Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative

Emre Kültürsay*, Mahmut Kandemir*, Anand Sivasubramaniam*, and Onur Mutlu†

* Pennsylvania State University
† Carnegie Mellon University

ISPASS-2013
2013 IEEE International Symposium on Performance Analysis of Systems and Software
April 23, 2013
Austin, TX
Introduction

• Memory trends in data centers
 – More memory capacity,
 – Higher memory access rates.

• Result
 – Increasing memory power,
 – Reports indicate 30% of overall power from memory.

• Cost
 – Operational + acquisition costs = Total cost of ownership (TCO)
 – 30% power from memory: high operational cost of memory
 • How to reduce memory power?

• DRAM? Alternative technology to DRAM?
 – (possibly) Higher acquisition cost, but
 – Reduced TCO by means of better energy efficiency.
Introduction

• What technology to use?
 – Prior research focused: Flash or PCRAM as main memory.

• (NAND) Flash
 – Enables running applications that require huge memory,
 – Very slow, incompatible block-based operation; not adopted widely.

• PCRAM
 – Higher capacity than DRAM,
 – Performance and energy vs. DRAM: not very good
 • 2-4X read, 10-100X write performance; similar trend in energy.

• STT-RAM
 – Considered as replacement for on-chip SRAM caches.
 – Main memory? Not evaluated.
 – vs. DRAM? Similar read latency and energy, slightly worse in writes.

ISPASS 2013 - Kultursay et al.
Introduction

• In this work, we ask:
 – Can we use STT-RAM to completely replace DRAM main memory?

• For a positive answer, we need from STT-RAM:
 – Similar capacity and performance as DRAM
 – Better energy
 • Enough to offset potentially higher acquisition costs
DRAM Basics

- System: Cores, L2 caches, MCs over a network.
- A MC controls one channel (one or more DIMMs).
- A DIMM has many DRAM chips.
 - A DRAM request: Served by all chips simultaneously.

![Diagram of DRAM Basics]

ISPASS 2013 - Kultursay et al.
DRAM Basics

• A DRAM chip has multiple banks
 – Banks operate independently.
 – Banks share external buses.
 – Use row and column address to identify data in a bank.

• High level DRAM operations:
 – Activate (ACT): Sense data stored in array, recover it in the row buffer.
 – Read (RD), Write(WR): Access row buffer (and bitlines, and cells, simultaneously).
 – Precharge(PRE): Reset bitlines to sensing voltage.
 – Refresh (REF): Read/Write each row periodically to recover leaking charges.
STT-RAM Basics

• Magnetic Tunnel Junction (MTJ)
 – Reference layer: Fixed
 – Free layer: Parallel or anti-parallel

• Cell
 – Access transistor, bit/sense lines

• Read and Write
 – Read: Apply a small voltage across bitline and senseline; read the current.
 – Write: Push large current through MTJ. Direction of current determines new orientation of the free layer.
Major DRAM/STT-RAM Differences

• Dynamic memory
 – Charge in DRAM cell capacitor leaks slowly
 • Refresh or lose your data.
 – Need no refresh in STT-RAM (non-volatile)
 • Data stays (practically) forever (>10 years).

• Non-destructive (array) reads
 – DRAM (destructive)
 • PRE: Pull bitlines to $V_{\text{bitline}} = V_{\text{cc}}/2$; Data in cell: $V_{\text{cell}}=0$ or $V_{\text{cell}}=V_{\text{cc}}$
 • ACT: Charge shared across bitlines and cell capacitors.
 • Differential Sense: $V_{\text{cc}}/2 \pm \Delta V$; then slowly recover to full value (0 or V_{cc}).
 – STT-RAM (non-destructive)
 • ACT: Does not disturb cell data. Copy array data to "decoupled row buffer".
 • RB can operate "independent" from the array when sensing is done.
Experimental Setup

• Simulator
 – In-house instruction trace based cycle-level

• Cores
 – Out-of-order model with instruction window
 – Maximum 3 instructions/cycle

• Caches
 – 32KB L1 (2 cycles), 512KB L2 (12 cycles)

• Memory
 – Channel, rank, bank, bus conflicts and bandwidth limitations
 – DDR3 memory timing parameters
 • 75/125 cycles RB hit and conflict, 25 cycles STT-RAM write pulse (10ns).
 – 1GB memory capacity; one channel
Energy Breakdown

• Memory energy
 – Activity based model

• Energy per memory activity
 – From modified CACTI models (DRAM and STT-RAM)

• DRAM energy components
 – ACT+PRE: Switching from one row to another
 – RD+WR: Performing a RD or a WR operation that is a DRAM RB hit.
 – REF: Periodic refresh (background)

• STT-RAM energy components
 – ACT+PRE: Switching the active row (similar to DRAM)
 – RB: Requests served from the RB
 (unlike DRAM, does not involve bitline charge/discharge: decoupled RB)
 – WB: Flushing RB contents to the STT-RAM array.
Workloads

• Single-threaded applications
 – 14 applications from SPEC CPU2006 suite
 – Running on a uniprocessor

• Multiprogrammed workloads
 – 10 workload mixes
 – 4 applications on 4 cores

• Simulation duration
 – 5 billion cycles
 – Equivalent to 2 seconds of real execution (at 2.5GHz)
Baseline DRAM Memory

- Baseline DRAM main memory (1GB capacity).

