The Dirty-Block Index

Today – 4:15PM – Session 3A

Vivek Seshadri

Abhishek Bhowmick • Onur Mutlu

Phillip B. Gibbons • Michael A. Kozuch • Todd C. Mowry

SAFARI Carnegie Mellon Intel
Mismatch: Representation and Query

Sorted by Title

Get all the books written by author X
Mismatch: Representation and Query

Breadth First Search

List all edges adjacent to vertex ‘a’
Mismatch: Representation and Query

Cache Tag Store

<table>
<thead>
<tr>
<th></th>
<th>Tag</th>
<th></th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirty</td>
<td>Tag</td>
<td>Dirty</td>
<td>Tag</td>
</tr>
<tr>
<td>Dirty</td>
<td>Tag</td>
<td>Dirty</td>
<td>Tag</td>
</tr>
<tr>
<td>Dirty</td>
<td>Tag</td>
<td>Dirty</td>
<td>Tag</td>
</tr>
</tbody>
</table>

Dirty Bit

List all dirty blocks of DRAM row R.

Is block X dirty?
Dirty-Block Index

Cache Tag Store

<table>
<thead>
<tr>
<th>Tag</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag</td>
<td>Tag</td>
</tr>
<tr>
<td>Tag</td>
<td>Tag</td>
</tr>
<tr>
<td>Tag</td>
<td>Tag</td>
</tr>
</tbody>
</table>

List all dirty blocks of DRAM row R.

Is block X dirty?

DBI
Many Optimizations

1. DRAM-aware writeback
2. Bypassing cache lookups
3. Reducing ECC overhead
4. Efficient cache flushing
5. Load balancing memory accesses
6. Bulk DMA
7. Efficient write scheduling

...
Many Optimizations

1. DRAM-aware writeback
2. Bypassing cache lookups
3. Reducing ECC overhead
4. Efficient cache flushing
5. Load balancing memory accesses
6. Bulk DMA
7. Efficient write scheduling

- 31% performance over baseline
- 6% over best previous mechanism
- 8% cache area reduction
The Dirty-Block Index
Today – 4:15PM – Session 3A

Vivek Seshadri
AbhishekBhowmick • Onur Mutlu
Phillip B. Gibbons • Michael A. Kozuch • Todd C. Mowry

SAFARI • Carnegie Mellon • intel®