
FIST: A Fast, Lightweight, FPGA-Friendly Packet Latency
Estimator for NoC Modeling in Full-System Simulations

Michael K. Papamichael∗, James C. Hoe+ and Onur Mutlu+

∗Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
+Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA

papamix@cs.cmu.edu, jhoe@ece.cmu.edu, onur@cmu.edu

ABSTRACT
FIST (Fast Interconnect Simulation Techniques) is a fast
and simple packet latency estimator to replace time-
consuming detailed Network-on-Chip (NoC) models in full-
system performance simulators. FIST combines ideas from
analytical network modeling and execution-driven simula-
tion models. The main idea is to abstractly model each
router as a load-delay curve and sum load-dependent delay
at each visited router to obtain a packet’s latency by track-
ing each router’s load at runtime. The resulting latency
estimator can accurately capture subtle load-dependent be-
haviors of a NoC but is much simpler than a full-blown
execution-driven model. We study two variations of FIST in
the context of a software-based, cycle-level simulation of a
tiled chip-multiprocessor (CMP). We evaluate FIST’s accu-
racy and performance relative to the CMP simulator’s orig-
inal execution-driven 2D-mesh NoC model. A static FIST
approach (trained offline using uniform random synthetic
traffic) achieves less than 6% average error in packet latency
and up to 43x average speedup for a 16x16 mesh. A dynamic
FIST approach that adds periodic online training reduces
the average packet latency error to less than 2% and still
maintains an average speedup of up to 18x for a 16x16 mesh.
Moreover, an FPGA-based realization of FIST can simulate
2D-mesh networks up to 24x24 nodes, at 3 to 4 orders of
magnitude speedup over software-based simulators.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development—
Modeling methodologies

General Terms
Design, Performance, Measurement

Keywords
Modeling, Network-on-Chip, Full-System Simulation, Per-
formance Models, FPGA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOCS ’11, May 1-4, 2011, Pittsburgh, PA, USA
Copyright 2011 ACM 978-1-4503-0720-8 ...$10.00.

1. INTRODUCTION
The increasing number of cores in a chip-multiprocessor

(CMP) and the demand for full-system modeling has cast
simulation speed and complexity as a major obstacle to
simulation-based architectural research. As on-chip inter-
connects become a vital component of future CMPs, there
is increasing demand for fast, complexity-effective NoC mod-
els.

Typical stand-alone network simulators, such as Booksim
[8] or Orion [28] employ high-fidelity, cycle-accurate models
to faithfully capture the detailed behavior of the on-chip
interconnect — such as the effects of fine-grain packet in-
teractions. While such a high level of fidelity is desirable
when studying a new interconnect in isolation, it becomes
prohibitively complex and slow — consuming a large frac-
tion of the total simulation time — in the context of full-
system simulations. As a result, it is not uncommon for
full-system simulators to compromise accuracy for improve-
ments in simulation speed and reduced complexity [4, 15].
In general, within a full-system simulation framework, it is
desirable to have fast, low-complexity interconnect models
that closely mimic the behavior of their cycle-accurate coun-
terparts. Furthermore, given the recent increased interest
in FPGA-accelerated full-system simulation [6, 7], it is also
desirable that these interconnect models can be efficiently
implemented as part of a broader FPGA-based simulation
framework.

In this paper we present FIST (Fast Interconnect
Simulation Techniques), a set of fast, complexity-effective
techniques to accurately estimate NoC packet latencies in
the context of full-system CMP simulations. To avoid the
cost and complexity of simulating the NoC in detail, FIST
borrows an idea from analytical network modeling where
each router in the network is abstractly modeled only as a
set of load-delay curves. These per-router load-delay curves
can be obtained via offline or online training for a given net-
work configuration and traffic pattern. At runtime, instead
of a cycle-level detailed simulation of the NoC’s operation,
FIST only tracks the load experienced by each router based
on the observed traffic. In turn, the latency of a packet
is estimated by determining which routers are traversed by
the packet and then summing the load-dependent latencies
at each visited router.

As a proof-of-concept, we present two variants of a sim-
ple FIST-based 2D-mesh model and evaluate them against
a cycle-accurate interconnect model used within an exist-
ing CMP simulator. In addition, to demonstrate the low
hardware complexity and scalability of FIST, we include im-
plementation results for an FPGA-based FIST model that

achieves 3 to 4 orders of magnitude speedup over software-
based cycle-accurate NoC models.

The rest of this paper is organized as follows. Section 2
provides background on full-system simulation and Section
3 introduces the FIST NoC modeling approach. In Section 4
we describe our evaluation methodology including the FIST
model variants we use in our experiments. Section 5 presents
accuracy, performance and hardware speedup results. Fi-
nally we discuss related work in Section 6 and conclude in
Section 7.

2. BACKGROUND
Full-system simulation has become an indispensable tool

for studying modern multi-core computing systems with so-
phisticated caching, interconnect, memory, and I/O subsys-
tems, that run rich software stacks and complex commer-
cial workloads. To avoid complexity and detrimental slow-
downs, full-system simulators must strike a balance between
accuracy and performance. On the one hand, they need
to achieve high simulation speeds to be able to simulate
modern workloads consisting of tens of billions of instruc-
tions. On the other hand, they need to model the system
at sufficient fidelity to not unacceptably compromise timing
accuracy and skew overall system performance results (e.g.,
aggregate system instruction throughput).

