analyze the benefits of AVD prediction. Interaction between AVD prediction and stream-

based prefetching is later examined in detail in Section 6.8.2.

6.6 Performance of the Baseline AVD Prediction Mechanism

Figure 6.8 shows the performance improvement obtained if the baseline runahead

execution processor is augmented with the AVD prediction mechanism. We model an AVD

predictor with a MaxAVD of 64K. A prediction is made if the confidence counter has a value

of 2 (i.e., if the same AVD was seen consecutively in the last two executions of the load).

On average, the execution time is improved by 12.6% (5.5% when health is excluded)

with the use of an infinite-entry AVD predictor. No performance degradation is observed

on any benchmark. Benchmarks that have a very high L2 cache miss rate, most of which

is caused by address loads (health, perimeter, and treeadd as seen in Table 6.2),

see the largest improvements in performance. Benchmarks with few L2 misses caused by

address loads (e.g. vpr) do not benefit from AVD prediction.

A 32-entry, 4-way AVD predictor improves the execution time as much as an

infinite-entry predictor for all benchmarks except twolf. In general, as the predictor size

decreases, the performance improvement provided by the predictor also decreases. How-

ever, even a 4-entry AVD predictor improves the average execution time by 11.0% (4.0%

without health). Because AVD prediction aims to predict the values produced by a reg-

ular subset of address loads, it does not need to keep track of data loads or address loads

with very large AVDs. Thus, the number of load instructions competing for entries in the

AVD predictor is fairly small, and a small predictor is good at capturing them.
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Figure 6.8: AVD prediction performance on a runahead processor.

6.6.1 Effect of MaxAVD

As explained in Section 6.2, MaxAVD is used to dynamically determine which loads

are address loads. Choosing a larger MaxAVD results in more loads being identified -

perhaps incorrectly- as address loads and may increase the contention for entries in the

AVD predictor. A smaller MaxAVD reduces the number of loads identified as address loads

and thus reduces contention for predictor entries, but it may eliminate some address loads

with stable AVDs from being considered for AVD prediction. The choice of MaxAVD also

affects the size of the AVD predictor since the number of bits needed to store the AVD

is determined by MaxAVD. Figures 6.9 and 6.10 show the effect of a number of MaxAVD

choices on the performance improvement provided by, respectively, 16-entry and 4-entry

AVD predictors.
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Figure 6.9: Effect of MaxAVD on execution time (16-entry AVD predictor).
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Figure 6.10: Effect of MaxAVD on execution time (4-entry AVD predictor).
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The best performing MaxAVD value is 64K for the 16-entry predictor and 8K for the

4-entry predictor. Unless the AVD is too small (in which case very few address loads are

actually identified as address loads), performance is not significantly affected by MaxAVD.

However, with a 4-entry predictor, a large (1M or 64K) MaxAVD provides less performance

benefit than smaller MaxAVD values in some benchmarks due to the increased contention

for predictor entries. We found that most address loads with stable AVDs have AVDs that

are within 0-8K range (except for some loads that have stable AVDs within 32K-64K range

in mcf). This behavior is expected because, as shown in code examples in Section 6.3,

stable AVDs usually occur due to regular memory allocation patterns that happen close

together in time. Therefore, addresses that are linked in data structures are close together

in memory, resulting in small, stable AVDs in loads that manipulate them.

6.6.2 Effect of Confidence

Figure 6.11 shows the effect of the confidence threshold needed to make an AVD

prediction on performance. A confidence threshold of 2 provides the largest performance

improvement for the 16-entry AVD predictor. Not using confidence (i.e., a confidence

threshold of 0) in an AVD predictor significantly reduces the performance of the runahead

processor because it results in the incorrect prediction of the values of many address loads

that do not have stable AVDs. For example, in bisort most of the L2-miss address loads

are traversal address loads. Since the binary tree traversed by these loads is heavily mod-

ified (sorted) during run-time, these traversal address loads do not have stable AVDs. A

16-entry AVD predictor that does not use confidence generates predictions for all these

loads but increases the execution time by 180% since almost all the predictions are in-

correct. Large confidence values (7 or 15) are also undesirable because they significantly

reduce the prediction coverage for address loads with stable AVDs and hence reduce the

performance improvement.
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Figure 6.11: Effect of confidence threshold on execution time.

6.6.3 Coverage, Accuracy, and MLP Improvement

Figures 6.12 and 6.13 show the effect of the confidence threshold on the coverage

and accuracy of the predictor. Coverage is computed as the percentage of L2-miss address

loads executed in runahead mode whose values are predicted by the AVD predictor. Ac-

curacy is the percentage of predictions where the predicted value is the same as the actual

value. With a confidence threshold of two, about 30% of the L2-miss address loads are

predicted and about one half of the predictions are correct, on average. We found that

incorrect predictions are not necessarily harmful for performance. Since runahead mode

does not have any correctness requirements, incorrect predictions do not result in any re-

covery overhead. In some cases, even though the predicted AVD is not exactly correct, it

is close enough to the correct AVD that it leads to the pre-execution of dependent instruc-

tions that generate cache misses that are later needed by correct execution. An example

showing how inaccurate AVD predictions can result in useful prefetch requests is provided

in Section 6.7.1.
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Figure 6.12: AVD prediction coverage for a 16-entry predictor.
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Figure 6.13: AVD prediction accuracy for a 16-entry AVD predictor.
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Since AVD prediction can provide prefetching benefits even though the predicted

AVD is not accurate, a more relevant metric for measuring the goodness of the AVD predic-

tor is the improvement in the memory-level parallelism [23]. Table 6.3 shows the increase

in memory-level parallelism achieved with a 16-entry AVD predictor by showing the av-

erage number of useful L2 cache misses generated in a runahead period with and without

AVD prediction. Note that benchmarks that show large increases in the average number of

useful L2 misses with an AVD predictor also show large increases in performance.

