
Wish Branches: Enabling Adaptive and Aggressive Predicated Execution

Hyesoon Kim § Onur Mutlu § Jared Stark ‡ Yale N. Patt §
§Department of Electrical and Computer Engineering

University of Texas at Austin
{hyesoon,onur,patt}@ece.utexas.edu

‡Oregon Microarchitecture Lab
Intel Corporation

jared.w.stark@intel.com

Abstract
Wish branches, a new class of control-flow instructions,

allow the hardware to dynamically decide whether or not
to use predicated execution for a dynamic branch instruc-
tion. The goal of wish branches is to use predicated execu-
tion for hard-to-predict dynamic branches and branch pre-
diction for easy-to-predict dynamic branches, thereby ob-
taining the best of both worlds. Wish loops, one class of
wish branches, utilize predication to reduce the mispredic-
tion penalty for hard-to-predict backward (loop) branches.

1. Introduction
Predicated execution has been used to avoid the per-

formance loss due to hard-to-predict branches. This ap-
proach eliminates a hard-to-predict branch from the pro-
gram by converting the control dependency of the branch
into a data dependency [1]. Traditional predicated execution
is not adaptive to run-time (dynamic) branch behavior. The
compiler decides to keep a branch as a conditional branch
or to predicate it based on compile-time profile informa-
tion. If the run-time behavior of the branch differs from the
compile-time profile behavior, the hardware does not have
the ability to override the choice made by the compiler. A
predicated branch remains predicated for all its dynamic in-
stances even if it turns out to be very easy-to-predict at run
time. Despite the fact that such a branch is rarely mispre-
dicted, the hardware needs to fetch, decode, and execute
instructions from both control-flow paths. Hence, predi-
cated execution sometimes results in a performance loss
because it requires the processing overhead of additional
instructions–sometimes without providing any performance
benefit.

We would like to eliminate the performance loss due to
the overhead of predicated execution by providing a choice
to the hardware: the choice of whether or not to use pred-
icated execution for a branch. The compiler is not good at
deciding which branches are hard-to-predict because it does
not have access to run-time information. In contrast, the
hardware has access to accurate run-time information about
each branch.

We propose a mechanism in which the compiler gen-
erates code that can be executed either as predicated code
or non-predicated code (i.e., code with normal conditional
branches). The hardware decides whether the predicated
code or the non-predicated code is executed based on a run-
time confidence estimation of the branch’s prediction. The
code generated by the compiler is the same as predicated

code, except the predicated conditional branches are NOT
removed—they are left intact in the program code. These
conditional branches are called wish branches. When the
hardware fetches a wish branch, it estimates whether or not
the branch is hard-to-predict using a confidence estimator.
If the wish branch is hard-to-predict, the hardware executes
the predicated code in order to eliminate a possible branch
misprediction. If the wish branch is easy-to-predict, the
hardware uses the branch predictor to predict the direction
of the wish branch and ignores the predicate information.
Hence, wish branches provide the hardware with a way to
dynamically choose between conditional branch prediction
and predicated execution depending on accurate run-time
information about the branch’s behavior.

2. Sidebar: Background on Microarchitec-
tural Support for Predicated Execution in
Out-of-order Execution Processors

Although predicated execution has been implemented in
in-order processors [2, 3], as earlier researchers have sug-
gested, the technique can be used in out-of-order processors
as well [4, 5]. Since our research aims to reduce the branch
misprediction penalty in aggressive high-performance pro-
cessors, we model predicated execution in an out-of-order
processor. We briefly provide background information on
the microarchitecture support needed to use predicated exe-
cution in an out-of-order processor.

In an out-of-order processor, predication complicates
register renaming because a predicated instruction may or
may not write into its destination register depending on
the value of the predicate [4]. Several solutions have been
proposed to handle this problem: converting predicated in-
structions into C-style conditional expressions [4], break-
ing predicated instructions into two µops [6], the select-µop
mechanism [5], and predicate prediction [7]. We briefly de-
scribe our baseline mechanism, C-style conditional expres-
sions.

