Application Slowdown Model

Quantifying and Controlling Impact of Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, Onur Mutlu
Problem:
Interference at Shared Resources

1. High application slowdowns
2. Unpredictable application slowdowns
Problem: Interference at Shared Resources

Our Goal: Achieve high and predictable performance
Our Approach

1. Build a model to accurately estimate *slowdowns*

2. Use slowdown estimates to build slowdown-aware resource management mechanisms
Challenge in Estimating Slowdown

\[\text{Slowdown} = \frac{\text{Performance}_{\text{Alone}}}{\text{Performance}_{\text{Shared}}} \]
Challenge in Estimating Slowdown

Slowdown = \frac{\text{Performance Alone}}{\text{Performance Shared}}
Challenge in Estimating Slowdown

Slowdown = \frac{\text{Performance}_\text{Alone}}{\text{Performance}_\text{Shared}}
Our Model

Our model overcomes this challenge

Our estimation error: **10%**

Best previous model’s error: **30%**
Leveraging Our Slowdown Estimates
Leveraging Our Slowdown Estimates

Slowdown-aware cache capacity partitioning
Leveraging Our Slowdown Estimates

Slowdown-aware memory bandwidth partitioning
Application Slowdown Model

Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, Onur Mutlu