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg
L2 misses - baseline runahead 2.01 0.03 7.93 1.45 1.02 0.19 0.81 11.51 0.12 0.84 0.94 2.44

L2 misses - 16-entry AVD pred 2.40 6.36 8.51 1.67 1.53 0.25 0.90 12.05 0.50 0.87 0.94 3.27
% reduction in execution time 2.9% 82.1% 8.4% 8.4% 17.6% 4.5% 0.8% 2.1% 6.3% 0.0% 0.0% 12.1%

Table 6.3: Average number of useful L2 cache misses generated during a runahead period
with a 16-entry AVD predictor.

6.6.4 AVD Prediction and Runahead Efficiency

Efficiency is an important concern in designing a runahead execution processor

as described in Chapter 5. AVD prediction improves efficiency because it both increases

performance and decreases the number of executed instructions in a runahead processor.

Figure 6.14 shows that employing AVD prediction reduces the number of instructions pro-

cessed in a runahead processor by 13.3% with a 16-entry predictor and by 11.8% with a

4-entry predictor. AVD prediction reduces the number of executed instructions because it is

able to parallelize and service dependent L2 cache misses during a single runahead period.

In a runahead processor without AVD prediction, two dependent L2 misses would cause

two separate runahead periods, which are overlapping, and hence they would result in the

execution of many more instructions than can be executed in a single runahead period.8

8In fact, an extreme case of inefficiency caused by dependent L2 misses can be seen in health. In this
benchmark, using runahead execution increases the number of executed instructions by 27 times, but results
in a 4% increase in execution time! Using AVD prediction greatly reduces this inefficiency.
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Figure 6.14: Effect of AVD prediction on the number of executed instructions.

Figure 6.15 shows the normalized number of useful and useless runahead periods in

the baseline runahead processor and the runahead processor with a 16-entry AVD predictor.

Remember that a runahead period is defined to be useful if it results in the generation of at

least one L2 cache miss that cannot be generated by the processor’s fixed size instruction

window and that is later needed by a correct-path instruction in normal mode. On average,

AVD prediction reduces the number of runahead periods by 18%. A significant fraction

of the useless runahead periods is eliminated with AVD prediction. In some benchmarks,

like mst and treeadd, the number of useful runahead periods is also reduced with AVD

prediction. This is because AVD prediction increases the degree of usefulness of useful

runahead periods. With AVD prediction, an otherwise useful runahead period results in the

parallelization of more L2 cache misses, which eliminates later runahead periods (useful

or useless) that would have occurred in the baseline runahead processor. The average num-

ber of useful L2 cache misses discovered in a useful runahead period is 6.5 without AVD
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prediction and 10.3 with AVD prediction.

We note that, even with AVD prediction, a large fraction (on average 61%) of the

runahead periods remain useless. Hence, AVD prediction cannot eliminate all useless runa-

head periods. However, a processor employing AVD prediction can be augmented with the

previously proposed techniques for efficient runahead processing (described in Chapter 5)

to further improve the efficiency of runahead execution. We examine the effect of combin-

ing these techniques and AVD prediction in Section 6.8.1.
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Figure 6.15: Effect of AVD prediction on the number of runahead periods.

6.6.5 Effect of Memory Latency

Figure 6.16 shows the normalized average execution time with and without AVD

prediction for five processors with different memory latencies. In this figure, execution

time is normalized to the baseline runahead processor independently for each memory la-

tency. Average execution time improvement provided by a 16-entry AVD predictor ranges
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from 8.0% for a relatively short 100-cycle memory latency to 13.5% for a 1000-cycle mem-

ory latency. AVD prediction consistently improves the effectiveness of runahead execution

on processors with different memory latencies, including the one with a short, 100-cycle

memory latency where runahead execution is very ineffective and actually increases the ex-

ecution time by 2%. We conclude that a low-cost AVD predictor is beneficial for runahead

processors with both relatively short and long memory latencies.
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Figure 6.16: Effect of memory latency on AVD predictor performance.

6.6.6 AVD Prediction vs. Stride Value Prediction

We compare the proposed AVD predictor to stride value prediction [97]. When an

L2-miss is encountered during runahead mode, the stride value predictor (SVP) is accessed

for a prediction. If the SVP generates a confident prediction, the value of the L2-miss load

is predicted. Otherwise, the L2-miss load marks its destination register as INV. Figure 6.17

shows the normalized execution times obtained with an AVD predictor, a stride value pre-
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dictor, and a hybrid AVD-stride value predictor.9 Stride value prediction is more effective

when the predictor is larger, but it provides only 4.5% (4.7% w/o health) improvement

in average execution time even with a 4K-entry predictor versus the 12.6% (5.5% w/o

health) improvement provided by the 4K-entry AVD predictor. With a small, 16-entry

predictor, stride value prediction improves the average execution time by 2.6% (2.7% w/o

health), whereas AVD prediction results in 12.1% (5.1% w/o health) performance

improvement. The filtering mechanism (i.e., the MaxAVD threshold) used in the AVD pre-

dictor to identify and predict only address loads enables the predictor to be small and still

provide significant performance improvements.
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Figure 6.17: AVD prediction vs. stride value prediction.

9In our experiments, the hybrid AVD-SVP predictor does not require extra storage for the selection mech-
anism. Instead, the prediction made by the SVP is given higher priority than the prediction made by the AVD
predictor. If the SVP generates a confident prediction for an L2-miss load, its prediction is used. Otherwise,
the prediction made by the AVD predictor is used, if confident.
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The benefits of stride and AVD predictors overlap for traversal address loads. Both

predictors can capture the values of traversal address loads if the memory allocation pattern

is regular. Many L2 misses in treeadd are due to traversal address loads, which is why

both SVP and AVD predictors perform very well and similarly for this benchmark.

