Architecting Phase Change Memory as a Scalable DRAM Alternative

Benjamin Lee†, Engin Ipek†, Onur Mutlu‡, Doug Burger†

† Computer Architecture Group
Microsoft Research

‡ Computer Architecture Lab
Carnegie Mellon University

International Symposium on Computer Architecture
22 June 2009
Memory in Transition

▶ Charge Memory
 ▶ Write data by capturing charge Q
 ▶ Read data by detecting voltage V
 ▶ Examples: Flash, DRAM

▶ Resistive Memory
 ▶ Write data by driving current dQ/dt
 ▶ Read data by detecting resistance R
 ▶ Examples: PCM, MRAM, memristor
Limits of Charge Memory

- Unscalable charge placement and control
- Flash: floating gate charge
- DRAM: capacitor charge, transistor leakage
Towards Resistive Memory

► **Scalable**
 ▶ Program with current \propto cell size
 ▶ Map resistance to logical state

► **Non-Volatile**
 ▶ Set atomic structure in cell
 ▶ Incur activation cost

► **Competitive**
 ▶ Achieve viable delay, energy, endurance
 ▶ Scale to further improve metrics
PCM Deployment

- Deploy PCM on the memory bus
- Begin by co-locating PCM, DRAM
- Begin by deploying in low-power platforms
Outline

▶ Motivation
 ▷ Memory Scaling
 ▷ Charge Memory
 ▷ Resistive Memory

▶ Technology
 ▷ Phase Change Memory
 ▷ Technology Parameters
 ▷ Price of Scalability

▶ Architecture
 ▷ Design Objectives
 ▷ Buffer Organization
 ▷ Partial Writes
Phase Change Memory

- Store data within phase change material \([\text{Ovshinsky68}]\)
- Set phase via current pulse
- Detect phase via resistance (amorphous/crystalline)
PCM Scalability

- Program with current pulses, which scale linearly
- PCM roadmap to 30nm [Raoux+08]
- Flash/DRAM roadmap to 40nm [ITRS07]
PCM Non-Volatility

► **Atomic Structure**
 - Program with current pulses
 - Melt material at 650 °C
 - Cool material to desired phase

► **Activation Cost**
 - Crystallize with high activation energy
 - Isolate thermal effects to target cell
 - Retain data for >10 years at 85 °C
Technology Parameters

- Survey prototypes from 2003-2008 [ISSCC][VLSI][IEDM][ITRS]
- Derive parameters for $F=90\text{nm}$

Density
- $9 - 12F^2$ using BJT
- $1.5 \times \text{DRAM}$

Latency
- 50ns Rd, 150ns Wr
- $4 \times, 12 \times \text{DRAM}$

Endurance
- 1×10^8 writes
- $1 \times 10^{-8} \times \text{DRAM}$

Energy
- $40 \mu\text{A}$ Rd, $150 \mu\text{A}$ Wr
- $2 \times, 43 \times \text{DRAM}$
Technology Parameters

- Survey prototypes from 2003-2008 \([\text{ISSCC}][\text{VLSI}][\text{IEDM}][\text{ITRS}]\)
- Derive parameters for \(F=90\text{nm}\)

Density

- 9 - 12\(F^2\) using BJT
- 1.5\(\times\) DRAM

Latency

- 50ns Rd, 150ns Wr
- 4\(\times\), 12\(\times\) DRAM

Endurance

- 1E+08 writes
- 1E-08\(\times\) DRAM

Energy

- 40\(\mu\)A Rd, 150\(\mu\)A Wr
- 2\(\times\), 43\(\times\) DRAM
Technology Parameters

- Survey prototypes from 2003-2008 \([\text{ISSCC}][\text{VLSI}][\text{IEDM}][\text{ITRS}]\)
- Derive parameters for \(F=90\text{nm}\)

Density
- \(9 - 12F^2\) using BJT
- \(1.5 \times \text{DRAM}\)

Endurance
- \(1E+08\) writes
- \(1E-08 \times \text{DRAM}\)

Latency
- \(50\text{ns Rd}, 150\text{ns Wr}\)
- \(4 \times, 12 \times \text{DRAM}\)

Energy
- \(40\mu\text{A Rd}, 150\mu\text{A Wr}\)
- \(2 \times, 43 \times \text{DRAM}\)
Technology Parameters

- Survey prototypes from 2003-2008 \[\text{ISSCC}, \text{VLSI}, \text{IEDM}, \text{ITRS}\]
- Derive parameters for $F=90\text{nm}$

