
Massively Parallel Mapping of Next Generation Sequence Reads

Using GPUs
Azita Nouri, Reha Oğuz Selvitopi, Özcan Öztürk, Onur Mutlu, Can Alkan

Bilkent University, Computer Engineering Department, Turkey

Carnegie Mellon University, Electrical and Computer Engineering Department, USA

Motivation Summary & Contributions Backtracking GPU Algorithm

Alignment GPU Algorithm

Most of the available algorithms for read mapping are CPU-based, and

they require very long running times (30-100 CPU days per genome).

GPUs-based mapper have different approaches for DNA alignment,

and are limited in performance gains; or they are developed for slightly

different problems such as protein alignment.

Our goal is to develop and implement a GPGPU-friendly algorithm

based on Levenshtein's edit distance that can compute millions of

dynamic programming matrices concurrently. We implement our

algorithms using the CUDA (Compute Unified Device Architecture)

platform, and test them using the NVIDIA Tesla K20 GPGPU

processors

DNA sequence alignment problem is a character-level comparison of

DNA sequences obtained from one or more samples against a database

of reference genome sequence of the same or a similar species. This

presents a computational problem since the analysis of data requires

the comparison of >1 billion short (100 characters, or base pairs)

“reads” against a very long (3 billion base pairs) reference genome.

0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000 14,000,000

0

50

100

150

200

250

300

350

400

450

500

Number of threads

S
p

e
e
d

u
p

Number of blocks: 20000

Background
Speedup (tentative results)

Test genome

Random shearing and

Size-selection

Paired-end sequencing

Read mapping

Reference Genome

(HGP 3.2 billions)

Maps to Forward

strand

Maps to Reverse

strand

500 base pair

• Map a time-consuming application to massively parallel GPU

architectures.

• Move the compute-intense parallel verification step to the GPGPUs.

• Collect the reads in a buffer, then pass to the GPGPU for millions of

simultaneous alignments.

• Determine the number of alignments automatically by considering

the characteristics of the GPGPU.

• Adjust the number of threads used per alignment dynamically based

on the maximum allowed error threshold set by the user.

• Ability to be merged with any existing and future hash-table based

read mapping applications.

• Ability to be used for various configurations like different read

sizes, reference genome size and error allowance.

• Reduce host to GPU transfer time significantly by placing all

relevant data to the GPU global memory in the initialization step.

• Develop dynamic programming backtracking in GPU, bypassing

CPU-based post processing all together, except for I/O operations.

• Use recent CUDA improvements such as dynamic parallelism and

Hyper-Q technologies, we are able to re-use early-termination

threads and multiple GPUs on the same host more effectively.

-1 -1

1 0

Read length + Reference length

R
ea

d
 l

en
g
th

Reference length