Most leaf address loads cannot be captured by SVP, whereas an AVD predictor

can capture those with constant AVD patterns. The benchmark health has many AVD-

predictable leaf address loads, an example of which was described in detail in Section 6.3.2.

The traversal address loads in health are irregular and therefore cannot be captured by

either SVP or AVD. Hence, AVD prediction provides significant performance improvement

in health whereas SVP does not. We found that benchmarks mst, perimeter, and

tsp also have many leaf address loads that can be captured with an AVD predictor but not

with SVP.

In contrast to an AVD predictor, an SVP is able to capture data loads with constant

strides. For this reason, SVP significantly improves the performance of parser. In this

benchmark, correctly value-predicted L2-miss data loads lead to the execution and correct

resolution of dependent branches that were mispredicted by the branch predictor. SVP

improves the performance of parser by keeping the processor on the correct path during

runahead mode rather than by allowing the parallelization of dependent cache misses.

Figure 6.17 also shows that combining stride value prediction and AVD prediction

results in a larger performance improvement than that provided by either of the prediction

mechanisms alone. For example, a 16-entry hybrid AVD-SVP predictor results in 13.4%

(6.5% w/o health) improvement in average execution time. As shown in code examples in

Section 6.3, address-value delta predictability is different in nature from stride value pre-

dictability. A load instruction can have a predictable AVD but not a predictable stride, and

vice versa. Therefore, an AVD predictor and a stride value predictor sometimes generate

predictions for loads with different behavior, resulting in increased performance improve-
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ment when they are combined. This effect is especially salient in parser, where we

found that the AVD predictor is good at capturing leaf address loads and the SVP is good

at capturing zero-stride data loads.

6.6.7 Simple Prefetching with AVD Prediction

So far, we have employed AVD prediction for value prediction purposes, i.e., for

predicting the data value of an L2-miss address load and thus enabling the pre-execution

of dependent instructions that may generate long-latency cache misses. AVD prediction

can also be used for simple prefetching without value prediction. This section evaluates

the use of AVD prediction for simple prefetching on the runahead processor and shows that

the major performance benefit of AVD prediction comes from enabling the pre-execution

of dependent instructions.

In the simple prefetching mechanism we evaluate, the value of an L2-miss address

load is predicted using AVD prediction during runahead mode. Instead of writing this

value into the register file and enabling the execution of dependent instructions, the proces-

sor generates a memory request for the predicted value by treating the value as a memory

address. A prefetch request for the next and previous sequential cache lines are also gen-

erated, since the data structure at the predicted memory address can span multiple cache

lines. The destination register of the L2-miss address load is marked as INV in the register

file, just like in baseline runahead execution. This mechanism enables the prefetching of

only the address loaded by an L2-miss address load that has a stable AVD. However, in

contrast to using an AVD predictor for value prediction, it does not enable the prefetches

that can be generated further down the dependence chain of an L2-miss load through the

execution of dependent instructions.

Figure 6.18 shows the normalized execution times when AVD prediction is used

for simple prefetching and when AVD prediction is used for value prediction as evaluated
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in previous sections. AVD prediction consistently provides higher performance improve-

ments when used for value prediction than when used for simple prefetching. A 16-entry

AVD predictor results in 12.1% performance improvement when it is used for value predic-

tion versus 2.5% performance improvement when it is used for simple prefetching. Hence,

the major benefit of AVD prediction comes from the prefetches generated by the execu-

tion of the instructions on the dependence chain of L2-miss address loads rather than the

prefetching of only the addresses loaded by L2-miss address loads.
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Figure 6.18: AVD prediction performance with simple prefetching.

6.6.8 AVD Prediction on Conventional Processors

We have shown the performance impact of using AVD prediction on runahead exe-

cution processors. However, AVD prediction is applicable not only to runahead execution

processors. Less aggressive conventional out-of-order execution processors that do not im-

plement runahead execution can also utilize AVD prediction to overcome the serialization
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of dependent load instructions.

Figure 6.19 shows the normalized execution times when AVD prediction is used for

simple prefetching (as described in Section 6.6.7) and value prediction on a conventional

out-of-order processor.10 Note that execution time is normalized to the execution time on

the conventional out-of-order processor. Using a 16-entry AVD predictor for value pre-

diction improves the average execution time on the conventional out-of-order processor by

4%. Using the same AVD predictor for simple prefetching improves the average execution

time by 3.2%. The comparison of these results with the impact of AVD prediction on the

runahead execution processor shows that AVD prediction, when used for value prediction,

is more effective on the runahead execution processor with the same instruction window

size. Since runahead execution enables the processor to execute many more instructions

than a conventional out-of-order processor while an L2 miss is in progress, it exposes more

dependent load instructions than an out-of-order processor with the same instruction win-

dow size. The correct prediction of the values of these load instructions results in higher

performance improvements on a runahead processor.

6.7 Hardware and Software Optimizations for AVD Prediction

The results presented in the previous section were based on the baseline AVD pre-

dictor implementation described in Section 6.4. This section describes one hardware op-

timization and one software optimization that increases the benefits of AVD prediction by

taking advantage of the data structure traversal and memory allocation characteristics in

application programs.

10The parameters for the conventional out-of-order processor are the same as described in Section 6.5,
except the processor does not employ runahead execution. The simple prefetching and value prediction
mechanisms evaluated on out-of-order processors are employed for L2-miss loads. We examined using these
two mechanisms for all loads or L1-miss loads, but did not see significant performance differences.
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Figure 6.19: AVD prediction performance on a non-runahead processor.