Converting a predicated instruction into a C-style
conditional expression: In our baseline mechanism, a
predicated instruction is transformed into another instruc-
tion similar to a C-style conditional expression. For exam-
ple, (p1)r1=r2+r3 instruction is converted to the µop
r1=p1?(r2+r3):r1. If the predicate is TRUE, the in-
struction performs the computation and stores the result into
the destination register. If the predicate is FALSE, the in-
struction simply moves the old value of the destination reg-
ister into its destination register, which is architecturally a

1

NOP operation. Hence, regardless of the predicate value,
the instruction always writes into the destination register, al-
lowing the dependent instructions to be renamed correctly.
This mechanism requires four register sources (the old des-
tination register value, the source predicate register, and the
two source registers).

3. The Overhead of Predicated Execution
Because it converts control dependencies into data de-

pendencies, predicated execution introduces two major
sources of overhead on the dynamic execution of a program
compared to conditional branch prediction. First, the pro-
cessor needs to fetch additional instructions that are guar-
anteed to be useless since their predicates will be FALSE.
These instructions waste fetch and possibly execution band-
width and occupy processor resources that can otherwise be
utilized by useful instructions. Second, an instruction that is
dependent on a predicate value cannot be executed until the
predicate value it depends on is ready. This introduces ad-
ditional delay into the execution of predicated instructions
and their dependents, and hence may increase the execution
time of the program. In our previous paper [8], we ana-
lyzed the performance impact of these two sources of over-
head on an out-of-order processor model that implements
predicated execution. We showed that these two sources of
overhead, especially the execution delay due to predicated
instructions, significantly reduce the performance benefits
of predicated execution. When the overhead of predicated
execution is faithfully modeled, the predicated binaries do
not improve the average execution time of a set of SPEC
CPU2000 integer benchmarks. In contrast, if all overhead
is ideally eliminated, the predicated binaries would provide
16.4% improvement in average execution time.

In addition, one of the limitations of predicated execution
is that not all branches can be eliminated using predication.
For example, backward (loop) branches, which constitute a
significant proportion of all branches cannot be eliminated
using predicated execution [1, 9].

In this article, we propose wish branches (1) to dynami-
cally reduce the sources of overhead in predicated execution
and (2) to make predicated execution applicable to back-
ward branches, thereby increasing the viability and effec-
tiveness of predicated execution in high-performance, out-
of-order execution processors.

4. Wish Branches

4.1. Wish Jumps and Wish Joins

Figure 1 shows a simple source code example and the
corresponding control flow graphs and assembly code for:
(a) a normal branch, (b) predicated execution, and (c) a wish
jump/join. The main difference between the wish jump/join
code and the normal branch code is that the instructions in
basic blocks B and C are predicated in the wish jump/join
code (Figure 1c), but they are not predicated in the normal

branch code (Figure 1a). The first conditional branch in the
normal branch code is converted to a wish jump instruction
and the following control-dependent unconditional branch
is converted to a wish join instruction in the wish jump/join
code. The difference between the wish jump/join code and
the predicated code (Figure 1b) is that the wish jump/join
code has branches (i.e., the wish jump and the wish join),
but the predicated code does not.

Wish jump/join code can be executed in two different
modes (high-confidence-mode and low-confidence-mode) at
run-time. The mode is determined by the confidence of the
wish jump prediction. When the processor fetches the wish
jump instruction, it generates a prediction for the direction
of the wish jump using a branch predictor, just like it does
for a normal conditional branch. A hardware confidence es-
timator provides a confidence estimation for this prediction.
If the prediction has high confidence, the processor enters
high-confidence-mode. If it has low confidence, the proces-
sor enters low-confidence-mode.

High-confidence-mode is the same as using normal con-
ditional branch prediction. To achieve this, the wish jump
instruction is predicted using the branch predictor. The
source predicate value (p1 in Figure 1c) of the wish jump
instruction is predicted based on the predicted branch direc-
tion so that the instructions in basic block B or C can be
executed before the predicate value is ready. When the wish
jump is predicted to be taken, the predicate value is pre-
dicted to be TRUE (and block B, which contains the wish
join, is not fetched). When the wish jump is predicted to be
not taken, the predicate value is predicted to be FALSE and
the wish join is predicted to be taken.

Low-confidence-mode is the same as using predicated
execution, except it has additional wish branch instructions.
In this mode, the wish jump and the following wish join are
always predicted to be not taken. The source predicate value
of the wish jump instruction is not predicted and the instruc-
tions that are dependent on the predicate only execute when
the predicate value is ready.