Density
- $9 - 12F^2$ using BJT
- $1.5 \times \text{DRAM}$

Latency
- 50ns Rd, 150ns Wr
- $4 \times, 12 \times \text{DRAM}$

Endurance
- $1E+08$ writes
- $1E-08 \times \text{DRAM}$

Energy
- $40\mu\text{A}$ Rd, $150\mu\text{A}$ Wr
- $2 \times, 43 \times \text{DRAM}$
Price of Scalability

- 1.6× delay, 2.2× energy, 500-hour lifetime
- Implement PCM in typical DRAM architecture
Outline

- **Motivation**
 - Memory Scaling
 - Charge Memory
 - Resistive Memory

- **Technology**
 - Phase Change Memory
 - Technology Parameters
 - Price of Scalability

- **Architecture**
 - Design Objectives
 - Buffer Organization
 - Partial Writes
Design Objectives

▸ DRAM-Competitive
 ▶ Reorganize row buffer to mitigate delay, energy
 ▶ Implement partial writes to mitigate wear mechanism

▸ Area-Efficient
 ▶ Minimize disruption to density trends
 ▶ Impacts row buffer organization

▸ Complexity-Effective
 ▶ Encourage adoption with modest mechanisms
 ▶ Impacts partial writes
Buffer Organization

- **On-Chip Buffers**
 - Use DRAM-like buffer and interface
 - Evict modified rows into array

- **Narrow Rows**
 - Reduce write energy \propto buffer width
 - Reduce peripheral circuitry, associated area

- **Multiple Rows**
 - Reduce eviction frequency
 - Improve locality, write coalescing
Buffer Area Strategy

- Narrow rows :: fewer expensive S/A’s (44T)
- Multiple rows :: more inexpensive latches (8T)
Buffer Design Space

- Explore area-neutral buffer designs
- Identify DRAM-competitive buffer design

PCM Buffer Organization

<table>
<thead>
<tr>
<th>Data Point</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM buff (12F²)</td>
<td></td>
</tr>
<tr>
<td>PCM buff (9F²)</td>
<td></td>
</tr>
<tr>
<td>PCM base</td>
<td></td>
</tr>
<tr>
<td>DRAM base</td>
<td></td>
</tr>
</tbody>
</table>

Energy/Mem (Normalized to DRAM)

Delay (Normalized to DRAM)
Wear Reduction

► **Wear Mechanism**
 ▶ Writes induce phase change at 650°C
 ▶ Contacts degrade from thermal expansion/contraction
 ▶ Current injection is less reliable after 1E+08 writes

► **Partial Writes**
 ▶ Reduce writes to PCM array
 ▶ Write only stored lines (64B), words (4B)
 ▶ Add cache line state with 0.2%, 3.1% overhead
Partial Writes

- Derive PCM lifetime model
- Quantify eliminated writes during buffer eviction

![Graph showing PCM endurance for 512Bx4 Buffer]
Scalable Performance

- $1.2 \times$ delay, $1.0 \times$ energy, >5-year lifetime
- Scaling improves energy, endurance

![Graph showing PCM Performance and Endurance](https://example.com/graph.png)
Also in the paper...

► **Technology Survey**
 ▶ Survey of circuit/device prototypes
 ▶ PCM architectural timing, energy models
 ▶ Scaling analysis, implications

► **Buffer Organization**
 ▶ Transistor-level area model
 ▶ Buffer sensitivity analysis

► **Partial Writes**
 ▶ Endurance model
 ▶ Bus activity analysis
Conclusion & Future Directions

- **Memory Scaling**
 - Fundamental limits in charge memory
 - Transition towards resistive memory

- **Phase Change Memory**
 - Scalability and non-volatility
 - Competitive delay, energy, endurance
 - DRAM alternative alternative on the memory bus

- **Applied Non-Volatility**
 - Instant start, hibernate
 - Inexpensive checkpointing
 - Safe file systems
PCM File System (PFS)

▶ File System Properties
 ▶ Consistency :: COW with atomicity, ordering
 ▶ Safety :: Reflect writes to PCM in O(ms), not O(s)
 ▶ Performance :: Outperform NTFS on RAM disk

▶ Architectural Support
 ▶ Atomic 8B writes with capacitive support
 ▶ Ordered writes with barrier-delimited epochs
Architecting Phase Change Memory as a Scalable DRAM Alternative

Benjamin Lee†, Engin Ipek†, Onur Mutlu‡, Doug Burger†

† Computer Architecture Group
Microsoft Research

‡ Computer Architecture Lab
Carnegie Mellon University

International Symposium on Computer Architecture
22 June 2009