6.7.1 NULL-Value Optimization

In the AVD predictor we have evaluated, the confidence counter of an entry is reset

if the computed AVD of the retired address load associated with the entry is not valid

(i.e., not within bounds [-MaxAVD, MaxAVD]). The AVD of a load instruction with a data

value of zero is almost always invalid because the effective addresses computed by load

instructions tend to be very large in magnitude. As a result, the confidence counter of an

entry is reset if the associated load is retired with a data value of 0 (zero). For address

loads, a zero data value has a special meaning: a NULL pointer is being loaded. This

indicates the end of a linked data structure traversal. If a NULL pointer is encountered for

an address load, it may be better not to reset the confidence counter for the corresponding

AVD because the AVD of the load may otherwise be stable except for the intermittent

instabilities caused by NULL pointer loads. This section examines the performance impact

of not updating the AVD predictor if the value loaded by a retired address load is zero. We
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call this optimization the NULL-value optimization.

If the AVD of a load is stable except when a NULL pointer is loaded, resetting the

confidence counter upon encountering a NULL pointer may result in a reduction in the

prediction coverage of an AVD predictor. We show why this can happen with an example.

Figure 6.20 shows an example binary tree that is traversed by the treeadd program. The

tree is traversed with the source code shown in Figure 6.3. The execution history of the

load that accesses the left child of each node (Load 1 in Figure 6.3) is shown in Table 6.4.

This table also shows the predictions for Load 1 that would be made by two different AVD

predictors: one that resets the confidence counters on a NULL value and one that does

not change the confidence counters on a NULL value. Both predictors have a confidence

threshold of 2. To simplify the explanation of the example, we assume that the predictor is

updated before the next dynamic instance of Load 1 is executed.11

The execution history of Load 1 shows that not updating the AVD predictor on a

NULL value is a valuable optimization. If the confidence counter for Load 1 in the AVD

predictor is reset on a NULL data value, the AVD predictor generates a prediction for only 3

instances of Load 1 out of a total of 15 dynamic instances (i.e., coverage = 20%). Only one

of these predictions is correct (i.e., accuracy = 33%). In contrast, if the AVD predictor is

not updated on a NULL data value, it would generate a prediction for 13 dynamic instances

(coverage = 87%), 5 of which are correct (accuracy = 38%).12 Hence, not updating the AVD

predictor on NULL data values significantly increases the coverage without degrading the

accuracy of the predictor since the AVD for Load 1 is stable except when it loads a NULL

pointer.

11Note that this may not be the case in an out-of-order processor. Our simulations faithfully model the
update of the predictor based only on information available to the hardware.

12Note that, even though many of the predicted AVDs are incorrect in the latter case, the predicted values
are later used as addresses by the same load instruction. Thus, AVD prediction can provide prefetching
benefits even if the predicted AVDs are not correct.
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k: size of each node (k < MaxAVD)

Figure 6.20: An example binary tree traversed by the treeadd program. Links traversed
by Load 1 in Figure 6.3 are shown in bold.

Dynamic Effective Predicted AVD and (value) Predicted AVD and (value)
instance Address

Data Value Correct AVD AVD valid?
reset on NULL no reset on NULL

1 A A+k -k valid no prediction no prediction
2 A+k A+2k -k valid no prediction no prediction
3 A+2k A+3k -k valid -k (A+3k) -k (A+3k)
4 A+3k 0 (NULL) A+3k not valid -k (A+4k) -k (A+4k)
5 A+4k 0 (NULL) A+4k not valid no prediction -k (A+5k)
6 A+5k A+6k -k valid no prediction -k (A+6k)
7 A+6k 0 (NULL) A+6k not valid no prediction -k (A+7k)
8 A+7k 0 (NULL) A+7k not valid no prediction -k (A+8k)
9 A+8k A+9k -k valid no prediction -k (A+9k)

10 A+9k A+10k -k valid no prediction -k (A+10k)
11 A+10k 0 (NULL) A+10k not valid -k (A+11k) -k (A+11k)
12 A+11k 0 (NULL) A+11k not valid no prediction -k (A+12k)
13 A+12k A+13k -k valid no prediction -k (A+13k)
14 A+13k 0 (NULL) A+13k not valid no prediction -k (A+14k)
15 A+14k 0 (NULL) A+14k not valid no prediction -k (A+15k)

Table 6.4: Execution history of Load 1 in the treeadd program (see Figure 6.3) for the
binary tree shown in Figure 6.20.
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For benchmarks similar to treeadd where short regular traversals frequently ter-

minated by NULL pointer loads are common, not updating the AVD predictor on a NULL

data value would be useful. NULL-value optimization requires that a NULL data value

be detected by the predictor. Thus the update logic of the AVD predictor needs to be aug-

mented with a simple comparator to zero (zero checker).

Figure 6.21 shows the impact of using NULL-value optimization on the execu-

tion time of the evaluated benchmarks. NULL-value optimization significantly improves

the execution time of treeadd (by 41.8% versus the 17.6% improvement when confi-

dence is reset on NULL values) and does not significantly impact the performance of other

benchmarks. On average, it increases the execution time improvement of a 16-entry AVD

predictor from 12.1% to 14.3%, mainly due to the improvement in treeadd.
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Figure 6.21: AVD prediction performance with and without NULL-value optimization.

To provide insight into the performance improvement in treeadd, Figures 6.22

and 6.23 show the coverage and accuracy of AVD predictions for L2-miss address loads.
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Figure 6.22: Effect of NULL-value optimization on AVD prediction coverage.
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Figure 6.23: Effect of NULL-value optimization on AVD prediction accuracy.
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Not updating the AVD predictor on NULL values increases the coverage of the

predictor from 50% to 95% in treeadd while also slightly increasing its accuracy. For

most other benchmarks, the AVD prediction coverage also increases with the NULL-value

optimization, however the AVD prediction accuracy decreases. Therefore, the proposed

NULL-value optimization does not provide significant performance benefit in most bench-

marks.13

6.7.2 Optimizing the Source Code to Take Advantage of AVD Prediction

As evident from the code examples shown in Section 6.3, the existence of stable

AVDs depends highly on the existence of regular memory allocation patterns arising from

the way programs are written. We demonstrate how increasing the regularity in the alloca-

tion patterns of linked data structures -by modifying the application source code- increases

the effectiveness of AVD prediction on a runahead processor. To do so, we use the source

code example from the parser benchmark that was explained in Section 6.3.2 and Fig-

ure 6.4.14

In the parser benchmark, stable AVDs for Load 1 in Figure 6.4 occur because

the distance in memory between a string and its associated Dict node is constant

for many nodes in the dictionary. As explained in Section 6.3.2, the distance in memory

between a string and its associated Dict node depends on the size of the string be-

cause the parser benchmark allocates memory space for string first and Dict node

13In some benchmarks, encountering a NULL pointer actually coincides with the end of a stable AVD
pattern. Not updating the AVD predictor on NULL values in such cases increases coverage but reduces
accuracy.

