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DASH: Deadline-Aware High-Performance Memory Scheduler
for Heterogeneous Systems with Hardware Accelerators
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and ONUR MUTLU, Carnegie Mellon University

Modern SoCs integrate multiple CPU cores and hardware accelerators (HWAs) that share the same main
memory system, causing interference among memory requests from different agents. The result of this
interference, if it is not controlled well, is missed deadlines for HWAs and low CPU performance. Few previous
works have tackled this problem. State-of-the-art mechanisms designed for CPU-GPU systems strive to meet
a target frame rate for GPUs by prioritizing the GPU close to the time when it has to complete a frame.
We observe two major problems when such an approach is adapted to a heterogeneous CPU-HWA system.
First, HWAs miss deadlines because they are prioritized only when close to their deadlines. Second, such an
approach does not consider the diverse memory access characteristics of different applications running on
CPUs and HWAs, leading to low performance for latency-sensitive CPU applications and deadline misses
for some HWAs, including GPUs.

In this article, we propose a Deadline-Aware memory Scheduler for Heterogeneous systems (DASH), which
overcomes these problems using three key ideas, with the goal of meeting HWAs’ deadlines while providing
high CPU performance. First, DASH prioritizes an HWA when it is not on track to meet its deadline
any time during a deadline period, instead of prioritizing it only when close to a deadline. Second, DASH
prioritizes HWAs over memory-intensive CPU applications based on the observation that memory-intensive
applications’ performance is not sensitive to memory latency. Third, DASH treats short-deadline HWAs
differently as they are more likely to miss their deadlines and schedules their requests based on worst-case
memory access time estimates.

Extensive evaluations across a wide variety of different workloads and systems show that DASH achieves
significantly better CPU performance than the best previous scheduler while always meeting the deadlines
for all HWAs, including GPUs, thereby largely improving frame rates.
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1. INTRODUCTION

Today’s SoCs are heterogeneous architectures that integrate hardware accelerators
(HWAs) and CPUs. Special-purpose HWAs are widely used in SoCs, along with general-
purpose CPU cores, because of their ability to perform specific operations in a fast and
energy-efficient manner [Chandramoorthy et al. 2015]. For example, CPU cores and
Graphics Processing Units (GPUs) are often integrated in smartphone SoCs [Qual-
comm 2011]. Hard-wired HWAs are implemented in a very wide range of SoCs [Tanabe
et al. 2012; Stein et al. 2008; Tanabe et al. 2015], including smartphones.

To meet their target performance (e.g., frame rates), HWAs need to meet deadlines.
However, in most SoCs, HWAs share the main memory with CPU cores and main mem-
ory bandwidth is a heavily contended resource between these different agents [Stevens
2010; Yedlapalli et al. 2014; Nachiappan et al. 2014]. Requests to main memory from
CPU cores and HWAs contend for the limited memory bandwidth. Unmanaged memory
bandwidth contention prevents HWAs from meeting their deadlines and also degrades
CPU performance. Therefore, it is important to manage the main memory bandwidth
such that HWAs meet their deadlines and performance targets, while CPU cores also
achieve high performance.

Several previous works have explored application-aware memory scheduling in CPU-
only multicore systems [Mutlu and Moscibroda 2007; Nesbit et al. 2006; Mutlu and
Moscibroda 2008; Kim et al. 2010a, 2010b; Subramanian et al. 2014; Moscibroda and
Mutlu 2008; Zhao et al. 2014]. The basic idea is to reorder requests from different CPU
cores to achieve high performance and fairness. However, there have been few previous
works that have tackled the problem of main memory management in heterogeneous
systems consisting of CPUs and HWAs, with the dual goals of (1) meeting HWAs’
deadlines while (2) achieving high CPU performance.

The state-of-the-art work [Jeong et al. 2012a] that has these two goals proposes a
memory scheduling scheme that aims to enable only one specific type of HWA, GPU, to
meet its target deadline (i.e., frame rate) while achieving high CPU performance. Its
key idea is to prioritize the GPU over the CPU cores only close to a deadline, that is,
when the GPU has to finish rendering a frame. At other times, when the GPU is not on
track to meet a deadline, the proposed scheduler assigns the GPU the same priority as
the CPU cores. On the other hand, it assigns the GPU lower priority than the CPU cores
when the GPU is on track to meet a deadline. However, this work does not consider
many other kinds of HWAs, which we evaluate in our heterogeneous systems.

We adapted this state-of-the-art scheme [Jeong et al. 2012a] to a heterogeneous
system with CPUs and various types of HWAs and observed that such an approach,
when used in a CPU-HWA context, suffers from two major problems. First, it prioritizes
an HWA over the CPU cores only when the HWA is close to a deadline, and during
other times, it gives the HWA the same priority as the CPU cores, at best, thus causing
the HWA to potentially miss deadlines. Second, it is not aware of the memory access
characteristics of the different applications executing on different agents (CPUs or
HWAs), thus resulting in both HWA deadline misses and low CPU performance.

Our goal in this work is to design a memory scheduler that (1) meets HWAs’ dead-
lines and (2) maximizes CPU performance. To do so, we design a scheduler that takes
into account the differences in memory access characteristics and demands of both dif-
ferent CPU cores and HWAs. Our Deadline Aware memory Scheduler for Heterogeneous
systems (DASH) is based on three key ideas.

First, to tackle the problem of HWAs missing their deadlines, DASH prioritizes an
HWA any time when it is not on track to meet its deadline (called Distributed Priority),
instead of prioritizing it only when close to a deadline or giving it the same prior-
ity as the CPU cores. This allows each HWA to receive consistent memory bandwidth
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throughout its runtime. Second, DASH exploits the heterogeneous memory access char-
acteristics of different CPU applications and prioritizes HWAs over memory-intensive
CPU applications, which are not greatly sensitive to additional memory latency, even
when HWAs are on track to meet their deadlines. This reduces the amount of time
HWAs are prioritized over memory-nonintensive CPU applications that are latency
sensitive, thereby achieving high overall CPU performance. Third, DASH exploits the
heterogeneous access characteristics of different HWAs. We observe that an HWA with
a short deadline period needs a short burst of high priority long enough to ensure that
its few requests are served, rather than consistent memory bandwidth. DASH achieves
this by prioritizing such HWAs for a short time period based on their estimated worst-
case memory access latency.

This article makes the following main contributions:

—We identify a new problem: state-of-the-art memory schedulers cannot both satisfy
HWAs’ QoS requirements and provide high CPU performance.

—We propose DASH, a new deadline-aware memory scheduler that always meets
HWAs’ deadlines while greatly improving CPU performance over the best previous
scheduler.

—We compare DASH to four different memory schedulers across a wide variety of sys-
tem configurations and workloads. We show that DASH improves CPU performance
by 9.5% compared to the best previous scheduler, while always meeting deadlines for
all HWAs and GPUs.

2. BACKGROUND

In this section, we first provide an overview of heterogeneous SoC architectures and
HWAs that are significant components of heterogeneous SoCs. Next, we provide a
brief background on the organization of DRAM main memory and then describe the
closest previous works on main memory management and interference mitigation in
heterogeneous SoCs.

2.1. Heterogeneous SoC Architecture

Modern SoCs are heterogeneous architectures that integrate various kinds of proces-
sors. Figure 1 is an example of a typical SoC designed for smartphones [Qualcomm
2011; Kim et al. 2012]. The CPU is used to perform general-purpose computation.
HWAs are employed to accelerate various functions. For instance, the GPU is opti-
mized for graphics. Other hard-wired HWAs are employed to perform video and audio
coding at low-power consumption. Image recognition is another common function for
which HWAs are used [Tanabe et al. 2012; Stein et al. 2008; Tanabe et al. 2015] because
image recognition requires a large amount of computation.

At design time, an HWA designer calculates a deadline for each execution of the
HWA from the high-level performance target (e.g., frame rate) and designs the HWA
such that its computation finishes ahead of the deadline. However, in an SoC, not only
HWAs’ computation but also all their memory accesses need to be finished ahead of the
deadline. It is difficult to estimate memory access bandwidth and latency in the design
phase, because the DRAM main memory is shared between multiple HWAs [Tanabe
et al. 2015; Nachiappan et al. 2014; Stevens 2010] and CPU cores. Therefore, satisfying
the memory requirements of all these requestors (or agents) becomes a major challenge.
In this work, we focus on managing memory bandwidth between the CPU cores and
HWAs with the goal of meeting deadline requirements for HWAs while improving CPU
performance.
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Fig. 1. Example heterogeneous SoC architecture.

2.2. Hardware Accelerator Characteristics

Modern SoCs consist of a wide variety of HWAs, which accelerate specific functions. The
functions that they accelerate are diverse and the implementations vary among differ-
ent HWAs. As an example, we first describe a 3 × 3 horizontal Sobel filter HWA [Sobel
1990] (shown in Figure 2), which computes the gradient of an image.