The required functionality and simulation fidelity of a net-
work model within a full-system simulation framework is
typically much simpler compared to a dedicated network
simulator. For example, in its simplest form, the network
model of a full-system simulator only needs to ”tag” packets
with their estimated delay. Moreover, full-system simulators
can in many cases tolerate some degree of inaccuracy at sub-
modules, as long as the overall performance trends are not
significantly affected. This set of goals and requirements
gives a different twist to the problem of NoC modeling and
forms the guidelines around which FIST was developed.

3. THE FIST APPROACH
At an abstract level, any interconnection network, regard-

less of topology, can be decomposed into a set of routers
that are connected by links. At this abstraction level, all
buffering and logic within the network is lumped inside the
router, which can be treated as a black box device with a set
of input and output ports. Our goal in FIST is to leverage
this idea and model the network while still retaining this
”black box” abstraction, i.e., without having to deal with
and model the complex internal structure, logic and state of
a router.

To achieve this, FIST borrows an idea from analytical
network modeling, where for a given network configuration
and traffic pattern each router is represented as a set of
load-delay curves. These load-delay curves relate the load
at the input ports of a network router to the average la-
tency of a packet going through this router. During runtime,
FIST tracks the load at each router and uses these curves
for packet latency estimation.

3.1 How FIST Works
Routers as Curves. As an example, consider a 2D-mesh
network that consists of horizontal and vertical links con-
necting a grid of routers. Figure 1 shows a few possible
ways to decompose this mesh network into ”black box” com-
ponents that can be represented by one or more load-delay
curves. In the simplest case each router is mapped to a single

N

N

N

N

N

N

R

R

R

R

R

R
N

N

N

R

R

R

6

La
te
n
cy

Load

Figure 1: Representing routers as load-delay curves.

load-delay curve (as in the top-row routers in the figure), but
a more elaborate mapping can be used to adjust the level of
abstraction. For example, to raise the level of abstraction,
multiple routers can be lumped together and represented by
a single curve (as in the four bottom-right routers). Alter-
natively, if a more detailed representation of the network is
desired, then multiple curves can be used for a single router;
for instance there can be a separate curve characterizing the
traffic for each packet priority class or each output router
port (as in the bottom-left router).

To construct these load-delay curves, FIST relies either on
an analytical network model or on training that is performed
by an existing cycle-accurate network simulator. In the lat-
ter case the network simulator can be used for offline or
online training. In offline training, the network simulator is
used before the actual experiment to pre-generate the curves
based on synthetic or actual workload traffic patterns. In on-
line training, the cycle-accurate network simulator occasion-
ally runs on the side and, if needed, can dynamically update
the curves while the experiment is running. Online training
can still benefit from the existence of a pre-generated set of
curves obtained through offline training (these pre-generated
curves would be used while the online training warms up).

FIST in Action. In the context of full-system simulation,
FIST’s role is to estimate packet latencies that would be ex-
perienced by the same packet in a detailed execution-driven
NoC model and deliver packets to their destinations at the
appropriate time. To do this, FIST dynamically tracks the
load at each router and consults the current set of load-delay
curves to estimate packet latencies. For each packet that is
injected into the network, FIST follows these four steps:

1. Routing: Identify the set of routers that this packet
traverses.

2. Delay query: Acquire delay estimates at affected
routers by indexing their load-delay curves with their
current load.

3. Load update: Update the load at affected routers to
reflect the load increase caused by this packet.

4. Report total latency: Sum the partial latency esti-
mates for the affected routers to obtain the total packet
latency.

NoC Dimensions

Datapath 4x4 6x6 8x8 10x10 12x12 14x14 16x16

32-bit 28% 64% 114% 178% 256% 348% 455%

64-bit 51% 114% 202% 316% 456% 620% 810%

128-bit 95% 214% 380% 594% 856% 1156% 1521%

256-bit 184% 414% 735% 1149% 1655% 2252% 2942%

Table 1: FPGA resource usage (LUT utilization)
for different NoC configurations on a Xilinx Virtex-
5 LX330T.

Contrary to cycle-accurate network simulators, in FIST,
injected packets are never actually routed through or stored
inside the network model. Instead, they are ”instanta-
neously” processed and tagged with their estimated latency.
The only state maintained and updated over time in FIST is
the load at each router. By relying on analytical models or
high fidelity network models for training, FIST is able to of-
fload a large fraction of the modeling effort and significantly
reduce its implementation complexity. The lightweight na-
ture of FIST allows for very efficient software-based or low
cost and scalable FPGA-based implementations.

3.2 FIST-based Network Models
The ”black box” approach of FIST-based network mod-

els allows them to be used as building blocks within larger
software-based or hardware-based full-system simulation en-
vironments. Depending on the implemented routing logic
and the selected load-delay curves, FIST can model a va-
riety of network topologies for a range of different network
configuration parameters (e.g., number of VCs, buffer sizes,
arbitration logic).

Software-based Implementations. In the case of
software-based full-system simulators, FIST presents a fast
and lightweight alternative to existing high-fidelity network
models. FIST can either completely replace existing net-
work models or can run on the side in tandem with the
existing network models to accelerate less critical regions
of a workload. In this latter case, existing network models
can interact with FIST to provide feedback on the observed
latency estimation error and dynamically update the load-
delay curves for online training.