- IPC
 - 0.66 to 2.05

- Energy breakdown
 - ACT+PRE=62%, RD+WR=24%, REF=14%, on average.

- Rest of the results will be normalized to
 - IPC and total energy with this DRAM main memory.
Baseline STT-RAM Memory

- Unoptimized STT-RAM: Directly replace DRAM.
- No special treatment of STT-RAM.

- Performance: Degrades by 5%.
- Energy: Degrades by 96% (almost 2X!).
 - REF (14%) eliminated.
 - WB dominates: high cost of STT-RAM writes.

STT-RAM Main Memory: Not a good idea?
Optimizations for STT-RAM

• How dirty is the row buffer?
 – Clean: 60% of the time.
 – Dirty>3: Only 6%.

• Selective Write
 – One dirty bit per row buffer: skip writeback if clean.
 – Save energy by less writes; faster row switching possible.

• Partial Write
 – More dirty bits: One dirty bit per cache block sized data
 – Write even less data upon RB conflict.
Optimizations for STT-RAM

- **A look at the row buffer hit rates:**
 - Reads 81%, writes 64%.

- **Consider writes as:**
 - Operations with less locality,
 - Operations that can be delayed more (less CPU stalls).

- **Write Bypass**
 - Reads still served from row buffer.
 - Writes bypass the row buffer: do not cause RB conflicts, do not pollute RB.
 - RB is always clean: Just discard to get the next row.
 - No write-back: faster row switching.
Experimental Evaluation

- **Selective write**
 - 1 dirty bit per row
 - Energy
 - 196% down to 108%
 - RB clean 60% of the time.

- **Partial Write**
 - 1 dirty bit per 64B block
 - Energy
 - Down to 59% of DRAM.
 - Low dirtiness in RB.
Experimental Evaluation

• Write Bypass:
 – Energy: 42% of DRAM.
 (with also partial write)

• Performance of Optimized STT-RAM:
 – Partial write, write bypass
 – -1% to +4% variation.
 – +1% vs. DRAM, on avg.

![Graphs showing energy and IPC normalization to DRAM for various benchmarks.](image-url)
Evaluation: Multiprogrammed Workloads

- 4 applications executed together
 - On 4-cores; 1 MC with 4GB capacity
 - More memory pressure: shared bandwidth and row buffers.

- Energy results

Down from 200% of DRAM to 40% of DRAM.

ISPASS 2013 - Kultursay et al.
Evaluation: Multiprogrammed Workloads

- Performance
 - Weighted Speedup of 4 applications,
 - 6% degradation vs. DRAM.
 - More degradation with high WBPKI mixes.
Sensitivity: STT-RAM Write Pulse Duration

- STT-RAM write pulse in this work: 10ns (25 cycles)
- Research on reducing pulse width
 - 2-3 ns pulses promised.
 - Same energy, higher current in shorter amount of time.

- Results with multiprogrammed workloads:

![Graph showing weighted speedup degradation for different pulse widths.](image-url)
Effect of Optimizations on PCRAM

• PCRAM main memory
 – Higher capacity on same area,
 – Suffers from high latency and energy.

• Evaluated a PCRAM main memory with
 – 2X/10X read/write energy of DRAM,
 – Two latency values
 • 2X/3X of DRAM (conservative)
 • 1X/2X of DRAM (optimistic)

• Results:
 (with iso-capacity memory, using partial write and write bypass)
 – Performance vs. DRAM
 • 17% and 7% degradation. Degrades a lot more than STT-RAM.
 – Energy vs. DRAM
 • 6% and 18% saving. Not as significant as STT-RAM.
Conclusions

• Optimizing STT-RAM
 – Applying partial write and write bypass,
 – Same capacity, similar performance (-5% to +1%),
 – Much better energy than DRAM (60% better),
 (also better than PCRAM, and other hybrid memories)

• STT-RAM main memory has the potential to realize better total cost of ownership.

• Motivation for future study and optimization of STT-RAM technology and architecture as DRAM alternative.