14Note that the purpose of this section is to provide insights into how simple code optimizations can help
increase the effectiveness of AVD prediction. This section is not meant to be an exhaustive treatment of
all possible code optimizations for AVD prediction. We believe program, compiler, and memory allocator
optimizations that can increase the occurrence of stable AVDs in applications is a large and exciting area for
future research.
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next. If the allocation order for these two structures is reversed (i.e., if space for Dict node

is allocated first and string next), the distance in memory between string and Dict

node would no longer be dependent on the size of the string, but it would be dependent

on the size of Dict node. Since the size of the data structure Dict node is constant, the

distance between string and Dict node would always be constant. Such an optimiza-

tion in the allocation order would therefore increase the stability of the AVDs of Load 1.

Figure 6.24b shows the modified source code that allocates memory space for Dict node

first and string next. Note that this optimization requires only three lines to be modified

in the original source code of the parser benchmark.

Dict_node allocated FIRST

      dictionary (binary tree) and the strings
(a) Base source code that allocates the nodes of the

string allocated FIRST

Dict_node allocated NEXT

string allocated NEXTDict_node *read_word_file(...) {
    // ...

    while ((s = get_a_word(...)) != NULL) {

         dn−>string = s;
         // ...
    }
    return dn;
}

char *get_a_word(...) {
    // read a word from file
    s = (char *) xalloc(strlen(word) + 1);
    strcpy(s, word);

}
    return s;

struct Dict_node {
    char *string;
    Dict_node *left, *right;
    // ...
}

    char *s; Dict_node *dn;

         dn = (Dict_node *) xalloc(sizeof(Dict_node));

    // read a word from file

struct Dict_node {
    char *string;
    Dict_node *left, *right;
    // ...
}

    strcpy(s, word);

}
    return s;

Dict_node *read_word_file(...) {
    // ...
    char *s; Dict_node *dn;

         dn−>string = s;
         // ...
    }
    return dn;
}

         *dn = (Dict_node *) xalloc(sizeof(Dict_node));

    while ((s = get_a_word(..., &dn)) != NULL) {

    s = (char *) xalloc(strlen(word) + 1);

(b) Modified source code (modified lines are in bold)

char *get_a_word(..., Dict_node **dn) {

Figure 6.24: Source code optimization performed in the parser benchmark to increase
the effectiveness of AVD prediction.
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Figure 6.25 shows the execution time of the baseline parser binary and the modi-

fied parser binary on a runahead processor with an without AVD prediction support. The

performance of the baseline and modified binaries are the same on the runahead processor

that does not implement AVD prediction, indicating that the code modifications shown

in Figure 6.24 does not significantly change the performance of parser on the baseline

runahead processor. However, when run on a runahead processor with AVD prediction,

the modified binary outperforms the base binary by 4.4%. Hence, this very simple source

code optimization significantly increases the effectiveness of AVD prediction by taking

advantage of the way AVD prediction works.
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Figure 6.25: Effect of source code optimization on AVD prediction performance in the
parser benchmark.

Figure 6.26 shows the AVD prediction coverage and accuracy for L2-miss address

loads on the baseline binary and the modified binary. The described source code optimiza-

tion increases the accuracy of AVD prediction from 58% to 83%. Since the modified binary

has more regularity in its memory allocation patterns, the resulting AVDs for Load 1 are

more stable than in the baseline binary. Hence the increase in AVD prediction accuracy and

performance.
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Figure 6.26: Effect of source code optimization on AVD prediction coverage and accuracy
in the parser benchmark.

6.8 Interaction of AVD Prediction with Other Techniques

A runahead processor will likely incorporate other techniques that interact with

AVD prediction, such as techniques for efficient runahead processing and stream-based

hardware data prefetching. Some of the benefits provided by these mechanisms can be

orthogonal to the benefits provided by AVD prediction, some not. This section analyzes

the interaction of techniques for efficient runahead processing and stream-based hardware

data prefetching with AVD prediction.

6.8.1 Interaction of AVD Prediction with Efficiency Techniques for Runahead Exe-
cution

Section 5.2 proposed several techniques to increase the efficiency of a runahead

processor. The proposed efficiency techniques improve runahead efficiency by eliminating

short, overlapping, and otherwise useless runahead periods without significantly reducing
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the performance improvement provided by runahead execution. In essence, these tech-

niques predict whether or not a runahead period is going to be useful (i.e., will generate a

useful L2 cache miss). If the runahead period is predicted to be useless, entry into runahead

mode is disabled.

In contrast, AVD prediction improves the efficiency of a runahead processor by

increasing the usefulness of runahead periods (either by turning a useless runahead period

into a useful one or by increasing the usefulness of an already useful runahead period).

Since AVD prediction and runahead efficiency techniques improve runahead efficiency in

different ways, we would like to combine these two approaches and achieve even further

improvements in runahead efficiency.

This section evaluates the runahead efficiency techniques proposed in Section 5.2

alone and in conjunction with AVD prediction. Table 6.5 lists the evaluated efficiency

techniques and the threshold values used in the implementation.

Short period elimination Processor does not enter runahead on an L2 miss that has been in flight for more than T=400 cycles.
Overlapping period elimination Not implemented. Overlapping periods were useful for performance in the benchmark set examined.