Hardware-based Implementations. The simple,
lightweight nature of FIST-based network models makes
them ideal candidates for hardware implementation on an
FPGA. Although FPGAs have traditionally been used as
prototyping platforms for networks [26, 25], such approaches
are complex and entail high implementation and verifica-
tion effort, both for the initial design as well as for any
subsequent modifications, because they accurately model all
components of a router. More importantly, they suffer from
limited scalability, as current FPGAs can only emulate small
designs due to capacity constraints [29]. To illustrate this
point, Table 1 shows the fraction of FPGA area needed for
a 2D-mesh NoC that uses a state-of-the-art virtual channel
(VC) router [19] for various sizes and datapath widths, ob-
tained using FPGA synthesis. Faded cells represent design
points that would not fit on the FPGA. Even on one of the
largest Xilinx FPGA parts, the designs that fit on the FPGA
are only limited to 4x4 or 6x6 meshes with a narrow data-
path. A 16x16 design with a wide datapath would require
29X of the area of such an FPGA.

7

Packet
Descriptors

Router Elements

Src

Dest

Size

Tree of
Adders

Pick
routers

Routing Logic

Packet

Delays

Partial Delays

B
R

A
M

Load Tracker

Curve

Figure 2: FIST Hardware Block Diagram.

FIST Hardware Architecture. Figure 2 shows the ar-
chitectural block diagram for our hardware implementation
of FIST targeting FPGAs. Our hardware implementation
accepts packet descriptors through a FIFO-based input in-
terface that contain packet information, such as source, des-
tination and size. After being processed, packets are tagged
with a latency estimate and are placed in a FIFO-based
output interface. The design is pipelined and can process a
new packet descriptor every clock cycle.

For each packet, the hardware version of FIST follows the
same four processing steps mentioned earlier in Section 2.
Once a new packet descriptor is received through the FIFO
input, routing logic determines which routers are affected
by this packet. The affected routers then all simultaneously
perform a parallel lookup in their load-delay curve based
on their current load and subsequently update the load to
reflect this packet’s contribution to additional load. Finally,
a tree of adders sums up the partial router latencies to tag
the packet with the final latency estimate, at which point it
is ready to be placed in the output FIFO interface.

Compared to existing approaches [25, 27, 26] that use FP-
GAs to implement the target simulated network at cycle-
level accuracy, FIST provides an attractive lower fidelity
alternative that not only avoids the high implementation
complexity, but also vastly increases the scalability of the
model, in terms of the number of simulated routers. As
shown later in the results section, we were able to fit up
to a 24x24 (576-router) 2D-mesh FIST network model on
an FPGA that perfectly replicates the software-based FIST
models presented in Section 4.

3.3 FIST Limitations and Requirements
FIST-based network models are meant to be used within

full-system simulation environments that can tolerate or
simply accept some degree of simulation inaccuracies. They
are not meant to replace dedicated cycle-accurate models
built to study networks in detail. In fact, FIST relies on the
existence of such detailed network models for the purposes of
training. However, even under such conditions, the abstract
modeling approach employed by FIST limits its applicability
to certain types of networks and specific traffic patterns.

FIST-friendly Networks. When used with a static set
of load-delay curves obtained through offline training, FIST
models can successfully capture the behavior of networks
that a) exhibit stable and predictable behavior as loads at
individual routers fluctuate and b) are used with traffic pat-
terns that do not significantly deviate from the patterns used
during offline training. As a counterexample, networks that
react to changes in load or in traffic patterns by drastically
altering their routing decisions or arbitration policies are

not good candidates for offline-trained FIST models. For
instance, FIST is likely to fail when trying to model an adap-
tive network that employs GOAL routing [23] or a network
where the traffic pattern rapidly oscillates between ”uniform
random” and ”neighbor” [8].

To overcome some of the above limitations, FIST can be
used with online training. In this case a cycle-accurate net-
work model is occasionally run in tandem with the FIST
model and ”re-trains” the load-delay curves of FIST on the
fly. Such a hybrid simulation model is able to adapt to
transient changes in network behavior and traffic patterns,
as long as these changes occur in sufficiently long stable in-
tervals to be captured by the occasional ”re-training”. Even
with online training, however, a network that encounters
rapid and vast changes in traffic patterns at a faster rate
than the training rate will likely not be faithfully modeled
using FIST.

In summary, FIST’s limitations stem from its abstract
representation of the network using load-delay curves. FIST
can be viewed as a predictor that is only as good as the rep-
resentativeness of its training data. The accuracy of packet
latency estimates depends heavily on the fidelity and rep-
resentativeness of the models used for training. Moreover,
since FIST relies on training data from an existing analytical
or simulation model, it is obviously not useful for performing
exploratory studies that study new types of networks.

Accuracy Sensitivity to Load and Buffering. Regard-
less of the type of training, the accuracy of FIST is also
affected by the amount of buffering and the average load in
the network. Intuitively, the amount of buffering determines
the range of possible packet latencies and the load deter-
mines the amount of variance in observed packet latencies.
As network load increases, variance is amplified, because of
more fine-grain packet interactions (e.g., output contention)
and because of congestion that builds up at some routers
and eventually starts affecting other neighboring routers.