The accelerator executes the Sobel filter on a target 640x480 image, at a target
frame rate of 30 frames per second (fps). A typical implementation of the filter uses
line memory to take advantage of data access locality and hide the memory access
latency, as shown in Figure 2. The line memory (consisting of lines A, B, C, and D) can
hold four lines, each of size 640 pixels, of the target image. The filter operates on three
lines, at any point in time, while the next line is being prefetched. For instance, the
filter operates on lines A, B, and C while line D is being prefetched. After the filter
finishes processing lines A, B, and C, it operates on lines B, C, and D while line A is
being prefetched. As long as the next line is prefetched while the filter is operating on
the three previous lines, memory access latency does not affect performance. To meet a
performance target (30 fps), the filtering operation on a set of lines and the prefetching
of the next line have to be finished within 69.44μsec (= 1 sec/30 f rames/480 lines). In
this case, the period of the HWA is 69.44μsec and the next line needs to be prefetched
by the end of the period (the deadline). Missing this deadline causes the filtering logic
to stall and drop the frame being processed. As a result, it prevents the system from
achieving the performance target.

On the other hand, if the next-line prefetch is finished earlier than the deadline, the
prefetch of the line after that cannot be initiated because the line memory can hold only
one extra prefetched line. Prefetching more than one line can overwrite the contents
of the line that is currently being processed by the filter logic. To provision for more
capacity to hold prefetched data, double buffers (e.g., frame buffers) are implemented
in some HWAs.

There are several HWAs with similar architectures employing line/frame buffers,
which are widely used in the media processing domain. HWAs for resizing an im-
age [Gour et al. 2014] or feature extraction [Huang et al. 2012; Acasandrei and Barriga
2013] use line buffers. HWAs for acoustic feature extraction [Schmadecke and Blume
2013] use frame buffers. In all these HWAs, computing engines can access only
line/frame buffers and data is prefetched into these buffers from main memory. We
employ and evaluate some of these HWAs that utilize line/frame buffers in our hetero-
geneous systems. We provide the detailed description of these HWAs in Section 6.3.

One common attribute across all these HWAs is that the amount of buffer capacity
determines the deadline, or period, and how much data needs to be accessed from
memory for each period. For instance, in the Sobel filter HWA example described
previously, the HWA requires 640 bytes for every 69.44μsec. As long as this continuous
bandwidth is allocated, the HWA is tolerant of memory latency. On the other hand,
finishing the HWA’s memory accesses earlier than the deadline is not beneficial for
the HWA. Hence, statically prioritizing HWAs is often wasteful, especially in a system
with other agents such as CPUs, where the memory bandwidth can be better utilized
to achieve higher performance for the other agents.
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Fig. 2. Typical implementation of a Sobel filter HWA.

As a result, a major challenge in today’s heterogeneous SoCs is how to ensure that the
HWAs get consistent main memory bandwidth such that their deadlines are met, while
allocating enough bandwidth to the CPU cores to achieve high CPU performance. This
challenge is not solved by today’s memory schedulers that focus on either the HWAs
or the CPUs. As we will show in our evaluations (Section 7), an HWA-friendly memory
scheduler that achieves almost a 100% deadline-met ratio for HWAs has 12% lower
performance compared to a CPU-friendly memory scheduler that attains the highest
CPU performance without always meeting the HWAs’ deadlines. The goal of our
work is to both meet the HWAs’ deadlines and attain high CPU performance.

2.3. DRAM Main Memory Organization

A typical DRAM main memory system is organized as a hierarchy of channels, ranks,
and banks. Each channel has its own address and data bus that operate independently.
A channel consists of one or more ranks. A rank, in turn, consists of multiple banks.
Each bank can operate independently and in parallel with the other banks. However,
all the banks on a channel share the address and data buses of the channel.

Each bank consists of a 2D array (rows and columns) of cells. When a piece of data
is accessed from a bank, the entire row containing the piece of data is brought into a
bank-internal structure called the row buffer. Any subsequent access to other data in
the same row can be served from the row buffer itself without incurring the additional
latency of accessing the array. Such an access is called a row hit. On the other hand, if
the subsequent access is to data in a different row, the array needs to be accessed and
the new row needs to be brought into the row buffer. Such an access is called a row miss.
A row miss incurs more than 2 times the latency of a row hit [Mutlu and Moscibroda
2008; Rixner et al. 2000]. For more detail on DRAM organization and internals, we
refer the reader to Kim et al. [2012], Lee et al. [2013], Liu et al. [2012a], Lee et al.
[2015], Seshadri et al. [2013, 2015], Chang et al. [2014], and Khan et al. [2014].

2.4. Managing Memory Bandwidth in Heterogeneous Systems

Many previous works have tackled the problem of managing memory bandwidth be-
tween applications in CPU-only multicore systems [Mutlu and Moscibroda 2007, 2008;
Nesbit et al. 2006; Kim et al. 2010a, 2010b; Subramanian et al. 2013, 2015b, 2014;
Moscibroda and Mutlu 2008; Muralidhara et al. 2011; Zhao et al. 2014; Das et al. 2013;
Ebrahimi et al. 2010; Kim et al. 2014]. However, few previous works have tackled
the problem of memory management in heterogeneous systems, taking into account
the memory access characteristics of the different agents. One previous work [Stevens
2010] observes that CPU cores are latency sensitive, whereas the GPU is bandwidth
sensitive with high memory latency tolerance. Therefore, they propose to prioritize CPU
requests over GPU requests. However, with such a scheme, the GPU cannot always
achieve its performance target when the CPU demands high memory bandwidth [Jeong
et al. 2012a].
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To address this challenge of managing memory bandwidth between the CPU cores
and the GPUs, a state-of-the-art technique [Jeong et al. 2012a] proposes to dynamically
adjust memory access priorities between the CPU cores and the GPU. This policy com-
pares current progress in terms of the fraction of tiles rendered in a frame (Equation (1))
against expected progress in terms of time elapsed in a period (Equation (2)) and ad-
justs priorities.

CurrentProgress = Number of tiles rendered
Number of tiles in the frame

(1)

ExpectedProgress = Time elapsed in the current frame
Period for each frame

(2)

When CurrentProgress is greater than ExpectedProgress, the GPU is on track to meet
its target frame rate. Hence, GPU requests are given lower priority than CPU requests.
On the other hand, if CurrentProgress is less than or equal to ExpectedProgress, the
GPU is not on track to meet its target frame rate. To enable the GPU to make faster
progress, its requests are given the same priority as CPU requests. Only when the
ExpectedProgress is greater than an EmergentThreshold (=0.90) is the GPU given
higher priority than the CPU. Such a policy aims to preserve CPU performance while
still giving the GPU the highest priority close to the end of a frame. However, this
policy, when used within the context of a CPU-HWA system, is not adaptive enough to
the diverse characteristics of different CPU applications and HWAs.

3. MOTIVATION AND KEY IDEAS

In this work, we examine heterogeneous systems that consist of multiple kinds of HWAs
and CPU cores executing applications with very diverse characteristics (e.g., memory
intensity and deadline requirements). Although we have a different usage scenario
from the best previous work [Jeong et al. 2012a] that only targets CPU-GPU systems
(discussed in the previous section), we adapt their scheduling policy and evaluate its
efficacy on heterogeneous systems with CPU cores and a wide variety of HWAs. We call
this adapted policy Dyn-Prio and now briefly describe how we design Dyn-Prio such
that it can be used with various types of HWAs.

Similar to GPUs’ frame rate requirements, HWAs need to meet deadlines. We tar-
get HWAs having soft deadlines, such as HWAs for image processing and recognition.
A deadline miss for such HWAs causes frames to be dropped. We redefine Current-
Progress and ExpectedProgress originally shown in Equations (1) and (2) as shown in
Equations (3) and (4), respectively, to capture various HWAs’ deadline requirements.

CurrentProgress = # of completed memory requests / period
# of total memory requests / period

(3)

ExpectedProgress = Time elapsed in current period
Total length of current period

(4)

CurrentProgress for HWAs is defined as the fraction of the total number of memory
requests that have been completed. ExpectedProgress for HWAs is defined in terms of
the fraction of time elapsed during an execution period. The progress is monitored every
period (SchedulingUnit). To compute CurrentProgress, the number of requests served
during each period is needed. For several kinds of HWAs, it is possible to precisely
know this number for two reasons. First, as described in Section 2.2, a lot of HWAs
for media processing access data in a streaming manner [Gour et al. 2014; Huang
et al. 2012; Acasandrei and Barriga 2013], resulting in a predictable/prefetch-friendly
access stream. Second, when an HWA is implemented with a line-/double-buffer, all
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the data required for the next set of computations need to be prefetched into the buffer
ahead of a deadline. In this scenario, the number of memory requests in a period can
be estimated in a fairly straightforward manner based on the amount of data that is
required to be prefetched.

We observe that there are two major problems with the Dyn-Prio policy when it is
used in a CPU-HWA context. First, it prioritizes an HWA over CPU cores only when
it is close to the HWA’s deadline (i.e., after 90% ExpectedProgress has been made).
Prioritizing HWAs only when the deadline is very close can cause deadline misses
because the available memory bandwidth in the remaining time before the deadline
may not be able to sustain the required memory request rates of all the HWAs and
CPU cores. We will explain this problem in greater detail in Section 3.1. Second, Dyn-
Prio is designed for a simple CPU-GPU system and is not designed to consider the
access characteristics of different applications in a heterogeneous system executing
different kinds of applications on different kinds of agents (CPUs or HWAs). As we
will explain in Sections 3.2 and 3.3, application unawareness misses opportunities to
improve system performance because different applications executing on CPUs and
HWAs have different latency tolerance and bandwidth requirements.