When the confidence estimation for the wish jump is
accurate, either the overhead of predicated execution is
avoided (high confidence) or a branch misprediction is elim-
inated (low confidence). When the wish jump is mis-
predicted in high-confidence-mode, the processor needs to
flush the pipeline just like in the case of a normal branch
misprediction. However, in low-confidence-mode, the pro-
cessor never needs to flush the pipeline, even when the
branch prediction is incorrect. Like predicated code, the
instructions that are not on the correct control flow path will
become NOPs since all instructions control-dependent on
the branch are predicated.

4.2. Wish Loops

A wish branch can also be used for a backward branch.
We call this a wish loop instruction. Figure 2 contains the
source code for a simple loop body and the corresponding

2

A

D

A

B

C

B C

mov b, 1

not−taken taken

branch p1, TARGET
p1 = (cond)

branch.uncond JOIN

(a)

D JOIN:

TARGET:
mov b, 0

A

C

D

B

(!p1) mov b, 1
(p1) mov b,0

A

B

C

p1 = (cond)

(b)

B

A

C

A

C

D

wish jump

B
wish join

 wish.jump p1, TARGET
 p1 = (cond)

(p1) mov b, 0
TARGET:

(!p1) mov b, 1
 wish.join !p1, JOIN

JOIN:

(c)

D

(code)

if (cond) {

}
else {

}

 b = 0;

 b= 1;

Figure 1. Source code and the corresponding control flow graphs and assembly code for (a) normal branch code (b) predicated code
(c) wish jump/join code.

control-flow graphs and assembly code for: (a) a normal
backward branch and (b) a wish loop. We compare wish
loops only with normal branches since backward branches
cannot be directly eliminated using predication [1]. A
wish loop uses predication to reduce the branch mispredic-
tion penalty of a backward branch without eliminating the
branch.

The main difference between the normal branch code
(Figure 2a) and the wish loop code (Figure 2b) is that in
the wish loop code the instructions in block X (i.e., the
loop body) are predicated with the loop branch condition.
Wish loop code also contains an extra instruction in the loop
header to initialize the predicate to 1 (TRUE). To simplify
the explanation of the wish loops, we use a do-while loop
example in Figure 2. Similarly, a while loop or a for loop
can also utilize a wish loop instruction.

When the wish loop instruction is first encountered,
the processor enters either high-confidence-mode or low-
confidence-mode, depending on the confidence of the wish
loop prediction.

In high-confidence-mode, the processor predicts the di-
rection of the wish loop according to the loop/branch pre-
dictor. If the wish loop is predicted to be taken, the predicate
value (p1 in Figure 2b) is predicted to be TRUE, so the in-

structions in the loop body can be executed without waiting
for the predicate to become ready. If the wish loop is mis-
predicted in high-confidence-mode, the processor flushes
the pipeline, just like in the case of a normal branch mis-
prediction.

If the processor enters low-confidence-mode, it stays in
this mode until the loop is exited. In low-confidence-mode,
the processor still predicts the wish loop according to the
loop/branch predictor. However, it does not predict the
predicate value. Hence, the iterations of the loop are predi-
cated (i.e., fetched but not executed until the predicate value
is known) during low-confidence-mode. There are three
misprediction cases in this mode: (1) early-exit: the loop is
iterated fewer times than it should be, (2) late-exit: the loop
is iterated only a few more times by the processor front end
than it should be and the front end has already exited when
the wish loop misprediction is signalled, and (3) no-exit: the
loop is still being iterated by the processor front end when
the wish loop misprediction is signalled (as in the late-exit
case, it is iterated more times than needed).

For example, consider a loop that iterates 3 times. The
correct loop branch directions are TTN (taken, taken, not-
taken) for the three iterations, and the front end needs to
fetch blocks X1X2X3Y, where Xi is the ith iteration of the

3

Y Y

X
mov p1,1H

i++;
a++;

X X

H

wish loop

taken

not−taken

taken

X

do {

} while (i<N)

LOOP:
LOOP:

(p1) add a, a, 1
(p1) add i, i, 1
(p1) p1 = (i<N)
wish.loop p1, LOOP

(b)(a)(code)

EXIT:
EXIT:

Y
Y

not−taken

add a, a,1
add i, i, 1
p1 = (i<N)
branch p1, LOOP

Figure 2. do-while loop source code and the corresponding control flow graphs and assembly code for (a) normal backward
branch code (b) wish loop code.

loop body. An example for each of the three misprediction
cases is as follows: In the early-exit case, the predictions for
the loop branch are TN, so the processor front end fetches
blocks X1X2Y. One example of the late-exit case is when
the predictions for the loop branch are TTTTN so the front
end fetches blocks X1X2X3X4X5Y. For the no-exit case, the
predictions for the loop branch are TTTTT...T so the front
end fetches blocks X1X2X3X4X5...XN .