FIST for NoC Modeling. In a modern CMP, NoCs have
to share chip resources with other components such as cores,
caches and memory controllers. Given the above limitations
and the scarcity of on-chip resources, such as area, power
and on-chip memory, FIST would be a good candidate for
modeling NoCs that are part of a broader CMP system for
the following reasons:

• Due to resource contention among different compo-
nents on a CMP, NoCs are usually relatively simple
designs. As an example, two recent industry-developed
NoCs [10, 21] employ dimension-ordered routing, one
of the simplest deterministic routing algorithms. Such
algorithms are easy to model using FIST.

• To compensate for their simple design and provide
worst-case guarantees, NoCs are often over-provisioned
and, as a result, many on-chip interconnection net-
works are observed to be operating at low packet injec-
tion rates relative to peak. This in turn results in low
router loads [11, 13, 17], which reduce packet latency
variance and create good conditions for FIST-based
latency predictions.

• Given the abundance of wires in on-chip environments
which allows for very wide datapaths, buffering in
NoCs is usually limited or in some cases completely
eliminated [17]. As was the case with low loads, limited

buffering also helps FIST in accurate latency estima-
tion, because it limits the range and variance of latency
values, especially when combined with low loads.

4. EVALUATION
We examine two variants of a simple FIST model for 4x4,

8x8 and 16x16 2D-mesh NoCs that employ DO (Dimension
Ordered) wormhole routing. We use 4VCs/channel and use
8, 16 and 32-flit VC buffers. To measure the effectiveness of
FIST in a broader simulation environment, we use our FIST
models to replace an existing cycle-accurate NoC simulator
used within an in-house tiled CMP simulator the front-end
of which is based on Pin [5]. Table 2 shows the major system
and network parameters.

We run multiprogrammed and multithreaded workloads
and observe how FIST affects salient simulation results, such
as average packet latency and average aggregate instruction
throughput. Traffic is generated due to cache misses and
consists of single-flit control packets for data requests or co-
herence control messages and 8-flit data packets for cache
block transfers.

Workloads. We use 26 SPEC CPU2006 [24] benchmarks
for multiprogrammed workloads, as well as 8 SPLASH-2
[22] and 2 PARSEC [1] multithreaded workloads, which are
listed in Table 3. To form multiprogrammed workloads, we
classified the SPEC CPU2006 workloads in terms of net-
work intensity and formed multiprogrammed workloads of
varying intensity. Each benchmark was compiled using gcc
4.1.2 with -O3 optimizations and a representative simulation
phase was chosen using PinPoints [20]. For the 4x4, 8x8 and
16x16 mesh configurations we run workloads for 50, 20 and
5 million cycles respectively, or to completion if they finish
earlier than their allotted cycles.

For multiprogrammed workloads, we classify benchmarks
based on the amount of L1 MPKI (misses per kilo instruc-
tions), which is tightly coupled to their network intensity;
benchmarks with an average MPKI greater than ten are
labeled as network-intensive, while all other benchmarks
are labeled as network-non-intensive. Depending on the
fraction of network-intensive workloads, multiprogrammed
workloads (MP) are classified as low (0%), medium (50%)
or high (100%) intensity. For each memory intensity cate-
gory (0%, 50% and 100%), we simulate 16 multiprogrammed
workloads, for a total of 48 workloads in the case of 4x4 or
8x8 meshes. For 16x16 mesh configurations we only simu-
late 24 multiprogrammed workloads, 8 from each network
intensity class.

Model Parameters. In our FIST models we represent
each router as a set of two load-delay curves. The first curve
relates the load at a router to the average network latency of
a packet traversing this router on its way to the destination.
This network latency is defined to be the time interval from
the moment a packet’s tail flit enters a router’s VC buffers
until the moment it reaches the next router on its path. The
second curve relates the load at a router against the injection
latency that a packet observes when it is injected into the
network from the node attached to that router.

Load, which is used to index the load-delay curves, is de-
fined as the number of flits observed on the five input ports
of a router in the last HL (HistoryLength) cycles. We set
the HL parameter according to the size of the VC buffer size
of the NoC. For a VC buffer size of 8, 16 and 32 flits we set
the HL parameter to 64, 128 and 256 cycles respectively.

System topologies 4x4, 8x8, 16x16 mesh (core + coherent L1 + slice of the distributed L2 at each node)

CPU model Out-of-order x86, 128-entry instruction window, 16 MSHRs

Private L1 cache 64 KB, 2-way associative, 64-byte block size

Shared L2 cache Perfect (always hits), distributed (S-NUCA [12]) with randomized static mapping of cache blocks to L2 slices

Coherence protocol Simple directory-based, based on SGI Origin [14], perfect directory

Interconnect links 1-cycle latency, 64-bit flit width (8 flits per cache block)

Router configurations 4-cycle latency, 4VCs/channel, 8 and16 flits/VC for 4x4 and 8x8, 16 flits/VC for 16x16

Table 2: System parameters used in our evaluation.