3.1. Key Idea 1: Distributed Priority

To address the first problem where HWAs miss their deadlines, we propose a simple
modification. An HWA enters a state of urgency and is given the highest priority any
time when its CurrentProgress is less than or equal to ExpectedProgress. We call such a
scheme Distributed Priority (Dist-Prio for short). Using Dist-Prio distributes an HWA’s
priority over its deadline period, rather than clumping it close to a deadline. This allows
HWAs to receive consistent memory bandwidth and make steady progress throughout
their runtime.

To illustrate the benefits of such a policy, we study an example system with two
CPU cores and an HWA. Figure 3 shows the execution timelines when each agent
(HWA or CPU core) executes alone. In this example, CPU-A has low memory intensity
and generates few memory requests. In contrast, CPU-B has high memory intensity and
generates more memory requests than CPU-A does. HWA has double buffers and generates
10 prefetch requests during each period. For ease of understanding, we assume all these
requests are destined to the same bank and each memory request takes T cycles (no
distinction between row hits and misses). The length of the HWA’s period is 20T. If a Dyn-
Prio scheme with an EmergentThreshold of 0.9 is employed to schedule these requests,
the HWA is given highest priority only for the last two time units, starting at time 18T.
Until then, the CPU cores’ requests are treated on par with the HWA’s requests. Such
a short amount of time is not sufficient to finish serving the HWA’s requests (since 10
requests require 10T units of time to be serviced, but Dyn-Prio leaves only 2T units
before the deadline for them). Hence, the Dyn-Prio scheme would violate the HWA’s
deadline requirements.

Figure 4(a) illustrates the scheduling order of requests from a system with an HWA
(HWA) and two CPU cores (CPU-A and CPU-B) using our proposed Dist-Prio scheme with
a SchedulingUnit of 4T. It prioritizes the HWA any time when it is not on track to meet
its deadline. Among the CPU cores, the low-memory-intensity CPU-A is prioritized over
the high-memory-intensity CPU-B. At the beginning of the deadline period, since both
CurrentProgress and ExpectedProgress are zero and equal, HWA is deemed as urgent and
is given higher priority than the CPU cores. Hence, during the first 4T cycles, only HWA’s
requests are served. After 4T cycles, CurrentProgress is 0.4 (4/10) and ExpectedProgress
is 0.2 (4/20). Hence, HWA is deemed as not urgent and is given lower priority than the
CPU cores. Requests from both CPU cores are served from cycles 4T to 8T. After 8T
cycles, since both CurrentProgress and ExpectedProgress are 0.4, HWA is deemed as
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Fig. 3. Memory service timeline example when each agent is executed alone.

Fig. 4. Memory service timeline example when all agents execute together.

urgent again and four requests of HWA are served. In the next 4T cycles, HWA is deemed
as not urgent. After 16T cycles, HWA is deemed as urgent (both CurrentProgress and
ExpectedProgress are 0.8) and its remaining two requests are completed. Hence, Dist-
Prio enables the HWA to meet its deadlines while also achieving good CPU performance
by distributing the times when HWA is prioritized over its entire deadline period.

3.2. Key Idea 2: Application-Aware Scheduling for CPUs

We observe that when HWAs are given higher priority than CPU cores, they interfere
with all CPU cores’ memory requests. For instance, in Figure 4(a), during cycles 8T
to 12T, HWA stalls both CPU-A and CPU-B. Furthermore, the higher the memory inten-
sity of the HWAs, the greater the memory bandwidth they need to make sufficient
progress to meet their deadlines, exacerbating the interference. We propose to tackle
this shortcoming based on the observation that memory-intensive CPU applications do
not experience significant performance degradation when HWAs are prioritized over
them.

Often, applications with low memory intensity are more sensitive to memory la-
tency, since they generate few memory requests, and quick service of these requests
enables such applications to make good forward progress.1 On the other hand, appli-
cations with high memory intensity often have a large number of outstanding memory
requests and spend a significant fraction of their execution time stalling on memory.

1This was also observed by previous works in the context of multicore memory scheduling [Kim et al. 2010a,
2010b; Lee et al. 2009a; Mutlu and Moscibroda 2008].
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This is because they generate a large number of memory requests, followed by a small
amount of computation at the cores. Hence, even if some requests of such applications
are served quickly, subsequent requests stall the pipeline again. Therefore, applica-
tions with high memory intensity are less sensitive to memory latency, as observed by
previous works [Kim et al. 2010a, 2010b; Lee et al. 2009a; Mutlu and Moscibroda 2008]
and as we also show in Section 7.3. Based on this observation, we propose to prioritize
HWAs’ requests over those of high-memory-intensity applications even when HWAs
are making sufficient progress and are not in a state of urgency. Such a prioritization
scheme reduces the number of cycles when HWAs are deemed urgent and prioritized
over memory-nonintensive CPU applications that are latency sensitive, thereby im-
proving the performance of latency-sensitive CPU applications.

Figure 4(b) illustrates the benefits of such an application-aware distributed priority
scheme for the same set of requests shown in Figure 4(a). The request schedule remains
the same during the first 4T cycles. At time 4T, HWA is not deemed urgent and CPU-A’s
request is prioritized over HWA’s requests. However, HWA is still prioritized over CPU-B
that has high memory intensity, enabling faster progress for HWA. As a result, at time
8T, CurrentProgress is 0.7, which is greater than ExpectedProgress. As such, the HWA
is still deemed not urgent, unlike in the Dist-Prio scheme (in Figure 4(a)). Hence, the
latency-sensitive CPU-A’s requests are served earlier. Thus, prioritizing HWA’s requests
over the memory-intensive CPU-B’s requests enables faster progress for the memory-
nonintensive CPU-A, as can be seen from Figure 4(b), and CPU-B is delayed by only 2T
since it already has a large number of requests queued at memory. Therefore, our second
key idea results in higher overall CPU performance, while meeting HWA’s deadlines.

3.3. Key Idea 3: Application-Aware Scheduling for HWAs

Prioritizing HWAs’ requests based on their progress is an effective mechanism to ensure
consistent bandwidth to HWAs that have fairly long periods. However, such a scheme is
not effective for HWAs with short periods since it is difficult to ensure that these HWAs
receive enough priority for sufficient amounts of time within a short deadline period.
Specifically, a short deadline provides little time for all of an HWA’s requests to be
served and causes the HWAs to be more susceptible to interference from other agents.
We evaluated our previous two key ideas on a heterogeneous system with two HWAs
(HWA-A and HWA-B) that have vastly different period lengths (i.e., 63,041 and 5,447
cycles) and bandwidth requirements (i.e., 8.32GB/s and 475MB/s). Our results show
that HWA-A meets all its deadlines, whereas HWA-B, on average, misses a deadline
every 2,000 periods.

To enable better deadline-met ratios for HWAs with short deadlines, we make the
following two observations. First, short-deadline-period HWAs can be enabled to meet
their deadlines by giving them a short burst of highest priority close to the deadline.
Second, prioritizing short-deadline-period HWAs does not cause much interference to
other requestors because these HWAs generally consume a small amount of band-
width. Based on these observations, we propose to estimate the WorstCaseLatency
for a memory access and give a short-deadline-period HWA the highest priority for
WorstCaseLatency ∗ NumberOfRequests cycles close to its deadline.

4. MECHANISM

In this section, we describe the details of DASH, our proposed memory scheduling
mechanism to manage memory bandwidth between CPU cores and HWAs, using the
three key ideas described in Section 3. First, we describe a scheduling policy to prioritize
between HWAs with long deadline periods and CPU applications, with the goal of
enabling the long-deadline-period HWAs to meet their deadlines while improving CPU
performance (Section 4.1). Second, we describe how DASH enables HWAs with short
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deadline periods to meet their deadlines (Section 4.2). Third, we present a combined
scheduling policy for long- and short-deadline-period HWAs (Section 4.3). Finally, we
describe a modification to our original scheduling policy to probabilistically change
priorities between long-deadline-period HWAs and CPU applications to enable higher
fairness for memory-intensive CPU applications (Section 4.4), which results in the final
DASH mechanism.

Overview. DASH categorizes HWAs as long and short deadline period statically
based on their deadline period. A different scheduling policy is employed for each of
these two categories, since they have different kinds of bandwidth demand. For a long-
deadline-period HWA (LDP-HWA for short), DASH monitors its progress periodically
and appropriately prioritizes it, enabling it to get sufficient and consistent bandwidth
over each of its deadline periods to meet its deadlines (Section 3.1). For a short-deadline-
period HWA (SDP-HWA for short), DASH gives it a short burst of highest priority close
to each deadline, based on worst-case access latency calculations (Section 3.3). DASH
also treats memory-intensive and memory-nonintensive CPU applications differently
with respect to their priority over HWAs (Section 3.2).

4.1. LDP-HWAs Versus CPU Applications

To schedule requests of LDP-HWAs and CPU applications, DASH employs the Dis-
tributed Priority (Dist-Prio) scheme as previously described in Section 3.1, monitor-
ing each LDP-HWA’s progress every SchedulingUnit. DASH prioritizes LDP-HWAs
over CPU cores only when LDP-HWAs become urgent under either of the follow-
ing conditions: (1) CurrentProgress ≤ ExpectedProgress or (2) ExpectedProgress >
EmergentThreshold.