1. 64-entry, 4-way RCST
2. Exit runahead mode if 75% of the executed loads are INV after 50 cycles in runahead modeUseless period elimination
3. Sampling: If the last N=100 runahead periods caused less than T=5 L2 cache misses,

do not enter runahead mode for the next M=1000 L2 cache misses

Table 6.5: Runahead efficiency techniques evaluated with AVD prediction.

Figures 6.27 and 6.28 show respectively the normalized execution time and the nor-

malized number of executed instructions when AVD prediction and efficiency techniques

are utilized individually and together. We assume that NULL-value optimization is em-

ployed in the AVD predictor. In general, efficiency techniques are very effective at reduc-

ing the number of executed instructions. However, they also result in a slight performance

loss. On average, using the efficiency techniques results in a 30% reduction in executed

instructions accompanied with a 2.5% increase in execution time on the baseline runahead

processor.
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Figure 6.27: Normalized execution time when AVD prediction and runahead efficiency
techniques are used individually and together.
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Compared to the efficiency techniques, AVD prediction is less effective in reduc-

ing the number of executed instructions. However, AVD prediction increases the baseline

runahead performance while also reducing the executed instructions. On average, using a

16-entry AVD predictor results in a 15.5% reduction in executed instructions accompanied

with a 14.3% reduction in execution time.

Using AVD prediction in conjunction with the previously-proposed efficiency tech-

niques further improves efficiency by both reducing the number of instructions and at the

same time increasing performance. When AVD prediction and efficiency techniques are

used together in the baseline runahead processor, a 35.3% reduction in executed instruc-

tions is achieved accompanied with a 10.1% decrease in execution time. Hence, AVD

prediction and the previously-proposed efficiency techniques are complementary to each

other and they interact positively.

Figure 6.29 shows the normalized number of runahead periods using AVD predic-

tion and efficiency techniques. Efficiency techniques are more effective in eliminating use-

less runahead periods than AVD prediction. Efficiency techniques alone reduce the num-

ber of runahead periods by 53% on average. Combining AVD prediction and efficiency

techniques eliminates 57% of all runahead periods and the usefulness of already-useful

runahead periods also increases.

We conclude that using both AVD prediction and efficiency techniques together pro-

vides a better efficiency-performance trade-off than using either of the mechanisms alone.

Therefore, an efficient runahead processor should incorporate both AVD prediction and

runahead efficiency techniques.

6.8.2 Interaction of AVD Prediction with Stream-based Prefetching

Stream-based prefetching [56] is a technique that identifies regular streaming pat-

terns in the memory requests generated by a program. Once a streaming pattern is identi-
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fied, the stream prefetcher generates speculative memory requests for later addresses in the

identified stream. We compare the performance benefits and bandwidth requirements of

an AVD predictor and an aggressive state-of-the-art stream-based prefetcher (described in

Section 4.2.3) along with a combination of both techniques. The experiments in this sec-

tion assume that the AVD predictor implements the NULL-value optimization described in

Section 6.7.1.

Figure 6.30 shows the execution time improvement when AVD prediction and stream

prefetching are employed individually and together on the baseline runahead processor.

Figures 6.31 and 6.32 respectively show the increase in the number of L2 accesses and

main memory accesses when AVD prediction and stream prefetching are employed indi-

vidually and together. On average, the stream prefetcher with a prefetch distance of 32

improves the average execution time of the evaluated benchmarks by 16.5% (18.1% when

health is excluded) while increasing the number of L2 accesses by 33.1% and main

memory accesses by 14.9%. A prefetch distance of 8 provides an average performance
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improvement of 13.4% (14.8% excluding health) and results in a 25% increase in L2

accesses and a 12.2% increase in memory accesses. In contrast, a 16-entry AVD predictor

improves the average execution time of the evaluated benchmarks by 14.3% (7.5% exclud-

ing health) while increasing the number of L2 accesses by only 5.1% and main memory

accesses by only 3.2%. Hence, AVD prediction is much less bandwidth-intensive than

stream prefetching, but it does not provide as much performance improvement.

Using AVD prediction and stream prefetching together on a runahead processor im-

proves the execution time by more than either of the two techniques does alone. This shows

that the two techniques are in part complementary. Using a 16-entry AVD predictor and a

stream prefetcher with a prefetch distance of 32 together improves the average execution

time by 24.9% (19.5% excluding health) while increasing the L2 accesses by 35.3% and

main memory accesses by 19.5%.
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Figure 6.30: Performance comparison of AVD prediction, stream prefetching and AVD
prediction combined with stream prefetching.
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Figure 6.31: Increase in L2 accesses due to AVD prediction, stream prefetching and AVD
prediction combined with stream prefetching.
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Figure 6.32: Increase in memory accesses due to AVD prediction, stream prefetching and
AVD prediction combined with stream prefetching.
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In general, AVD prediction is limited to prefetching the addresses of dependent

load instructions whereas a stream prefetcher can prefetch addresses generated by both

dependent and independent load instructions. Therefore, a stream prefetcher can capture

a broader range of address patterns that are of a streaming nature. A traversal address

load with a stable AVD (in this case also a regular stride) results in a streaming memory

access pattern. Hence, similarly to an AVD predictor, a stream prefetcher can prefetch the

addresses generated by a traversal address load with a constant AVD.

In contrast to an AVD predictor, a stream prefetcher can capture the addresses gen-

erated by a leaf address load with a stable AVD and its dependent instructions only if those

addresses form a streaming access pattern or are part of a streaming access pattern. An

AVD predictor is therefore more effective in predicting the addresses dependent on leaf ad-

dress loads with stable AVDs. For this very reason, AVD prediction significantly improves

the performance of two benchmarks, health and mst, for which the stream prefetcher is

ineffective.