In the early-exit case, the processor needs to execute X
at least one more time (in the example above, exactly one
more time; i.e., block X3), so it flushes the pipeline just like
in the case of a normal mispredicted branch.

In the late-exit case, the fall-through block Y has been
fetched before the predicate for the first extra block X4 has
been resolved. Therefore it is more efficient to simply allow
X4 and subsequent extra block X5 to flow through the data
path as NOPs (with predicate value p1 = FALSE) than to
flush the pipeline. In this case, the wish loop performs bet-
ter than a normal backward branch because it reduces the
branch misprediction penalty. The smaller the number of
extra loop iterations fetched, the larger the reduction in the
branch misprediction penalty.

In the no-exit case, the front end has not fetched block Y

at the time the predicate for the first extra block X4 has been
resolved. Therefore, it makes more sense to flush X4 and
any subsequent fetched extra blocks, and then fetch block Y,
similar to the action taken for a normal mispredicted branch.
We could let X4X5...XN become NOPs as in the late-exit
case, but that would increase energy consumption without
improving performance.

4.3. Wish Branches in Complex Control Flow

Wish branches are not only used for simple control flow.
They can also be used in complex control flow where there
are multiple branches, some of which are control-dependent
on others. Figure 3 shows a code example with complex
control flow and the control flow graphs of the normal
branch code, predicated code, and the wish branch code cor-
responding to it.

When there are multiple wish branches in a given region,
the first wish branch is a wish jump and the following wish
branches are wish joins. We define a wish join instruction to
be a wish branch instruction that is control-flow dependent
on another wish branch instruction. Hence, the prediction
for a wish join is dependent on the confidence estimations
made for the previous wish jump, any previous wish joins,

4

A

B

D

C

E

taken

not−taken

not−taken

(a) normal branch code

taken C

A

A

D

B

E

block Cblock A

 (code)

 // block B
}
else {

}
 // block D

if (cond1 || cond2) {

D

C

B

E

wish jump

wish join

wish join

(c) wish branch code(b) predicated code

Figure 3. Control flow graph examples with wish branches.

and the current wish join itself. If the previous wish jump,
any of the previous wish joins, or the current wish join is
low-confidence, the current wish join is predicted to be not-
taken. Otherwise, the current wish join is predicted using
the branch predictor.

4.4. Support for Wish Branches

Since wish branches are an ISA construct, they require
support from the ISA, the compiler, and the hardware.

4.4.1. ISA Support We assume that the baseline ISA sup-
ports predicated execution. Wish branches can be imple-
mented in the existing branch instruction format using the
hint bit fields. Two hint bits are necessary to distinguish be-
tween a normal branch, a wish jump, a wish join, and a wish
loop.

4.4.2. Compiler Support The compiler needs to support
the wish branch code generation algorithm. The algorithm
decides which branches are predicated, which are con-
verted to wish branches, and which stay as normal branches
based on estimated branch misprediction rates, compile-
time heuristics, and information about branch behavior [8].

4.4.3. Hardware Support An accurate confidence esti-
mator [10] is essential to maximize the benefits of wish
branches. In addition, wish branches require hardware sup-
port in the processor front-end and the branch misprediction
detection/recovery module. Detailed descriptions of the re-
quired hardware changes are provided in our previous pa-
per [8].

4.5. Advantages and Disadvantages of Wish
Branches

In summary, the advantages of wish branches are as fol-
lows:

1. Wish jumps/joins provide a mechanism to dynami-
cally eliminate the performance and power overhead
of predicated execution. These instructions allow the
hardware to dynamically choose between using pred-
icated execution versus conditional branch prediction
for each dynamic instance of a branch based on the
run-time confidence estimation of the branch’s predic-
tion.