Each CPU application’s memory intensity is monitored and applications are classified
as memory nonintensive or memory intensive periodically based on their calculated
memory intensity using the classification mechanism borrowed from Kim et al. [2010b].
Note that other mechanisms can also be employed to perform this classification.2

Based on this classification, the Dist-Prio and application-aware components of
DASH schedule requests at the memory controller in the following priority order (lower
number indicates higher priority):

(1) Urgent HWAs
(2) Memory-nonintensive CPU applications
(3) Nonurgent HWAs
(4) Memory-intensive CPU applications

Based on our first key idea in Section 3.1, HWAs become urgent when they are not on
track to meet a deadline, and such urgent HWAs’ requests are given highest priority.
Based on our second key idea in Section 3.2, HWAs’ requests are prioritized over
memory-intensive CPU applications’ requests, even when the HWAs are not deemed
urgent since memory-intensive applications are not latency sensitive.

4.2. Providing QoS to SDP-HWAs

While using Dist-Prio can provide consistent bandwidth to LDP-HWAs to meet their
deadlines, SDP-HWAs do not get enough bandwidth to meet their deadlines (as we
described in Section 3.3). To enable SDP-HWAs to meet their deadlines, we propose to
give them a short burst of high priority close to a deadline using estimated worst-case

2Also note that even though we borrow the classification mechanism of Kim et al. [2010b] to categorize
memory-intensive and memory-nonintensive applications, the problem we solve and the scheduling policy
we devise are very different from those of Kim et al. [2010b], which do not consider HWAs.
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memory latency calculations. We classify an HWA as SDP-HWA if its deadline is less
than a threshold value (we use a threshold of 10μs in our evaluations).

Estimating the worst-case access latency. In the worst case, all requests from an
SDP-HWA would access different rows in the same bank. In this case, all such requests
are serialized and each request takes tRC—the minimum time between two DRAM
row ACTIVATE operations.3 Therefore, in order to serve the requests of an SDP-HWA
before its deadline, it needs to be deemed urgent and given the highest priority over
all other requestors for tRC ∗ NumberOf Requests for each period, which we call the
Urgent Period Length (UPL).

For example, when an HWA outputs 16 requests every 2,000ns period and tRC is
50ns, the HWA is deemed urgent and given the highest priority for 800 (16×50) ns +α
during each period, where α is the waiting time for the in-flight requests to finish.
Furthermore, finishing an HWA’s requests much earlier than the deadline does not
improve the HWA’s performance any further. Hence, this highest priority can be given
to the HWA at the end of the HWA’s deadline period. For instance, in the previous
example, the HWA is given highest priority (2000 − (800 + α)) ns after a deadline
period starts.4

Handling multiple short-deadline-period HWAs. The scheme discussed earlier
does not consider the scenarios when there are multiple SDP-HWAs, which could
interfere with each other during the high-priority cycles, resulting in deadline misses.
We propose to address this using the following mechanism:

(1) DASH calculates the UPL of each SDP-HWA x as
UPL(x) = tRC ∗ NumberOf Requests(x)

(2) Among the urgent SDP-HWAs, the HWAs with shorter deadline periods are given
higher priority.

(3) DASH extends the urgent period length of each SDP-HWA x further by taking
into account all the SDP-HWAs that have higher priority (i.e., shorter deadline
period) than x. This ensures that each HWA is allocated enough cycles for its
urgent period. When calculating by how long we should extend an SDP-HWA x’s
UPL, we calculate how many deadline periods (Ni) of each higher priority SDP-
HWA (i) can interfere with the UPL of x: Ni = �(UPL(x)/Period(i))�. We then
calculate the total length of high-priority UPL, HP-UPL(i), resulting from Ni high-
priority deadline periods: HP-UPL(i) = Ni ∗ UPL(i), which we use to add to the
current SDP-HWA’s UPL. In summary, the final function for each SDP-HWA x is
UPL(x) = �i(HP-UPL(i))+UPL(x), for all HWAs i that have higher priority than x.

4.3. Combined Scheduling Policy for All HWAs

Combining the mechanisms described in Sections 4.1 and 4.2, DASH schedules requests
in the following order (lower number indicates higher priority, and priority level within
each group is provided in parentheses):

(1) Urgent short-deadline-period HWAs (Higher priority to shorter-deadline
HWAs)

(2) Urgent long-deadline-period HWAs (Higher priority to earlier-deadline HWAs)
(3) Memory-nonintensive CPU applications (Higher priority to lower-memory-

intensity applications)

3Accesses to different rows in the same bank have to be spaced apart by a fixed time of tRC based on the
DRAM specification [JEDEC 2010; Kim et al. 2012; Lee et al. 2013].
4Note that a recent work discusses how to estimate the worst-case delay in a DRAM system [Kim et al.
2014]. Our approach is similar.
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(4) Nonurgent long-deadline-period HWAs (Higher priority to earlier-deadline
HWAs)

(5) Memory-intensive CPU applications (Application priorities are shuffled as
in Kim et al. [2010b])

(6) Nonurgent short-/long-deadline-period HWAs (Higher priority to earlier-
deadline HWAs)

In this scheduling order, memory-intensive CPU applications (Group5) are always
ranked lower than memory-nonintensive CPU applications (Group3) and LDP-HWAs
(Group2, Group4). This can potentially always deprioritize memory-intensive applica-
tions when the memory bandwidth is only enough to serve memory-nonintensive appli-
cations and HWAs. To ensure memory-intensive applications receive sufficient memory
bandwidth to make progress, we employ a clustering mechanism that allocates only a
fraction of total memory bandwidth (called ClusterFactor) to the memory-nonintensive
group [Kim et al. 2010b].

As we explain in Section 3.1, the initial state of LDP-HWAs is urgent. When HWAs
meet their expected progress, they enter the nonurgent state. Nonurgent LDP-HWAs
can be in Group4 or Group6. They are assigned to Group6 only when they first tran-
sition to the nonurgent state, but they are assigned to Group4 when they re-enter the
nonurgent state later on. The rationale is that LDP-HWAs do not need to be prioritized
over memory-intensive applications (Group5) if they are already receiving memory
bandwidth such that they continuously meet their expected progress, without ever
transitioning back to the urgent state again, throughout the period.

Despite these aspects of the scheduling mechanism that attempt to provide enough
bandwidth to memory-intensive CPU applications, we observe that memory-intensive
applications experience unfair slowdowns due to interference from LDP-HWAs in some
workloads. For example, after an LDP-HWA is assigned to Group4, the LDP-HWA can-
not switch back to Group6 until the next deadline even if memory bandwidth demand
from CPU cores is decreased. Consequently, the LDP-HWA interferes with memory-
intensive applications excessively. We tackle this challenge in the next subsection.

4.4. Probabilistic Switching of Priorities

To ensure memory-intensive CPU applications do not get unfairly slowed down due to
interference from LDP-HWAs, we probabilistically prioritize memory-intensive appli-
cations over nonurgent LDP-HWAs, switching priorities between Group4 and Group5.
Each LDP-HWA x has a probability value Pb(x) that is controlled based on its request
progress every epoch (SwitchingUnit). Algorithm 1 shows how requests are scheduled
based on Pb(x). With a probability of Pb(x), memory-intensive applications are pri-
oritized over LDP-HWA x to enable higher fairness. Algorithm 2 shows the periodic
adjustment of Pb(x) using empirically determined steps. We use a larger decrement
step than the increment step because we want to quickly increase an LDP-HWA’s band-
width allocation when it is not making sufficient progress. This probabilistic switching
helps ensure that the memory-intensive applications are treated more fairly.

ALGORITHM 1: Scheduling using Pb(x)
With a probability Pb(x):
Memory-intensive applications > LDP-HWA x
With a probability (1 − Pb(x)):
Memory-intensive applications < LDP-HWA x
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ALGORITHM 2: Controlling Pb(x) for an LDP-HWA
Initialization: Pb(x) = 0
Every SwitchingUnit:
if CurrentProgress > ExpectedProgress then

Pb(x) += Pbinc (Pbinc = 1% in our experiments)
else if CurrentProgress < ExpectedProgress then

Pb(x) −= Pbdec (Pbdec = 5% in our experiments)
else

Pb(x) = Pb(x)
end if

4.5. Estimating Memory Requirements of HWAs

DASH is based on the assumption that the number of memory requests served during a
deadline period for an HWA can be known ahead of time. As explained in Section 3, we
can precisely determine this number for many kinds of HWAs that use scratchpad mem-
ory [Gour et al. 2014; Huang et al. 2012; Acasandrei and Barriga 2013; Schmadecke
and Blume 2013; Lee et al. 2009b], especially in the media processing space, which is
a major segment of today’s SoC market. However, if the execution of an HWA changes
in a data-dependent manner, and the HWA can access the memory directly, the access
pattern of the HWA can vary dynamically. In such cases, we can use (1) worst-case or
(2) average-case access pattern estimates by observing memory access behavior dur-
ing past deadline periods. We leave the exploration of such estimation mechanisms to
future work.