6.9 Summary and Conclusions

Even though runahead execution is effective at parallelizing independent L2 cache

misses, it is unable to parallelize dependent cache misses. To overcome this limitation of

runahead execution, this chapter developed a new, area-efficient technique, address-value

delta (AVD) prediction, that is used to predict the values loaded by address load instructions

by predicting the AVD (the arithmetic difference between the effective address and the data

value) of the instruction. Our analysis showed that stable AVDs exist due to the regular

memory allocation patterns in programs that heavily utilize linked data structures.

The proposed AVD prediction mechanism requires neither significant hardware cost

or complexity nor hardware support for state recovery. Our experimental results showed
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that a simple AVD predictor can significantly improve both the performance and effi-

ciency of a runahead execution processor. AVD prediction also interacts positively with

two previously-proposed mechanisms, efficiency techniques for runahead execution and

stream-based data prefetching.

The performance benefit of AVD prediction is not limited to that quantified in this

chapter. As we have shown, optimizing the source code by increasing the regularity in the

memory allocation patterns increases the occurrence of stable AVDs and the performance

of AVD prediction. Therefore, we expect the benefits of AVD prediction to increase as

programmers write software and compilers optimize the source code by taking into account

how AVD prediction works in the underlying microarchitecture.
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Chapter 7

Conclusions and Future Research Directions

7.1 Conclusions

Long memory latencies are an important problem limiting the performance of pro-

cessors. As processor designers push for higher clock frequencies, the main memory laten-

cies will continue to increase in terms of processor clock cycles. An out-of-order execution

processor already requires an unreasonably large instruction window to tolerate these laten-

cies, as Chapter 1 showed. Unfortunately, building large, complex, slow, and power-hungry

structures associated with a large instruction window is a difficult problem, which is still

not solved despite extensive ongoing research.

This dissertation proposed and evaluated the runahead execution paradigm as an

alternative to building large instruction windows to tolerate long memory latencies. Runa-

head execution provides the memory-level parallelism benefits achieved with a large in-

struction window, without requiring the implementation of structures that are needed to

support a large number of in-flight instructions. In fact, the implementation of runahead

execution adds very little hardware cost and complexity to an existing out-of-order execu-

tion processor, as we showed in Chapter 2.

Chapter 4 presented an evaluation of runahead execution and compared the per-

formance of runahead execution to that of large instruction windows. For a 500-cycle

memory latency, implementing runahead execution on a processor with a 128-entry in-

struction window achieves the same performance as a conventional out-of-order processor

with a 384-entry instruction window. Hence, runahead execution can provide the benefits
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of a processor with three times the instruction window size of a current processor for a

500-cycle memory latency. If the memory latency is 1000 cycles, implementing runahead

execution on a processor with a 128-entry instruction window achieves the same perfor-

mance as a conventional processor with a 1024-entry instruction window. Thus, runahead

execution provides the benefits of a processor with eight times the instruction window size

of a current processor when the memory latency is doubled.

As runahead execution’s performance benefit significantly increases with increased

memory latencies, runahead execution will become more effective on future processors

which will face longer memory latencies. Moreover, runahead execution’s performance

benefit increases with an improved instruction fetch unit. As computer architects continue

to improve the performance of instruction fetch units, the performance improvement pro-

vided by runahead execution will increase.

The results presented in this dissertation were obtained on an aggressive processor

model with a very effective stream-based hardware data prefetcher. Chapter 4 showed

that runahead execution is a more effective prefetching mechanism than a state-of-the-art

hardware data prefetcher. Runahead execution and the stream prefetcher interact positively

and they are complementary to each other. Therefore, future processors should employ

both mechanisms to tolerate long memory latencies.

Chapter 4 also evaluated the effectiveness of runahead execution on in-order exe-

cution processors that do not support dynamic instruction scheduling. Runahead execution

significantly improves the latency tolerance of an in-order processor. An in-order processor

with runahead execution can actually reach and surpass the performance of a conventional

out-of-order processor with a 128-entry instruction window, when the memory latency is

longer than 1500 cycles. However, the best performance is obtained when runahead ex-

ecution is used on an out-of-order processor. An out-of-order processor with runahead

execution always provides significantly better performance than both an out-of-order pro-
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cessor without runahead execution and an in-order processor with runahead execution, for

a large variety of memory latencies ranging from 100 to 1900 cycles. Therefore, future

processors should employ runahead execution in conjunction with out-of-order execution

to provide the highest performance.

This dissertation proposed solutions to a major disadvantage of the runahead exe-

cution paradigm. Inefficiency of runahead execution was shown to be a problem that would

result in increased dynamic energy consumption in a processor that implements runahead

execution because runahead execution significantly increases the number of speculatively

executed instructions. Chapter 5 analyzed the causes of inefficiency in runahead execution

and identified three major causes of inefficiency: short, overlapping, and useless runahead

periods. Simple and implementable techniques were proposed to eliminate these causes.

The evaluations showed that using the proposed techniques for improving efficiency re-

duces the extra instructions due to runahead execution from 26.5% to 6.2% while only

slightly reducing runahead execution’s IPC improvement from 22.6% to 22.1%. Thus, the

performance benefit of runahead execution can be achieved without significantly increasing

the number of executed instructions.

Reuse of the results of the instructions that are executed in runahead mode was also

evaluated as a technique that could potentially improve the performance and efficiency of

runahead execution. However, evaluations and analyses presented in Chapter 5 found that

augmenting runahead execution with an aggressive reuse mechanism does not significantly

improve performance while it likely adds significant hardware cost and complexity. There-

fore, runahead execution should be employed as solely a prefetching mechanism without

result reuse.