2. Wish jumps/joins allow the compiler to generate pred-
icated code more aggressively and using simpler
heuristics, since the “bad compile-time decisions” can
be corrected at run-time. In previous research, a static
branch instruction either remained as a conditional
branch or was predicated for all its dynamic instances,
based on less accurate compile-time information - if
the compiler made a bad decision to predicate, there
was no way to dynamically eliminate the overhead of
the bad compile-time decision. For this reason, com-
pilers have been conservative in producing predicated
code and have avoided large predicated code blocks.

3. Wish loops provide a mechanism to exploit predicated
execution to reduce the branch misprediction penalty
for backward (loop) branches. In previous research,
it was not possible to reduce the branch misprediction
penalty for a backward branch by solely utilizing pred-
icated execution [1, 9]. Hence, predicated execution
was not applicable for a significant fraction of hard-to-
predict branches.

4. Wish branches will also reduce the need to re-compile
the predicated binaries whenever the machine con-
figuration and branch prediction mechanisms change
from one processor generation to another (or even dur-
ing compiler development). A branch that is hard-
to-predict in an older processor may become easy-to-
predict in a newer processor with a better branch pre-

5

dictor. If that branch is conventionally predicated by
the old compiler, the performance of the old code will
degrade on the new processor because predicated exe-
cution would not improve, and in fact degrade, the per-
formance of the now easy-to-predict branch. Hence, to
utilize the benefits of the new processor, the old code
needs to be recompiled. In contrast, if the branch were
converted to a wish branch by the compiler, the per-
formance of the old binary would not degrade on the
new processor, since the new processor can dynam-
ically decide not to use predicated execution for the
easy-to-predict wish branch. Thus, wish branches re-
duce the need to frequently re-compile by providing
flexibility (dynamic adaptivity) to predication.

The disadvantages of wish branches compared to con-
ventional predication are:

1. Wish branches require extra branch instructions. These
instructions would take up machine resources and in-
struction cache space. However, the larger the predi-
cated code block, the less significant this becomes.

2. The extra wish branch instructions increase the con-
tention for branch predictor table entries. This may
increase negative interference in the pattern history ta-
bles. We found that performance loss due to this effect
is negligible.

3. Wish branches reduce the size of the basic blocks by
adding control dependencies into the code. Larger ba-
sic blocks can provide better opportunity for compiler
optimizations. If the compiler used to generate wish
branch binaries is unable to perform aggressive code
optimizations across basic blocks, the presence of wish
branches may constrain the compiler’s scope for code
optimization.

5. Performance Evaluation
We have implemented the wish branch code generation

algorithm in the state-of-the-art ORC compiler [11]. We
chose the IA-64 ISA to evaluate the wish branch mecha-
nism, because of its full support for predication, but we con-
verted the IA-64 instructions to micro-operations (µops) to
execute on our out-of-order superscalar processor model.

The processor we model is eight µops wide and has
a 512-entry instruction window, 30-stage pipeline, 64KB
two-cycle I-cache; 64KB two-cycle D-cache, 1MB six-
cycle unified L2 cache, and 300-cycle minimum main mem-
ory latency. We model a very large and accurate hybrid
branch predictor (64K-entry gshare/PAs hybrid) and a 1KB
JRS confidence estimator [10]. Less aggressive out-of-order
processors are also evaluated in our previous paper [8].

We use two predicated code binaries (PRED-SEL,
PRED-ALL) as our baselines because neither binary per-
forms the best for all benchmarks. In the PRED-SEL binary,
branches are selectively predicated based on cost-benefit

analysis. In the PRED-ALL binary, all branches suitable for
if-conversion are converted to predicated code. Hence, the
PRED-ALL binary contains more aggressively predicated
code. A wish branch binary contains wish branches, tra-
ditional predicated code, and normal branches. Very sim-
ple heuristics were used to decide which branches were to
be converted to wish branches. Our detailed experimental
methodology and heuristics are explained in [8].

5.1. Results

Figure 4 shows the performance of wish branches when
wish jumps/joins and loops are utilized. Execution times are
normalized to normal branch binaries (i.e., non-predicated
binaries). With a real confidence estimator, the wish
jump/join/loop binaries improve the average execution time
by 14.2% compared to the normal branch binaries and by
13.3% compared to the best-performing (on average) predi-
cated code binaries (PRED-SEL). An improved confidence
estimator has the potential to increase the performance im-
provement up to 16.2% over the normal branch binaries.
Even if mcf, which skews the average, is excluded from
the calculation of the average execution time, the wish
jump/join/loop binaries improve the average execution time
by 16.1% compared to the normal branch binaries and by
6.4% compared to the best-performing predicated code bi-
naries (PRED-ALL), with a real confidence estimator.