5. IMPLEMENTATION AND HARDWARE COST

DASH requires hardware support to monitor HWAs’ progress and schedule memory
requests accordingly. To track current progress, the memory controller counts the num-
ber of completed requests during a deadline period. If there are multiple memory con-
trollers, they send their recorded counter values to a centralized meta-controller every
SchedulingUnit, similar to Kim et al. [2010a, 2010b]. If HWAs access shared caches,
the number of completed requests at the shared caches for each HWA is sent to the
meta-controller.

Table I lists the major counters required for the meta-controller over a baseline TCM
scheduler [Kim et al. 2010b], the state-of-the-art application-aware memory scheduler
for multicore systems, which we later provide comparisons to. The request counters
are used to track current progress, whereas the cycle counters are used to compute
expected progress. Pb is the probability that determines priorities between LDP-HWAs
and memory-intensive applications (as explained in Section 4.4). A 4-byte counter is
sufficient to store each of these quantities. Hence, the total counter overhead is 20
bytes for each LDP-HWA and 12 bytes for each SDP-HWA.

Total-Req and Total-Cyc are set by the (system) software based on the specification of
each HWA. If these parameters are fixed for the target HWA, the software sets up these
registers at the beginning of execution. If these parameters vary for each period, the
software updates them at the beginning of each period. Curr-Cyc is incremented every
cycle. Curr-Req is incremented every time a request is completed (at the respective
memory controller). At the end of every SchedulingUnit, the meta-controller computes
ExpectedProgress and CurrentProgress using these accumulated counts to determine
how urgent each LDP-HWA is. For the SDP-HWAs, their state of urgency is determined
based on Priority-Cyc and Curr-Cyc. Priority-Cyc is set by the (system) software based
on each HWA’s specification. This information is used along with Pb to determine
the scheduling order across all HWAs and CPU applications. The counters are reset
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Table I. Storage Required for DASH

For long-deadline-period HWAs
Name Function
Curr-Req Number of requests completed in a deadline period
Total-Req Total number of requests to be completed in a deadline period
Curr-Cyc Number of cycles elapsed in a deadline period
Total-Cyc Total number of cycles in a deadline period
Pb Probability that memory-intensive applications

> long-deadline-period HWAs

For short-deadline-period HWAs
Name Function
Priority-Cyc Indicates when the priority is transitioned to high
Curr-Cyc Number of cycles elapsed in a deadline period
Total-Cyc Total number of cycles in a deadline period

to zero at the beginning of each period. Once this priority order is determined, the
meta-controller broadcasts the priority to the memory controllers, and the memory
controllers schedule requests based on this priority order, similar to other application-
aware memory schedulers [Mutlu and Moscibroda 2007, 2008; Kim et al. 2010a, 2010b].

6. METHODOLOGY

6.1. System Configuration

We use an in-house cycle-level simulator to perform our evaluations. We plan to make
the simulator publicly available at CMU SAFARI Research Group [2015b]. We model
a system with eight x86 CPU cores and four HWAs for our main evaluations. To
avoid starving CPU cores or HWAs, we allocate half of the memory request buffer
entries to CPU cores and the other half to HWAs. Unless stated otherwise, our system
configuration is as shown in Table II. The DRAM model we use is similar to Ramulator’s
DDR3 model [Kim et al. 2015], which is publicly available [CMU SAFARI Research
Group 2015a].

In a typical SoC, applications are run on the CPU cores and they offload specific
functionality onto the HWAs. This is the ideal scenario we would like to model in our
evaluations. However, it is difficult to get access to such workloads that capture this
execution model and communication between the CPU cores and the HWAs. We attempt
to, instead, model this scenario by using a combination of CPU workloads and HWA
workloads that execute independently. We believe this is a reasonable approximation,
since CPU cores and HWAs communicate on a coarse-grained basis in most reasonable
current implementations.

Our infrastructure does not model feedback from missed deadlines of the HWAs.
We seek to capture the impact of missed deadlines in terms of the deadline-met ratio
metric. Such missed deadlines could stall the subsequent operations on the CPU cores
and HWAs. As a result, contention at the memory controller could be lighter after a
missed deadline than what we model in our simulation infrastructure. We evaluate
a wide range of workload memory intensities to capture the impact of variations in
memory controller load due to different HWA behavior and deadline hit/miss behavior.
The results we present are likely pessimistic against our DASH scheduler, since in a
more realistic system, deadlines would be easier to meet with lighter memory controller
load after deadline misses. Therefore, we expect our mechanism to be more effective in
reality than the results we report using simulation.
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Table II. Configuration of the Simulated System

CPU 8 cores, 2.66GHz, 3-wide issue, 128-entry instruction window, 16 MSHRs/core
L1Cache Private, 2 way, 32KB, 64-byte line
L2Cache Shared, 16 way, 4MB, 64-byte line
HWA 4 HWAs
DRAM DDR3-1333 (9-9-9) [Micron 2014], 300 request buffer entries

2 channels, 1 rank per channel, 8 banks per rank

6.2. Workloads for CPUs

We construct 80 multiprogrammed workloads from the SPEC CPU2006 suite [Stan-
dard Performance Evaluation Corporation 2014], TPC [TPC 2015], and the NAS par-
allel benchmark suite [NASA 2012]. We use Pin [Luk et al. 2005] with PinPoints
[Patil et al. 2004] to extract representative phases. We classify CPU benchmarks into
two categories, memory intensive and memory nonintensive, based on the number of
last-level cache misses per thousand instructions (MPKI). If an application’s MPKI
is greater than 5, it is classified as memory intensive. Otherwise, it is classified as
memory nonintensive. We then construct five intensity categories of workloads based
on the fraction of memory-intensive benchmarks in a workload: 0%, 25%, 50%, 75%,
and 100%. Each category consists of 16 workloads.

6.3. Hardware Accelerators

We use five kinds of HWAs designed for image processing and recognition for our
evaluations, as described in Table III. The target frame rate for the HWAs is 30 fps.
The image processing HWA (IMG-HWA) performs filter processing on input RGB im-
ages of size 1920×1080. We assume that IMG-HWA performs filter processing on one
frame for 1/30 sec with double buffers. Hessian HWA (HES-HWA) and Matching HWA
(MAT-HWA) are designed for Augmented Reality (AR) systems [Lee et al. 2009b]. Their
implementations are based on Lee et al. [2009b]. HES-HWA accelerates the fast Hes-
sian detector that is executed in SURF (Speed-Up Robust Features) [Bay et al. 2008],
which is used to detect interesting points in images and generate descriptors. MAT-
HWA accelerates the operation of matching descriptors generated by SURF against
those in a database. Their configuration parameters are as shown in Table III. We
evaluate HES-HWA and MAT-HWA for three different configurations. The periods and
memory bandwidth requirements of the HWAs are different depending on the config-
uration. HES-HWA fetches some pixels in each line into its line memory and scans
the target image vertically. Therefore, each line access is discontinuous. MAT-HWA
accesses interesting points of each image in a streaming manner. Resize HWA (RSZ-
HWA) and Detect HWA (DET-HWA) are used for face detection. Their implementations
are based on a library that uses Haar-Like features [Viola and Jones 2001], included in
Open-CV [Itseez 2015]. RSZ-HWA shrinks the target frame recursively to detect differ-
ences in sizes of faces and generates integral images. DET-HWA detects faces included
in the resized image. Because the target image is shrunk recursively over each frame,
the HWAs’ periods are variable. These HWAs fetch image data into their scratchpad
memories in a streaming manner. RSZ-HWA writes two images, the shrunk image
and the integral image, to DRAM. HES-HWA and DET-HWA are categorized into the
short-deadline-period group and the others into the long-deadline-period group.

Based on the implementations of the HWAs, we build trace generators that simulate
memory requests from the HWAs. All HWAs have fixed access patterns throughout the
simulation run. We evaluate two mixes of HWAs, Config-A and Config-B, with each
CPU workload, as shown in Table III. We simulate for 200 million CPU cycles. Memory
traffic generators model HWAs and generate memory requests based on the memory

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 4, Article 65, Publication date: December 2015.



65:16 H. Usui et al.

Table III. Configuration of the HWAs

Period Memory Bandwidth Scratchpad Deadline Group

IMG-HWA 33ms 360MB/s double buffer (1 frame × 4) long
HES-HWA(32) 2us 478MB/s line buffer (32 lines) short
HES-HWA(64) 4us 329MB/s 30 lines for computation
HES-HWA(128) 8us 224MB/s 2 lines for prefetch
MAT-HWA(30) 23.6us 8.32GB/s double buffer (4KB × 4) long
MAT-HWA(20) 35.4us 5.55GB/s 4KB × 2 for query
MAT-HWA(10) 47.2us 2.77GB/s 4KB × 2 for database
RSZ-HWA 46.5us–5,183us 2.07GB/s–3.33GB/s double buffer (1 frame × 4) long
DET-HWA 0.8us–9.6us 1.60GB/s–1.86GB/s line buffer (26 lines) short

24 lines for computation

Parameters

HES-HWA(N) image size: 1920 × 1080, max filter size: 30,
[Lee et al. 2009b] N entries operated at the same time

MAT-HWA(M) 3,000 interesting points (64 dimension) per image,
[Lee et al. 2009b] matching M images

RSZ-HWA, DET-HWA image size: 1920 × 1080, scale factor : 1.1, 24 × 24 window
[Itseez 2015]

Configuration

Config-A IMG-HWA × 2, HES-HWA(32), MAT-HWA(30)
Config-B HES-HWA(32), MAT-HWA(20), RSZ-HWA, DET-HWA

access traces. The size of memory requests from HWAs is 64 bytes, and the number of
outstanding memory requests from each HWA is at most 16.