Finally, this dissertation proposed a solution to a major limitation of the runahead

execution paradigm. Runahead execution is unable to parallelize long-latency cache misses

that are due to dependent load instructions. To overcome this limitation, Chapter 6 pro-
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posed and evaluated address-value delta prediction, a new technique that is used to predict

the value loaded by an address load instruction by predicting the AVD (the arithmetic dif-

ference between the effective address and the data value) of the instruction. Our evalua-

tions showed that a simple, 16-entry AVD predictor improves the execution time of a set of

pointer-intensive applications by 14.3% on a runahead execution processor. AVD predic-

tion also reduces the number of instructions executed in a runahead processor by 15.5%.

Chapter 6 also described hardware and software optimizations that significantly improve

both the performance and the efficiency benefits of AVD prediction. Hence, with the assis-

tance provided by a simple AVD predictor, runahead execution can parallelize dependent

cache misses and therefore it can improve the performance of pointer-intensive programs

that heavily utilize large linked data structures.

Based on the evaluations presented in this dissertation, we believe that the runahead

execution paradigm has three major advantages:

• Runahead execution provides the benefits obtained with a much larger instruction

window, but it does not require the implementation of large, complex, slow, and

power-hungry structures in the processor core to support a large number of in-flight

instructions. Instead, it adds little hardware cost and complexity to an existing pro-

cessor because it utilizes the already-existing processor structures to improve mem-

ory latency tolerance.

• With the simple efficiency techniques described in Chapter 5, runahead execution

requires the execution of only a small number of extra instructions to provide signif-

icant performance improvements.

• With the simple AVD prediction mechanism described in Chapter 6, runahead exe-

cution provides the ability to parallelize long-latency cache misses due to dependent,

as well as independent load instructions. This makes runahead execution a general
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memory latency tolerance paradigm for parallelizing cache misses in a wide variety

of applications.

Hence, efficient runahead execution provides a simple, cost-efficient, and energy-

efficient solution to the pressing memory latency problem in high-performance processors.

7.2 Future Research Directions

Future research in runahead execution can proceed in several different directions.

This dissertation provides a complete initial proposal for a general efficient runahead execu-

tion paradigm. The mechanisms to improve the efficiency and to overcome the limitations

of runahead execution in ways orthogonal to those proposed in this dissertation can provide

significant improvements in the performance and the efficiency of runahead execution.

7.2.1 Research Directions in Improving Runahead Efficiency

Orthogonal approaches can be developed to solve the inefficiency problem in runa-

head execution. We believe this is an important research area for runahead execution in

particular and for precomputation-based memory latency tolerance techniques in general.

Especially solutions to two important problems in computer architecture can significantly

increase the efficiency of runahead execution: branch mispredictions and dependent cache

misses.

Since the processor relies on correct branch predictions to stay on the correct pro-

gram path during runahead mode, the development of more accurate branch predictors (or

other more effective techniques for handling branch instructions) will increase both the

efficiency and the performance benefits of runahead execution. Irresolvable branch mis-

predictions that are dependent on long-latency cache misses cause the processor to stay on

the wrong-path, which may not always provide useful prefetching benefits, until the end
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of the runahead period. Reducing such branch mispredictions with novel techniques is a

promising area of future work.

Dependent long-latency cache misses reduce the usefulness of a runahead period

because they cannot be parallelized using runahead execution. Therefore, as we showed in

Section 6, runahead execution is inefficient, and sometimes ineffective, for pointer-chasing

workloads where dependent load instructions are common. AVD prediction provides a

solution to this problem. However, there are some dependent cache misses that cannot be

captured by AVD prediction because they occur in data structures with irregular memory

allocation patterns. We believe orthogonal techniques that enable the parallelization of such

dependent cache misses is another promising area of future research in runahead execution.

Future research can also focus on refining the methods for increasing the useful-

ness of runahead execution periods to improve both the performance and the efficiency of a

runahead execution processor. Combined compiler-microarchitecture mechanisms can be

very instrumental in eliminating useless runahead instructions. Through simple modifica-

tions to the ISA, the compiler can convey to the hardware which instructions are important

to execute or not execute during runahead mode. For example, the compiler can statically

predict which instructions are likely to lead to the generation of long-latency cache misses

and mark the dependence chain leading to those instructions with hint bits. The microar-

chitecture, at run time, can execute only those instructions in runahead mode. Furthermore,

the compiler may be able to increase the usefulness of runahead periods by trying to arrange

code and data structures such that independent L2 cache misses are clustered close together

during program execution. Such compilation techniques that improve the efficiency and ef-

fectiveness of runahead execution perhaps with support from both the programmer and the

microarchitecture are also promising research topics.
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7.2.2 Research Directions in Improving AVD Prediction

As we showed in Chapter 6, the effectiveness of AVD prediction is highly dependent

on the memory allocation patterns in programs. Optimizing the memory allocator, the

program structures, and the algorithms used in programs for AVD prediction can increase

the occurrence of stable AVDs. Hence, software (i.e., programmer, compiler, memory

allocator, and garbage collector) support can improve the effectiveness of a mechanism

that exploits address-value deltas.

Since AVD prediction exploits high-level programming constructs, we believe co-

operative mechanisms that combine the efforts of the programmer, the compiler, and the

microarchitecture through efficient architectural abstractions can provide significant ben-

efits and are worthy of future research. Chapter 6 provided a simple example of how the

performance improvement provided by AVD prediction can be increased by the program-

mer, if the programmer allocates memory for the data structures in the parser benchmark by

taking into account the properties of AVD prediction. Future research can explore software

engineering techniques, programming language abstractions, and architectural abstractions

for helping programmers to write programs where the memory allocation patterns are reg-

ular and convey their knowledge about the data structure layouts to the underlying mi-

croarchitecture. The design of compilers and memory allocators that optimize the memory

layout of linked data structures to increase the occurrence of stable AVDs can increase the

performance of a runahead processor that employs AVD prediction. Dynamic techniques

that can cost-efficiently re-organize the layout of data structures at run-time may also be

useful in increasing the occurrence of stable AVDs as long as they have small performance

overhead.
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