We also compared the performance of wish branches to
the best-performing binary for each benchmark. To do so,
we selected the best-performing binary for each benchmark
among the normal branch binary, PRED-SEL binary, and
PRED-ALL binary based on the execution times of these
three binaries, which are obtained via simulation. Note that
this comparison is unrealistic, because it assumes that the
compiler can, at compile-time, predict which binary would
perform the best for the benchmark at run-time. This as-
sumption is not correct, because the compiler does not know
the run-time behavior of the branches in the program. Even
worse, the run-time behavior of the program can also vary
from one run to another. Hence, depending on the input
set to the program, a different binary could be the best-
performing binary.

Table 1 shows, for each benchmark, the reduction in ex-
ecution time achieved with the wish jump/join/loop binary
compared to the normal branch binary (row 1), the best-
performing predicated code binary for the benchmark (row
2), and the best-performing binary (that does not contain
wish branches) for the benchmark (row 3). Even if the com-
piler were able to choose and generate the best-performing
binary for each benchmark, the wish jump/join/loop binary
outperforms the best-performing binary for each benchmark
by 5.1% on average, as shown in the third row.

6

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20
E

xe
c

tim
e

no
rm

al
iz

ed
 to

 n
o

pr
ed

ic
at

io
n

PRED-SEL
PRED-ALL
wish jump/join (real-conf)
wish jump/join/loop (real-conf)
wish jump/join/loop (perf-conf)

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG AVGnomcf

2.02

Figure 4. Performance of wish branches.

Table 1. Execution time reduction of the wish jump/join/loop binaries over the best-performing binaries on a per-benchmark basis
(using the real confidence mechanism). SEL (PRED-SEL), ALL (PRED-ALL), BR (normal branch) indicate which binary is the best
performing binary for a given benchmark.

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG
1 % exec time reduction vs. normal branch binary 12.5% 36.3% -1.5% 16.8% 23.1% 4.9% 3.2% 3.5% 29.8% 14.2%
2 % exec time reduction vs. the best 3.8% 23.9% 13.3% 0.4% 8.3% 2.5% -4.3% -1.2% 13.8% 6.7%

predicated code binary for the benchmark ALL ALL SEL ALL ALL ALL SEL SEL ALL
3 % exec time reduction vs. the best 3.8% 23.9% -1.5% 0.4% 8.3% 2.5% -4.3% -1.2% 13.8% 5.1%

non-wish-branch binary for the benchmark ALL ALL BR ALL ALL ALL SEL SEL ALL

6. Pending and Future Work

6.1. Compiler Optimizations

The next step in our research is to develop compiler al-
gorithms and heuristics to decide which branches should
be converted to wish branches. For example, an input-
dependent branch, whose accuracy varies significantly with
the input data set of the program, is the perfect candidate
to be converted to a wish branch. Since an input-dependent
branch is sometimes easy-to-predict and sometimes hard-
to-predict depending on the input set, the compiler is more
apt to convert such a branch to a wish branch rather than
predicating it or leaving it as a normal branch. Similarly, if
the compiler can identify branches whose prediction accu-
racies significantly change depending on the program phase
or the control-flow path leading to the branch, it would be
more apt to convert them into wish branches.

Our current work, 2D-profiling [12], can identify input-
dependent branches by profiling with only one input set.
We call our mechanism 2D-profiling because the profiling
compiler collects profile information in two dimensions dur-

ing the profiling run: prediction accuracy of a branch over
time. If the prediction accuracy of the branch changes sig-
nificantly during the profiling run with a single input data
set, then the compiler predicts that its prediction accuracy
will also change significantly across input sets. We have
found that 2D-profiling works well because branches that
show phased behavior in prediction accuracy tend to be
input-dependent.

Other compile-time heuristics or profiling mechanisms
that would lead to higher-quality wish branch code are also
an area of future work. For example, if the compiler can
identify that converting a branch into a wish branch will
significantly reduce code optimization opportunities as op-
posed to predicating it, it could be better off predicating the
branch. This optimization would eliminate the cases where
wish branch code performs worse than conventionally pred-
icated code due to reduced scope for code optimization,
such as for the benchmark vortex as shown in Table 1.