6.4. System with a GPU

We also evaluate CPU-GPU and CPU-GPU-HWA systems with our in-house cycle level
simulator. The specification of the GPU we model is 800MHz, 20 cores, and 1,600
operations/cycle, which is similar to the AMD Radeon 5870 specification [Advanced
Micro Devices 2009]. The GPU does not share caches with CPUs. The CPU-GPU-HWA
system has four memory channels and four HWAs, whose configuration is the same
as Config-A in Section 6.3. The other system parameters are the same as the CPU-
HWA system. We collect six GPU traces from a GPU benchmark (3Dmark) and five
games, with a proprietary GPU simulator [Ausavarungnirun et al. 2012]. The target
frame rate of all GPU benchmarks is 30 fps. We set the GPU benchmarks’ deadline to
33.3msec (=1 frame). We measure the number of memory requests included in each
trace in advance and use this number to calculate CurrentProgress. We simulate 30
CPU-GPU and CPU-GPU-HWA workloads, respectively.

6.5. Performance and Fairness Metrics

We measure CPU performance with the commonly used Weighted Speedup metric
[Eyerman and Eeckhout 2008; Snavely and Tullsen 2000]. We measure fairness using
the Maximum Slowdown metric [Vandierendonck and Seznec 2011; Kim et al. 2010a,
2010b; Das et al. 2009, 2010; Subramanian et al. 2013, 2015b, 2014; Wang et al. 2015;
Zhao et al. 2014; Seshadri et al. 2014]. For HWAs, we use two metrics: the Dead-
lineMetRatio and frame rate in fps, frames per second. We assume that if a deadline
is missed in a frame, the corresponding frame is dropped (and we calculate the frame
rate accordingly).
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6.6. Parameters of the Evaluated Schedulers

Unless otherwise stated, for DASH, we use a SchedulingUnit of 1,000 CPU cycles and
a SwitchingUnit of 500 CPU cycles. For TCM [Kim et al. 2010b], we use a ClusterFactor
of 0.15, a shuffling interval of 800 cycles, and QuantumLength of 1M cycles.

7. EVALUATION

We compare DASH with previously proposed schedulers: (1) FRFCFS [Rixner et al.
2000; Zuravleff and Robinson 1997] and (2) TCM, both with static priority (FRFCFS-St
and TCM-St), where the HWA always has higher priority than all CPU cores, and
(3) FRFCFS with Dyn-Prio (FRFCFS-Dyn), which employs the dynamic priority mech-
anism of Jeong et al. [2012a]. We evaluate two variants of the FRFCFS-Dyn mechanism
with different EmergentThreshold values. First, we use an EmergentThreshold value
of 0.9 for all HWAs (FRFCFS-Dyn0.9), which is designed to achieve high CPU perfor-
mance. Second, in order to achieve high deadline-met ratios for the HWAs, we sweep
the value of the EmergentThreshold from 0 to 1.0 at the granularity of 0.1 (see Sec-
tion 7.3 for more details) and choose a different threshold value shown in Table IV for
each HWA (FRFCFS-DynOpt) such that a deadline-met ratio greater than 99.9% and a
frame rate greater than 27 fps (90% of the target frame rate) are achieved. For DASH,
we use an EmergentThreshold value of 0.8 for all HWAs.

Figure 5 shows the average CPU performance (in terms of weighted speedup) across
all 80 workloads, using both Config-A and B. Table V shows the deadline-met ratio and
frame rate of four types of HWAs.

We make three major observations. First, FRFCFS-St and TCM-St always prior-
itize HWAs, achieving a 100% deadline-met ratio. However, always prioritizing the
HWAs’ requests results in low CPU performance. Second, the FRFCFS-Dyn policy
achieves either high CPU performance or high deadline-met ratio, depending on the
value of the EmergentThreshold. When EmergentThreshold is 0.9, the HWAs are not
prioritized much, causing them to miss deadlines. However, CPU performance is high.
On the other hand, when we use optimized values of EmergentThreshold (FRFCFS-
DynOpt), the HWAs are prioritized, enabling them to meet almost all their deadlines,
but this comes at the cost of reduced CPU performance. Third, DASH achieves com-
parable performance to FRFCFS-Dyn-0.9 and 9.5% better system performance than
FRFCFS-DynOpt, while achieving a deadline-met ratio of 100%. We conclude that
DASH achieves both high CPU performance and 100% deadline-met ratio for HWAs.
In the next section, we present a performance breakdown of DASH.

7.1. Performance Breakdown of DASH

We break down the performance benefits from the different components of DASH.
Figure 6 shows the system performance and maximum slowdown normalized to
FRFCFS-DynOpt. The x-axis shows workload memory intensity. The numbers above
the bars of FRFCFS-DynOpt show the absolute values for FRFCFS-DynOpt. We com-
pare four different configurations of DASH: (1) DA-D (distributed priority on top of TCM
for CPU applications; Section 4.1), (2) DA-D+L (DA-D along with application-aware pri-
oritization between LDP-HWAs and memory-intensive CPU applications; Section 4.1),
(3) DA-D+L+S (DA-D+L along with worst-case latency-based prioritization for SDP-
HWAs; Sections 4.2 and 4.3), and (4) DA-D+L+S+P (the complete DASH mechanism:
DA-D+L+S along with probabilistic prioritization between LDP-HWAs and memory-
intensive CPU applications; Section 4.4). Table VI shows the deadline-met ratio.

We draw five major conclusions. First, DA-D improves performance over FRFCFS-
DynOpt by 9.2%. Because FRFCFS-DynOpt uses a single static value of Emergent-
Threshold to prioritize HWAs over CPU cores, it sometimes overprioritizes an HWA
even when bandwidth requirements from CPU cores are low and the HWA is achieving
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Table IV. EmergentThreshold for FRFCFS-Dyn

Config-A Config-B
IMG HES MAT HES MAT RSZ DET
0.9 0.2 0.2 0.5 0.4 0.7 0.5

Fig. 5. CPU performance.

Table V. Deadline-Met Ratio and Frame Rate of HWAs

Scheduling Algorithms
Deadline-Met Ratio (%) / Frame Rate (fps)

IMG HES MAT RSZ DET
FRFCFS-St 100 / 30 100 / 30 100 / 30 100 / 30 100 / 30
TCM-St 100 / 30 100 / 30 100 / 30 100 / 30 100 / 30
FRFCFS-Dyn0.9 100 / 30 99.40 / 15.38 46.01 / 15.28 97.98 / 25.19 97.14 / 16.5
FRFCFS-DynOpt 100 / 30 100 / 30 99.997 / 29.72 100 / 30 99.99 / 25.5
DASH 100 / 30 100 / 30 100 / 30 100 / 30 100 / 30

Fig. 6. DASH CPU performance and fairness breakdown for different workload memory intensities.

Table VI. Deadline-Met Ratio of HWAs for DASH Components

Scheduling Algorithms
Deadline-Met Ratio (%) / Frame Rate (fps)

IMG HES MAT RSZ DET
FRFCFS-DynOpt 100 / 30 100 / 30 99.997 / 29.72 100 / 30 99.99 / 25.5
DA-D 100 / 30 99.999 / 29.938 100 / 30 100 / 30 99.88 / 21.06
DA-D+L 100 / 30 99.999 / 29.969 100 / 30 100 / 30 99.87 / 20.44
DA-D+L+S 100 / 30 100 / 30 100 / 30 100 / 30 100 / 30
DA-D+L+S+P 100 / 30 100 / 30 100 / 30 100 / 30 100 / 30

its target progress. In contrast, since DA-D dynamically allocates priority to an HWA
over CPU cores based on the HWA’s progress, DA-D avoids overprioritizing the HWA
and thus improves performance over FRFCFS-DynOpt. However, this improvement
comes at the cost of missed deadlines for HES and DET-HWA, as shown in Table VI.
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Second, application-aware prioritization between LDP-HWAs and memory-intensive
CPU applications (DA-D+L) improves performance, especially as the memory inten-
sity increases (7.6% maximum over DA-D). This is because prioritizing HWAs over
memory-intensive applications reduces the amount of time HWAs become urgent and
interfere with memory-nonintensive CPU applications. Since memory-nonintensive
CPU applications are latency sensitive and memory-intensive CPU applications are
not as memory latency sensitive, application-aware prioritization mechanisms of DASH
(which distinguish between the needs of such different applications) improve total sys-
tem performance over FRFCFS-DynOpt, which is not aware of the memory access
characteristics of different applications. However, the SDP-HWAs (HES and DET) still
miss some deadlines.

Third, DA-D+L+S enables such HWAs to meet their deadlines, while still achieving
high CPU performance by employing worst-case access latency-based prioritization for
SDP-HWAs, However, memory-intensive applications still experience high slowdowns
with DA-D+L+S.