SPEC2006 Benchmarks for
multiprogrammed workloads

Low network intensity: gromacs, tonto, calculix, namd, dealII, h264, gobmk, sjeng, hmmer, perlbench

High network intensity: xalancbmk, gcc, libquantum, sphinx3, bzip2, povray, mcf, lbm, soplex, leslie3d,

astar, omnetpp, gems, wrf, milc, cactus

Multithreaded workloads SPLASH-2: cholesky, lu n, lu c, ocean n, barnes, fmm, water n, water s PARSEC: streamcluster, fluidanimate

Table 3: Workload Information.

Offline and Online FIST. We examine two variants of
the presented NoC model. The first (FIST offline) relies on
offline training with synthetic traffic using the original cycle-
accurate NoC model. Given the static random mapping of
cache blocks to L2 slices, we train using a uniform random
synthetic traffic pattern, which we expect to resemble actual
workload traffic patterns.

The second variant (FIST online) relies on online train-
ing that is occasionally performed by the original cycle-
accurate NoC model to obtain and dynamically update the
FIST load-delay curves. In this scheme, routers are ini-
tially loaded with the same load-delay curves used in the
FIST offline model. Once simulation starts, the cycle-
accurate NoC model is enabled every Quantumcycles cycles
and is then used to observe the packet latency error and
train FIST for Traincycles cycles. In the beginning of each
training period, the cycle-accurate NoC simulator is run for
Warmupcycles to warm up its structures. Training continues
until the average packet latency drops below Errorthreshold.
Unless stated otherwise we set Errorthreshold to 5%, which
means that training will continue until the average packet la-
tency error during the last Traincycles cycles falls below 5%.
We empirically set the default Quantumcycles, Traincycles

and Warmupcycles to 100000, 10000 and 1000 cycles respec-
tively. In the results section we also experiment with more
aggressive values that reduce the amount of training to ob-
serve the effects on error and performance.

To avoid abrupt changes in predicted latencies during
training, updated latency values affect the existing latency
values in a decaying fashion, where each new latency sample
only contributes by a factor of Decayfactor to the existing
average latency for a specific load. Given a new latency
sample Latsample observed at some load, the updated la-
tency Latupdated is calculated based on the existing latency
Latprev as follows:

Latupdated =
(Decayfactor − 1) ∗ Latprev + Latsample

Decayfactor

We empirically set the Decayfactor to 100, a value that
appeared to be high enough to tolerate noise in the latency
updates, but also low enough to quickly adapt to changes in
workload and traffic behavior.

Accuracy. To assess the simulation infidelity introduced
by FIST, we present the observed error in average packet
latency and average aggregate instruction throughput. Av-
erage packet latency is obtained by summing the latencies of
all packets and dividing this sum by the number of packets.

Average aggregate instruction throughput (IPCΣ) is defined
as the sum of the average IPC (Instructions Per Cycle) for
each core in the simulated system. Finally for any metric M
we define the error E between the actual value Mactual and
the estimated value Mestimate as follows:

E =
Mestimate −Mactual

Mactual

To gain deeper insight than what average values can pro-
vide, we also present a case study where we continuously
run both the actual cycle-accurate and the FIST NoC mod-
els side-by-side and present a timeline of the actual and the
estimated latencies.

Hardware Evaluation. To evaluate the cost and per-
formance of an FPGA-based FIST implementation, we de-
veloped an RTL model written in Bluespec System Ver-
ilog [2] that realizes the architecture discussed in Section
3 and shown in Figure 2. Our implementation precisely
replicates the presented software-based model. We show
results for FPGA resource usage and post-synthesis clock
frequency estimates for a moderately sized (LX155T) and a
large (LX760) Xilinx FPGA.

Performance. To evaluate performance for the software-
based models, we present the approximate speedups ob-
served for the various FIST variants. For the software-based
models, we report the network simulation speedup, which
was measured based on average wall clock time of hundreds
of experiments run on a uniform 256-core cluster based on
2.5GHz Intel Xeon processors. For the FIST models that
rely on online training we also report FIST utilization, which
is the fraction of cycles that the FIST model was running
alone, without the aid of the cycle-accurate model. For the
FPGA-based FIST models we report performance based on
post-synthesis clock frequency results.

5. RESULTS
We first present accuracy results for our software-based

FIST models for 4x4, 8x8 and 16x16 mesh configurations.
We extend our accuracy results with a case study for a sam-
ple multithreaded workload and highlight specific regions of
interest. We then present FPGA implementation results and
finally report speedup for both the software and hardware
FIST models.

5.1 Accuracy and Performance Results
Figure 3 plots the error in average packet latency and

aggregate IPC across all workloads using the FIST offline

8

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Latency Error
IPC Error

MT (SPL/PAR)MP (High)MP (Med)MP (Low)

La
te

n
cy

/I
P

C
Er

ro
r

Figure 3: Average Latency and Aggregate IPC Er-
ror for 8x8 mesh using FIST offline model.

model for an 8x8 network. The error for average latency is
in all cases below 10%, whereas IPCΣ error is significantly
lower, always below 5%. There is a clear bias towards un-
derestimation of latency (i.e., negative error), which can be
attributed to using uniform random traffic for training; in
our experiments we observed that even though traffic pat-
terns generally resemble uniform random over long periods
of execution, workloads tend to go through phases of vary-
ing intensity, that create transient hot-spots. In such cases,
under the same load, the affected routers will observe higher
latencies compared to uniform random traffic.