Similarly, if the compiler can take into account the ex-
ecution delay due to the data dependencies on predicates
when estimating the execution time of wish branch code on

7

an out-of-order processor, it can perform a more accurate
cost-benefit analysis to determine what to do with a branch.
Such heuristics will also be useful in generating better pred-
icated code for out-of-order processors.

6.2. Hardware Optimizations

On the hardware side, more accurate confidence estima-
tion mechanisms are interesting to investigate since they
would increase the performance benefits of wish branches
as we have shown in Figure 4. A specialized hardware wish
loop predictor could also increase the benefits of wish loops.

7. Conclusion

Wish branches improve performance by dividing the
work of predication between the compiler and the microar-
chitecture. The compiler does what it does best: analyzing
the control-flow graphs and producing predicated code, and
the microarchitecture does what it does best: making run-
time decisions (as to whether or not to use predicated exe-
cution or branch prediction for a particular dynamic branch)
based on dynamic program information unavailable to the
compiler.

This division of work between the compiler and the
microarchitecture enables higher performance without a
significant increase in hardware complexity. As current
processors are already facing power and complexity con-
straints, wish branches can be an attractive solution to re-
duce the branch misprediction penalty in a simple and
power-efficient way. Hence, wish branches can make pred-
icated execution more viable and effective in future high
performance processors.

Acknowledgments

We thank David Armstrong, Robert Cohn, Hsien-Hsin S.
Lee, HP TestDrive, Roy Ju, Derek Chiou, and the members
of the HPS research group. We gratefully acknowledge the
commitment of the Cockrell Foundation, Intel Corporation
and the Advanced Technology Program of the Texas Higher
Education Coordinating Board for supporting our research
at the University of Texas at Austin.

References
[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren.

Conversion of control dependence to data dependence.
In 10th ACM Symposium on Principles of Program-
ming Languages, pages 177–189, 1983.

[2] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle.
The Cydra 5 departmental supercomputer. IEEE Com-
puter, 22:12–35, January 1989.

[3] Intel Corporation. IA-64 Intel Itanium Architecture
Software Developer’s Manual Volume 3: Instruction
Set Reference, 2002.

[4] Eric Sprangle and Yale Patt. Facilitating super-
scalar processing via a combined static/dynamic reg-
ister renaming scheme. In Proceedings of the 27th
ACM/IEEE International Symposium on Microarchi-
tecture, pages 143–147, 1994.

[5] Perry H. Wang, Hong Wang, Ralph M. Kling, Kalpana
Ramakrishnan, and John P. Shen. Register renaming
and scheduling for dynamic execution of predicated
code. In Proceedings of the Seventh IEEE Interna-
tional Symposium on High Performance Computer Ar-
chitecture, 2001.

[6] Compaq Computer Corporation. Alpha 21264 Micro-
processor Hardware Reference Manual, 1999.

[7] Weihaw Chuang and Brad Calder. Predicate prediction
for efficient out-of-order execution. In Proceedings of
the 17th International Conference on Supercomputing,
pages 183–192, 2003.

[8] Hyesoon Kim, Onur Mutlu, Jared Stark, and Yale N.
Patt. Wish branches: Combining conditional branch-
ing and predication for adaptive predicated execution.
In Proceedings of the 38th ACM/IEEE International
Symposium on Microarchitecture, 2005.

[9] Youngsoo Choi, Allan Knies, Luke Gerke, and Tin-
Fook Ngai. The impact of if-conversion and branch
prediction on program execution on the Intel Itanium
processor. In Proceedings of the 34th ACM/IEEE In-
ternational Symposium on Microarchitecture, 2001.

[10] Erik Jacobsen, Eric Rotenberg, and J. E. Smith.
Assigning confidence to conditional branch predic-
tions. In Proceedings of the 29th ACM/IEEE Interna-
tional Symposium on Microarchitecture, pages 142–
152, 1996.

[11] ORC. Open research compiler for Itanium processor
family. http://ipf-orc.sourceforge.net/.

[12] Hyesoon Kim, Muhammad Aater Suleman, Onur
Mutlu, and Yale N. Patt. 2D-profiling: Detecting
input-dependent branches with a single input data set.
In the 4th Annual International Symposium on Code
Generation and Optimization, 2006.

8