Fourth, DA-D+L+S+P tackles this problem by probabilistically changing the priori-
tization order between memory-intensive applications and LDP-HWAs. This increases
the bandwidth allocation for memory-intensive applications. The result is a 24% reduc-
tion in maximum slowdown, while degrading performance by only 0.6% compared to
DA-D+L+S and at the same time meeting all HWAs’ deadlines. We analyze the differ-
ences between DA-D+L+S and DA-D+L+S+P in detail. When we compare DA-D+L+S
and DA-D+L+S+P at each memory intensity, DA-D+L+S+P loses some performance
(by up to 3%) against DA-D+L+S at high memory intensity workloads (50%–100%)
while reducing maximum slowdown significantly (by up to 26%). Probabilistic prioriti-
zation of DA-D+L+S+P allocates lower priority to HWAs than memory-intensive CPU
applications, when HWAs are making sufficient progress. This probabilistic priority al-
location can sometimes not adapt to sudden bandwidth increases from CPU cores, since
it adjusts the probability step by step at the end of each epoch. Hence, the controller
allocates HWAs lower priority more frequently than ideal. During such times when
the HWAs have low priority, their memory requests are almost completely prevented
from being serviced due to contention from workloads with high memory intensity.
As a result, HWAs become urgent more often, thereby degrading the performance of
memory-nonintensive CPU applications. This is why DA-D+L+S+P sometimes degrades
performance at high memory intensity. Therefore, if the focus is only on high perfor-
mance, DA-D+L+S is the best scheduler, especially for memory-intensive workloads.
On the other hand, if the goal is to achieve a good balance between performance and
fairness, DA-D+L+S+P is a better choice, since it achieves both high performance and
high fairness. Note that this is not a major concern at low memory intensities, since an
HWA with low priority can still get requests served and achieve its target progress due
to low contention. Therefore, the performance penalty for CPU applications is small
(for instance, in workloads with 25% memory-intensive applications) and DA-D+L+S+P
achieves even better performance than DA-D+L+S at the lowest memory intensity.

Finally, although DASH improves performance especially as the memory intensity
increases, its performance improvement peaks at the 75% mark (i.e., when 75% of
the CPU applications in a workload are memory intensive). This is because DASH
prioritizes HWAs over memory-intensive CPU applications and thereby reduces in-
terference caused by HWAs to memory-nonintensive CPU applications, which are
especially vulnerable to interference. DASH enables better performance for the rel-
atively memory-nonintensive CPU applications, even when the fraction of memory-
intensive benchmarks is 100%, by virtue of prioritizing HWAs over memory-intensive
CPU applications. However, such relatively memory-nonintensive CPU applications
are less vulnerable/sensitive to memory latency. Hence, the performance improvement
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of such applications (from prioritizing HWAs over memory-intensive CPU applications)
is small. As a result, performance improvement of DASH peaks when the fraction of
memory-intensive CPU applications is 75%.

We conclude that DASH is effective at achieving high CPU performance, achieving
good fairness, and meeting HWAs’ deadlines.

7.2. Impact of EmergentThreshold

We study the impact of EmergentThreshold on performance and deadline-met ratio
and the tradeoffs it enables. Figure 7 shows the average system performance with
FRFCFS-Dyn and DASH when sweeping EmergentThreshold across all 80 workloads
using Config-A and B. We employ the same EmergentThreshold value for all HWAs.
Tables VII and VIII show HWAs’ deadline-met ratios.

We draw two major conclusions. First, for both FRFCFS-Dyn and DASH, there is
a tradeoff between system performance and HWA deadline-met ratio, as the Emer-
gentThreshold is varied. As the EmergentThreshold increases, CPU performance im-
proves at the cost of decreases in deadline-met ratio. Second, for a given value of
EmergentThreshold, DASH achieves a significantly higher deadline-met ratio than
FRFCFS-Dyn, while achieving similar CPU performance, because of distributed prior-
ity and application-aware scheduling mechanisms. Specifically, DASH is able to meet
all deadlines with an EmergentThreshold of 0.8 for Config-A, whereas FRFCFS-Dyn
needs an EmergentThreshold of 0.1 to meet all deadlines. DASH-0.8 achieves 22.7%
higher performance than FRFCFS-Dyn-0.1. Because FRFCFS-Dyn prioritizes an HWA
over CPU cores only when the HWA is close to a deadline, FRFCFS-Dyn needs a low
EmergentThreshold to meet all deadlines. On the other hand, because DASH dynam-
ically allocates higher priority to an LDP-HWA based on its progress, DASH gives
the LDP-HWA consistent bandwidth, despite fluctuations in other agents’ bandwidth
usage. Application-aware scheduling for HWAs, which is worst-case latency-based pri-
oritization for SDP-HWAs, also enables short latencies for the SDP-HWA’s requests,
enabling them to meet their deadlines. Therefore, DASH is able to meet all deadlines
with a high EmergentThreshold value. Based on these observations, we conclude that
DASH is effective at achieving both high CPU performance and QoS for HWAs.

7.3. Impact of ClusterFactor

We study the impact of the ClusterFactor used to determine what fraction of total
memory bandwidth is allocated to memory-nonintensive CPU applications. Figure 8
shows average CPU performance and fairness with FRFCFS-DynOpt and DASH across
80 workloads using Config-A. For DASH, we sweep the ClusterFactor from 0 to 1.0. All
HWAs’ deadlines are met for all values of the ClusterFactor for DASH.

We draw three major conclusions. First, there is a tradeoff between performance
and fairness, as the ClusterFactor is varied. As the ClusterFactor increases, CPU per-
formance improves, but fairness degrades. This is because more CPU applications
are classified and prioritized as memory nonintensive at the cost of degrading the
performance of some memory-intensive applications. Second, ClusterFactor is an ef-
fective knob for trading off CPU performance and fairness. For example, if the focus
were only on performance, we would pick a ClusterFactor of 0.3. On the other hand,
if the focus were only on fairness, we would pick a ClusterFactor of 0. In our main
evaluations, we focus on identifying/evaluating a high-performance and well-balanced
design. Hence, we pick a ClusterFactor of 0.15. Alternatively, a ClusterFactor of 0.1
would result in a fairer, yet also well-balanced system, which improves performance
by 14%, compared to FRFCFS-DynOpt, while degrading fairness by only 3.8%. This
result also shows that delaying memory-intensive applications does not significantly
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Fig. 7. CPU performance sensitivity to EmergentThreshold.

Table VII. Deadline-Met Ratio of FRFCFS-Dyn

Emergent
Threshold

Deadline-Met Ratio (%)
Config-A Config-B

HES MAT HES MAT RSZ DET
0-0.1 100 100 100 100 100 100
0.2 100 99.987 100 100 100 100
0.3 99.992 93.740 100 100 100 100
0.4 99.971 73.179 100 100 100 100
0.5 99.945 55.760 99.9996 99.751 100 99.997
0.6 99.905 44.691 99.989 94.697 100 99.960
0.7 99.875 38.097 99.957 86.366 100 99.733
0.8 99.831 34.098 99.906 74.690 99.886 99.004
0.9 99.487 31.385 99.319 60.641 97.977 97.149
1 96.653 27.320 95.798 33.449 55.773 88.425

Table VIII. Deadline-Met Ratio of DASH

Emergent
Threshold

Deadline-Met Ratio (%)
Config-A Config-B

HES MAT HES MAT RSZ DET
0-0.8 100 100 100 100 100 100
0.9 100 99.997 100 99.993 100 100
1.0 100 68.44 100 75.83 95.93 100

Fig. 8. Performance sensitivity to ClusterFactor.

affect their performance. Third, regardless of the ClusterFactor, DASH is able to meet
all HWAs’ deadlines, since it assigns enough priority to HWAs based on their progress.

7.4. Effect of HWAs’ Memory Intensity

We study the impact of HWAs’ memory intensity on a system with two MAT-HWAs
and two HES-HWAs. We vary the memory intensity of the HWAs by varying their
parameters in Table III (we do not show these plots due to space constraints). As the
HWAs’ memory intensity increases, DASH provides higher performance improvement
for the CPU (by 28.3% maximum) while meeting almost all HWA deadlines (99.99%),
when using an EmergentThreshold of 0.8. This is because as the memory intensity of
HWAs increases, they cause more interference to CPU applications. DASH is effective
in mitigating this interference while respecting HWAs’ deadlines.
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7.5. Evaluation on Systems with GPUs

Figure 9 shows the average CPU performance and frame rate of the MAT-HWA across
30 workloads on a CPU-GPU-HWA system. The other HWAs and the GPU meet all
deadlines with all schedulers. For FRFCFS-Dyn, we use an EmergentThreshold of 0.9
for the GPU and the threshold values shown in Table IV for the other HWAs. For
DASH, we use a ClusterFactor of 0.2 and an EmergentThreshold of 0.9 for the GPU
and other HWAs.