The same error results, but this time using the
FIST online model that leverages dynamic training infor-
mation, are shown in Figure 4. The benefits of online train-
ing are clear; error for both latency and IPCΣ are greatly
reduced and lie in all cases well within the 5% range. In
addition, the underestimation bias is now eliminated; tran-
sient workload behavior changes are now captured by the
cycle-accurate simulator that occasionally runs on the side
and the FIST model is able to successfully adapt.

Table 4 presents Latency and IPCΣ error for all exper-
imental configurations, as well as observed network simu-
lation speedup and the fraction of time spent in network
simulation when using the cycle accurate NoC model. For
experiments that use the FIST online model we also report
FIST utilization. Finally, we also report results for a more
aggressive variant of FIST online (denoted by Onlaggr in
the table) where we set the Quantumcycles, Traincycles and
Warmupcycles parameters to 500000, 5000 and 1000 cycles
respectively. Such a configuration introduces slightly higher
error but achieves much better performance, since it is only
forced to train 1% of the time, instead of 10%, which is the
case for our baseline results with FIST online.

Effect of Latency Error on IPC Error. It is interesting

-0.1

-0.05

0

0.05

0.1

La
te

n
cy

 E
rr

o
r

Latency Error

IPC Error

10

MT (SPL/PAR)MP (High)MP (Med)MP (Low)

La
te

n
cy

/I
P

C
Er

ro
r

Figure 4: Average Latency and Aggregate IPC Er-
ror for 8x8 mesh using FIST online model.

10

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

La
te

n
cy

 E
rr

o
r

Latency Error

IPC Error

MT (SPL/PAR)MP (High)MP (Med)MP (Low)

La
te

n
cy

/I
P

C
Er

ro
r

Figure 5: Average Latency and Aggregate IPC Er-
ror for 8x8 mesh using hop-based model.

to note that for both FIST models the aggregate instruc-
tion throughput (IPCΣ) error is significantly lower than the
latency error. This indicates that IPC, one of the most com-
monly reported results in full-system simulations, is stable
under small network modeling errors. However, to show that
this does not hold when larger network errors are introduced,
we also ran experiments with a very simplistic hop-based
model that estimates packet latencies based on the number
of hops between two nodes and does not consider network
load at all.

The results for the simple hop-based model are shown in
Figure 5. As expected, this model introduces much higher
latency error, especially for the more network-intensive
workloads, where it reaches up to 60%. Contrary to what
was shown in the two previous figures, the severe error in
latency does indeed translate into IPC error, which in some
cases approaches 80%. These results indicate that full-
system simulation might be able to tolerate some amount
of infidelity in the network model, but beyond some error
threshold, this infidelity can start introducing significant er-
rors in higher-level simulation results.
Case Study. To get a glimpse of how FIST works at a fine-
grain level and to demonstrate the effects of online training,
Figure 6 (a) shows a timeline of average actual and estimated
latency sampled every 3000 cycles for a total of 3 million cy-
cles. Due to space limitations, we condense a 1.5M stable
phase that would otherwise span the middle of the timeline.
To produce the timeline, we used the ”LU” SPLASH-2 work-
load, which exhibits very distinct phases due to barrier syn-
chronizations. For this experiment, we use the FIST online
model, but to better highlight the effects of training, we
intentionally load it with initial curves that report a latency
of zero for all loads. The solid line corresponds to the actual
latency reported by the cycle-accurate simulator and the
dashed line corresponds to latencies estimated by FIST.

Having no previous training data, FIST initially is un-
able to immediately capture the sudden latency changes in
this workload. Eventually, though, with the help of online
training, it approaches the actual latencies reported by the
cycle-accurate model. Notice for instance that FIST is ini-
tially unable to properly estimate the latency spike around
300K cycles, but can do so the second time it encounters a
similar spike around 2300K cycles. The reaction delay ex-
ists because the cycle-accurate model is invoked only every
Quantumcycles. The presence of an initial set of curves used
by the FIST online model can alleviate such problems as is
shown in Figure 6(b).

Mesh size 4x4 8x8 16x16 (for 24 MP workloads)

Flits/VC Buf 8 16 32 8 16 16

% in Net. Sim. 47.4% 46.1% 46.4% 53.2% 51.7% 58.2%

FIST model Offl Onl Offl Onl Onlaggr Offl Onl Offl Onl Offl Onl Onlaggr Offl Onl Onlaggr

Lat. Error % 3.7 1.39 5.08 1.35 1.46 5.81 1.37 1.54 0.92 3.88 0.6 0.82 4.77 1.34 1.63

IPCΣ Error % 1.65 0.70 1.44 0.58 0.73 1.89 0.53 3.39 1.19 1.66 1.07 1.25 4.64 0.84 1.18

Speedup 13.36 3.88 14.31 4.30 7.31 12.93 4.41 22.22 5.79 26.00 6.68 16.10 43.13 7.85 18.42

FIST Util. % - 81.79 - 83.30 97.13 - 84.91 - 84.95 - 87.23 98.13 - 85.66 96.50

Table 4: Accuracy, performance and other results for all experiments across 4x4, 8x8 and 16x16 mesh configurations.