DASH achieves 10.1% higher CPU performance than FRFCFS-Dyn, while also
achieving a higher frame rate for MAT-HWA than FRFCFS-Dyn. DASH’s distributed
priority and application-aware scheduling schemes enable higher system performance,
while ensuring QoS for the HWAs and the GPU. We also evaluate a CPU-GPU system.
DASH improves CPU performance by 2% over FRFCFS-Dyn, while meeting all dead-
lines, whereas FRFCFS-Dyn misses a deadline. We conclude that DASH is effective in
achieving high system performance and QoS in systems with GPUs as well.

7.6. Sensitivity to System Parameters

7.6.1. Number of Memory Channels. Figure 10 (left) shows the CPU performance with a
different number of channels across 25 workloads (executing 90M cycles) using HWA
Config-A (other parameters are the same as baseline). All HWAs meet all deadlines with
all schedulers as there is enough bandwidth. The key conclusion is that as the number
of channels decreases, memory contention increases, resulting in higher performance
benefits from DASH. Even at eight memory channels, where memory bandwidth is
ample, DASH significantly improves CPU performance.

7.6.2. Number of Agents (Cores and HWAs). Figures 10 (right) and 11 show the same
performance metrics for the same schedulers as in Section 7.6.1 when using a different
number of CPU cores (from eight to 24) and HWAs5 (four or eight). We draw three
conclusions. First, DASH always improves CPU performance over FRFCFS-DynOpt.
Second, as the number of agents increases, there is more memory contention, provid-
ing more opportunity for DASH, which achieves greater performance improvement
(24.0% maximum). Finally, DASH meets all deadlines for all HWAs. FRFCFS-DynOpt
is particularly ineffective at meeting deadlines at high core and accelerator counts. We
conclude that DASH is scalable to high core and HWA counts.

7.6.3. Scheduling Unit and Switching Unit. Figure 12 shows average system performance
and maximum slowdown when we sweep the SchedulingUnit (Section 4.1) from 1,000
to 5,000 cycles and SwitchingUnit (Section 4.4) from 500 to 2,000 cycles (Switching-
Unit < SchedulingUnit). We observe two trends. First, as the SchedulingUnit increases,
system performance decreases because once an HWA is deemed as urgent, it interferes
with CPU cores for a longer time (and it stays as urgent until at least the end of the cur-
rent SchedulingUnit). Second, a smaller SwitchingUnit provides better fairness, since
fine-grained switching of the probability Pb enables memory-intensive applications to
not be deprioritized for long periods of time at a stretch. Based on these observations,
we empirically pick a SchedulingUnit of 1,000 cycles and SwitchingUnit of 500 cycles.

8. RELATED WORK

Memory scheduling. We have already compared DASH qualitatively and quantita-
tively to the state-of-the-art QoS-aware scheduler for CPU-GPU systems, proposed by
Jeong et al. [2012a]. When this scheduler is adapted to a CPU-HWA context, DASH
outperforms it in terms of both system performance and deadline-met ratio.

5The 4-HWA configuration is the same as Config-A. The 8-HWA configuration contains IMG-HWA x2, MAT-
HWA(10) x1, MAT-HWA(20) x1, HES-HWA(32) x1, HES-HWA(128) x1, RSZ-HWA x1, and DET-HWA x1.
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Fig. 9. CPU performance and HWA frame rate on a CPU-GPU-HWA system.

Fig. 10. Performance sensitivity to system parameters.

Fig. 11. Deadline-met ratio sensitivity to core count.

Fig. 12. CPU performance sensitivity to Scheduling Unit and Switching Unit. Legend indicates A/B where
A is Scheduling Unit and B is Switching Unit.

Ausavarungnirun et al. [2012] propose Staged Memory Scheduling (SMS) to improve
system performance and fairness in a CPU-GPU system. Unlike DASH, SMS does not
explicitly attempt to provide QoS to the GPU and aims to optimize overall performance
and fairness.
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Most other previously proposed memory schedulers (e.g., Rixner et al. [2000], Mutlu
and Moscibroda [2007, 2008], Nesbit et al. [2006], Kim et al. [2010a, 2010b], Subrama-
nian et al. [2013], Hur and Lin [2004], Subramanian et al. [2015b, 2014], Moscibroda
and Mutlu [2008], Muralidhara et al. [2011], Zhao et al. [2014], Das et al. [2013],
Ebrahimi et al. [2011], Lee et al. [2008], Subramanian et al. [2015a], Lee et al. [2010],
and Ipek et al. [2008]) have been designed to improve system performance and fair-
ness in CPU-only multicore systems. These works do not consider the memory access
characteristics and needs of other requestors such as HWAs. In contrast, DASH is
specifically designed to provide high system performance and QoS in heterogeneous
systems with CPU cores and HWAs.

Lee et al. [2005] propose a memory controller that aims to satisfy latency and
bandwidth requirements of different requestors, in a best-effort manner. Latency-
sensitive requestors are always given higher priority over bandwidth-sensitive re-
questors, which might prevent bandwidth-sensitive requestors from meeting potential
deadline requirements. Other previous works [Akesson et al. 2007; Reineke et al. 2011;
Paolieri et al. 2009; Wu and Zhang 2013; Macian et al. 2003; Kim et al. 2014] have
proposed to build memory controllers that provide support to guarantee real-time ac-
cess latency constraints for each master. The PRET DRAM Controller [Reineke et al.
2011] partitions DRAM into multiple resources that are accessed in a periodic pipelined
fashion. Wu and Zhang [2013] propose to strictly prioritize real-time threads over non-
real-time threads. Macian et al. [2003] bound the maximum latency by scheduling in a
round-robin manner. Other works [Akesson et al. 2007; Paolieri et al. 2009] group a set
of accesses to all banks and schedule requests at the group granularity. All these works
aim to bound the worst-case latency by scheduling requests in a fixed, predictable or-
der. They also do not consider CPU performance. As a result, they waste a significant
amount of memory bandwidth and do not achieve high system performance.

Source throttling. Memguard [Heechul et al. 2013] guarantees worst-case band-
width to each core by regulating the number of injected requests from each core. Other
works [Ebrahimi et al. 2010; Nychis et al. 2012; Chang et al. 2012; Nychis et al. 2010;
Cheng et al. 2010] propose to throttle the request injection rate at the cores to improve
fairness and performance in CPU-only systems. Still other previous works [Stevens
2010; Jeong et al. 2012a; Kayiran et al. 2014] propose to throttle the number of GPU
requests in CPU-GPU systems to mitigate interference to CPU applications. These
schemes are complementary to our approach and can be employed in conjunction with
DASH to achieve better interference mitigation.

Data interleaving. The Heterogeneous Memory Controller [Nachiappan et al. 2014]
divides the address space into two regions with different address interleaving policies.
Each region is associated with different kinds of agents (e.g., CPUs, HWAs) that would
benefit from the specific interleaving policy. DASH and such a heterogeneous inter-
leaving approach can be employed in conjunction with each other to achieve better
performance and deadline-met ratios.

Memory controller/channel/bank partitioning. To mitigate interference, previ-
ous works [Muralidhara et al. 2011; Jeong et al. 2012b; Liu et al. 2012b; Das et al.
2013] propose to map data of interfering applications to different channels or banks.
Our memory scheduling approach can be combined with such partitioning approaches
to achieve higher system performance and QoS for HWAs.

Virtual time scheduling. The rate-based approach of DASH, that is, prioritization
of HWAs based on comparison between the target progress and the expected progress,
is similar to a virtual time scheduler for CPU scheduling [Nieh and Lam 1997; Chandra
et al. 2000; Duda and Cheriton 1999; Nieh et al. 2001; Goyal et al. 1996]. These sched-
ulers assign a weight to each application and allocate resources proportional to this
weight, based on the concept of lottery scheduling [Waldspurger and Weihl 1994]. They
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schedule a CPU application using its virtual time, which is updated by the amount of
processing time divided by the weight when the application is scheduled. Among such
virtual time schedulers, SMART [Nieh and Lam 1997] and the BVT scheduler [Duda
and Cheriton 1999] are applicable to real-time systems. Goyal et al. [1996] propose
a hierarchical CPU scheduler, which partitions bandwidth among CPU application
classes and employs a different CPU scheduler for each class. A virtual time scheduler
is used to partition bandwidth between different classes. For multimedia systems, each
application is classified as hard real time, soft real time, or best effort. The idea of classi-
fying applications into groups and using different scheduling policies has similarities to
DASH. However, the key distinction between these virtual time schedulers and DASH
is that (1) the constraints DASH has as a memory scheduler are very different from
the constraints that these software schedulers have (e.g., DASH requires awareness
of memory-level locality and bank-level parallelism, is subject to hardware cost and
complexity constraints, and operates at finer time scales), and (2) these past schedulers
are not aware of the memory access characteristics of the different applications, which
is a key characteristic of DASH that enables high performance.

9. CONCLUSION

We introduce a deadline-aware high-performance memory scheduler for heterogeneous
systems with hardware accelerators, DASH, with the goal of enabling hardware accel-
erators (HWAs) to meet their deadlines while achieving high CPU performance. Our
evaluations across a wide variety of workloads/systems show that DASH meets HWAs’
deadlines while also greatly improving CPU performance, compared to state-of-the-art
techniques. We conclude that DASH is an efficient and effective memory scheduling
substrate for current and future heterogeneous SoCs, which will require increasingly
more predictable and at the same time high-performance memory systems.
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