Computer Architecture Lab at

11

0
5

10
15
20
25
30
35
40
45
50

0

6
6

1
3

2

1
9

8

2
6

4

3
3

0

3
9

6

4
6

2

1
8

8
4

1
9

5
0

2
0

1
6

2
0

8
2

2
1

4
8

2
2

1
4

2
2

8
0

2
3

4
6

2
4

1
2

2
4

7
8

La
te

nc
y

Ellapsed Cycles (in 1000s)

Actual Latency

Estimated Latency

El

…

…

…

Elapsed cycles (in 1000s)

(a) Without initial training data 12

0
5

10
15
20
25
30
35
40
45
50

0

6
6

1
3

2

1
9

8

2
6

4

3
3

0

3
9

6

4
6

2

1
8

8
4

1
9

5
0

2
0

1
6

2
0

8
2

2
1

4
8

2
2

1
4

2
2

8
0

2
3

4
6

2
4

1
2

2
4

7
8

La
te

n
cy

Ellapsed Cycles (in 1000s)

Actual Latency

Estimated Latency

El

…

…

…

Elapsed cycles (in 1000s)

(b) With initial training data

Figure 6: Actual and Estimated Latency for ”LU” SPLASH-2 benchmark over a window of 3 million cycles.

5.2 Hardware Implementation Results
Our hardware implementation of FIST precisely replicates

the presented software-based model. On a relatively small
Xilinx FPGA (Virtex-5 LX155T) we were able to fit models
for up to 20x20 mesh networks running at 200MHz, which
corresponds to a packet processing rate of 200M packets/sec.
On a larger, more recent Xilinx FPGA (Virtex-6 LX760) we
were able to successfully synthesize designs up to 24x24 run-
ning at estimated frequencies beyond 300MHz, which corre-
sponds to 300M packets/sec.

To put these numbers in perspective, for a small 4x4 net-
work, the cycle-accurate software model used in this paper
can process packets at an approximate rate of 30K pack-
ets/sec, which makes our FIST hardware implementation
three to four orders of magnitude faster. Detailed resource
usage and post-synthesis clock frequency results are shown
in Table 5. The design uses only a small amount of LUTs.
As a result, its scalability is only limited by the number of
BRAMs required to store the load-delay curves.

Virtex-5 LX155T Virtex-6 LX760

Size BRAMs LUT % Freq. BRAMs LUT % Freq.

4x4 8 1% 380MHz 8 0% 448MHz

8x8 32 5% 263MHz 32 1% 443MHz

12x12 72 11% 250MHz 72 2% 375MHz

16x16 128 20% 214MHz 129 5% 375MHz

20x20 200 32% 200MHz 201 8% 319MHz

24x24 - - - 289 12% 312MHz

Table 5: FPGA resource usage (LUT utilization,
#BRAMs) and post-synthesis clock frequency.

6. RELATED WORK
There has been a vast body of work in the area of net-

work modeling. The recent emergence of NoCs and in-
creased demand for full-system simulation has posed new
constraints and introduced new opportunities that even fur-
ther expanded this research area; approaches range all the
way from analytical modeling to hardware prototyping.

In the area of NoC analytical modeling there has been
a significant amount of work examining generalized models
that capture a variety of different NoC router architectures
[18, 3, 9] as well as analytical models that target specific
NoC instances [16]. Compared to FIST, the static nature of
analytical modeling does not make it suitable for use within
execution-driven simulations. However, such models can be
used to construct the load-delay curves used by FIST.

In the context of abstract network modeling for
full-system simulations, prior work has looked at the
performance-accuracy trade-off for pure software ap-
proaches. In [4], the accuracy and performance of five simple
network models within a full-system simulator is studied.
The ”approximate” model shares ideas with FIST, such as
the parallel processing of a packet by all affected routers;
however, contrary to FIST, packets are still routed through
the network. The concept of load-delay curve representation
has also been used in the past [15], but in a more complex
manner and for entire segments of a high-speed cluster in-
terconnect.

Finally there have been a number of previous attempts
at using FPGAs for NoC modeling, such as [25, 27, 26].
However, compared to FIST, these approaches offer cycle-
accurate fidelity at the cost of very limited scalability com-
bined with high complexity. Previous work has looked at
time-multiplexing multiple simulated routers on a single

virtualized FPGA-resident router [29]. While such an ap-
proach can overcome FPGA capacity limitations, it still suf-
fers from implementation complexity, both for building the
cycle-accurate router model as well as for handling time-
multiplexing.

7. CONCLUSION
We presented FIST, a fast, lightweight FPGA-friendly ap-

proach to packet latency estimation for full-system simula-
tions. We evaluated two FIST-based models against multi-
programmed and multithreaded workloads on 4x4, 8x8 and
16x16 mesh configurations. Our simpler model that relies
only on offline training can approximate latency and aggre-
gate throughput values within an error of 6% and 2% respec-
tively and consistently provides simulation time speedups
ranging up to 43x for 16x16 mesh networks. We also present
a hybrid model that employs online training, by periodically
running a cycle-accurate NoC simulator on the side. This
hybrid model reduces both latency and aggregate through-
put error to less than 2% and can still achieve a simulation
time speedup up to 18x for 16x16 mesh networks. Finally,
we present results for an FPGA-based hardware implemen-
tation of FIST that can simulate up to 24x24 mesh configu-
rations and can achieve 3 to 4 orders of magnitude speedup
over software-based cycle-accurate NoC models.

8. ACKNOWLEDGMENTS
Funding for this work has been provided by NSF CCF-

0811702. We thank the anonymous reviewers and mem-
bers of the Computer Architecture Lab at Carnegie Mellon
(CALCM) for their comments and feedback. We thank Xil-
inx for their FPGA and tool donations. We thank Bluespec
for their tool donations and support.

9. REFERENCES
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The

PARSEC Benchmark Suite: Characterization and
Architectural Implications. PACT, 2008.

[2] Bluespec, Inc. [Online].
http://www.bluespec.com/products/bsc.htm.

[3] Y. M. Boura and C. R.Das. Modeling Virtual Channel
Flow Control in Hypercubes. HPCA, 1995.

[4] D. C. Burger and D. A. Wood. Accuracy vs.
Performance in Parallel Simulation of Interconnection
Networks, 1995.

[5] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, et al. Pin: Building
Customized Program Analysis Tools with Dynamic
Instrumentation. PLDI, 2005.

[6] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil,
W. Reinhart, D. E. Johnson, J. Keefe, and
H. Angepat. FPGA-Accelerated Simulation
Technologies (FAST): Fast, Full-System,
Cycle-Accurate Simulators, 2007.

[7] E. S. Chung, M. K. Papamichael, E. Nurvitadhi, J. C.
Hoe, and K. Mai. ProtoFlex: Towards Scalable, Full
System Multiprocessor Simulations Using FPGAs.
ACM Transactions on Reconfigurable Technology and
Systems, 2009.

[8] W. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann, 2004.

[9] S. Foroutan, Y. Thonnart, R. Hersemeule, and
A. Jerraya. An Analytical Method for Evaluating
Network-on-Chip Performance. In DATE, 2010.

[10] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N.
Borkar, S. Jain, V. Erraguntla, M. Konow, M. Riepen,
M. Gries, et al. A 48-Core IA-32 Message-Passing
Processor with DVFS in 45nm CMOS. ISSCC, 2010.

[11] N. E. Jerger, L. S. Peh, and M. Lipasti.
Circuit-Switched Coherence. NOCS, 2008.

[12] C. Kim, D. Burger, and S. W. Keckler. An Adaptive,
Non-Uniform Cache Structure for Wire-Delay
Dominated On-Chip Caches. ASPLOS, 2002.

[13] J. Kim, J. Balfour, and W. Dally. Flattened Butterfly
Topology for On-Chip Networks. MICRO, 2007.

[14] D. Lenoski and J. Laudon. The SGI Origin: A
ccNUMA Highly Scalable Server, 1997.

[15] D. Lugones, D. Franco, D. Rexachs, J. Moure,
E. Luque, E. Argollo, A. Falcon, D. Ortega, and
P. Faraboschi. High-speed network modeling for full
system simulation. IISWC, 2009.

[16] M. Moadeli, A. Shahrabi, W. Vanderbauwhede, and
P. Maji. An Analytical Performance Model for the
Spidergon NoC with Virtual Channels. AINA, 2010.

[17] T. Moscibroda and O. Mutlu. A Case for Bufferless
Routing in On-Chip Networks. ISCA, 2009.

[18] U. Y. Ogras and R. Marculescu. Analytical Router
Modeling for Networks-on-Chip Performance Analysis.
DATE, 2007.

[19] Open Source Network-on-Chip Router RTL. [Online].
http://nocs.stanford.edu/router/html.

[20] H. Patil, R. Cohn, M. Charney, R. Kapoor, and
A. Sun. Pinpointing Representative Portions of Large
Intel Itanium Programs with Dynamic
Instrumentation. MICRO, 2004.

[21] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce,
V. Leung, J. MacKay, M. Reif, L. Bao, J. Brown, et
al. TILE64 - Processor: A 64-Core SoC with Mesh
Interconnect. ISSCC, 2008.

[22] S. C. Woo, O. Moriyoshi, T. Evan, et al. The
SPLASH-2 Programs: Characterization and
Methodological Considerations. ISCA, 1995.

[23] A. Singh, W. J. Dally, A. K. Gupta, and B. Towles.
GOAL: A Load-Balanced Adaptive Routing
Algorithm for Torus Networks, 2003.

[24] Standard Performance Evaluation Corporation.
http://www.spec.org/cpu2006.

[25] L. Thuan and M. Khalid. NoC Prototyping on
FPGAs: A Case Study Using an Image Processing
Benchmark. IEEE EIT, 2009.

[26] U. Y. Ogras, R. Marculescu, H. G. Lee, P. Choudhary,
D. Marculescu, et al. Challenges and Promising
Results in NoC Prototyping Using FPGAs. IEEE
Micro Special Issue on Interconnects for Multi-Core
Chips, September 2007.

[27] D. Wang, N. E. Jerger, and J. G. Steffan. DART: Fast
and Flexible NoC Simulation using FPGAs. WARP,
2010.

[28] H. S. Wang, X. Zhu, L. S. Peh, and S. Malik. Orion:
A Power-Performance Simulator for Interconnection
Networks. MICRO, 2002.

[29] P. Wolkotte, P. Holzenspies, and G. Smit. Fast,
Accurate and Detailed NoC Simulations. NOCS, 2007.

