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Outline

• MRI at CMU
• Goals of research:

– Monitoring transplanted organ function
• Automatic segmentation
• Organ function

• Transplanted organs in animal models:
– Kidneys
– Heart
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Centers with Bioimaging Interests

Pittsburgh NMR Center
(CMU/PITT)

Center Neural Basis of Cognition
(CMU/PITT)

3-T fMRI Brain Imaging Center
(CMU/PITT)

Brain Trauma Res. Ct.
(UPMC)

MR Res. Center
(UPMC)

Structural Biology Pr.
(CMU)

Sensor Tech. Center
(CMU)
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NMR Center for Biomedical Research 

• Founded in 1986, NIH funded since 1988

• 1 of 7 NIH NCRR Biomedical Research Resource 
Centers for NMR MRI/ MRS – now through NBIB

• Only one exclusively devoted to small animal models

• 8400 sq. ft. facility at Mellon Institute

• Jointly administered by CMU/ Pitt

• Director: Prof. Chien Ho (Biological Sc.)

• Renewed September 1st/ 2003-August 31st/ 2008
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NMR Center
• NMR Center: MRI and MRS instruments

– 1 Brucker 11.7 T, 8.9 cm vertical bore (microimaging
small animal mice, high resolution)

– 2 Brucker Avance DRX (4.7 T and 7.0 T) MRI/MRS
– Home-built 2.35 T MRI/MRS
– Brucker Minispec .47 T NMR Instrument
– 4 High resolution multinuclear NMR spectrometers 

(300, 500, 600 MHz) 
– All equipped with gradient capability

• Animal research:
– Surgical and physiological monitoring equipment 

(microscopes, pumps, ventilators, electrocautery, gas 
analyzers, …)

• Computing and data processing facilities
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{TransplantedTransplanted organs – early detection of rejection
KidneyKidney and heartheart small animal models

Goals
• Scientific Goal Noninvasive MRI Methodology for Early 

Detection of Organ Malfunction

• Research Goal Signal/Image Processing Alg. for AutomaticAutomatic
Detection of Organ Malfunction

• Task 1: Automatic  organ segmentation

• Task 2: Automatic detection of organ rejection

Challenges: low contrast, clutter, missing edge info.
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Kidneys 

Track the dynamic 
behavior of the 
transplanted organ

Automatic segmentation 
of kidneys & their 
internal structures
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Block Diagram of Kidney 
Segmentation Algorithm

g
f

Movement Correction 
and 

Noise Reduction

Kidney 
Segmentation 

Segmentation
of

Cortex and Medulla

fg
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MRI Data
USPIO enhanced dynamic 

MRI: ultra-small 
superparamagnetic iron 
oxide

(6 mg Fe/kg body weight )

Groups of rats

a. Normal BN (n = 5)

b. Normal DA (n = 5)

c. isograft (n = 4) 

d. allograft (n = 6)

Image size: 64×64
Frame number: 128
Imaging time: 43 Sec



10

Perfusion Signal: Organ Segmentation

Observation: distinct dynamic features
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Perfusion Signal: Function Monitoring

• MSD: Maximum Signal Decrease
• tMSD : Time of occurrence of MSD
• Wash-in slope

Right (native)
Left (transplanted)

Isograft rat #4

Time (total duration 43 sec.)
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Segmentation Algorithm

Energy minimization by 
level set

Identify the boundary of the cortex

Preprocessing: Enhance
the kidneys and identify their locations 

Energy minimization by 
region-growing

Identify the cortex pixels

Rats with transplanted kidneysNormal rats: no transplantation
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Preprocessing

• Average correlation coefficient
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Locate the Kidneys

Kidneys are roughly located: Energy 
minimization by level set

MRI sequence Single image: ( ),C x y
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Normal rats: Cortex segmentation

i
Ω : inside of curve C 

o
Ω : outside of curve C 

C: boundary of a set

Vector representation
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Energy Minimization: Cortex
• Energy functional
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Transplanted Kidneys
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Region-growing
1. For each region, find the average 

perfusion signal    ,

2. For each pair of neighboring regions, 
calculate

3. Merge       with       s.t. maximizes 

4. Update the average temporal sequence

5. Continue merging until  
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Experimental Results

MR instrument: 4.7-T Bruker AVANCE DRX
TR = 3.45ms; TE = 2.1ms
Data matrix size = 64 × 38
USPIO: ultra-small superparamagnetic iron oxide
Dose: 6 mg Fe/kg body weight 

Four groups of rats

a. Normal BN (n = 5)

b. Normal DA (n = 5)

c. Isograft BN BN (n = 4) 

d. Allograft DA BN (n = 6)

Image size: 64×64
Image number: 128
Imaging time: 43 Sec
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Normal rats: No transplantation

Preprocessing

Segmentation

Final results
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Task1: Automatic Kidney Segmentation
Renal Perfusion Signal

isograft
a

native
transplanted

b

native

transplanted

allograft
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Task2: Monitoring Organ Function (Kidney)
Isograft
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•Measure of dissimilarity: subspace distance

•Fit a parametric model (AR) to perfusion signal
•Determine (oscillatory) modes of perfusion signal
•Geometric distance between modes of transplanted and native kidneys



23

Observed

Movement Correction and 
Noise Reduction

?

Motion-free & Noiseless
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Problem Formulation

��� 
��� 	��
�	�
sconstraint smoothness

 temporalWeighted  

22

correction Motion

2

WttWt ffHfgE ∇+∇+−= βα

Given the observed image sequence g(i, j, t), find the image 
sequence f(i, j, t) that minimizes

Assume the variance of the background noise is 2σ

( ) ( ) ( )






−=

22

,,
exp2/1exp,,

σ
tjip

tjiw

( ) ( ) ( )( )∑
−=

−+
+

=
m

mk

tjigktjig
m

tjip 2,,,,
12

1
,, ( ) ( )∑

−=

+
+

=
m

mk

ktjig
m

tjig ,,
12

1
,,

Selectively Smooth



25

Motion Model
Assumptions:

1. Breathing motion is vertical (head-to-feet) within 1 pixel

2. Motion of pixels along the same horizontal line are identical

gf

Head

Feet
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Motion Model (cont’d)
Model non-rigidity:
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Energy Minimization:
matrix-vector form

Minimize two energy functions iteratively

Keeping H fixed,
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Results
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Observed (g) Recovered (f)

Results (isograft)
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Observed (g) Recovered (f)

Results (allograft)
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Heart

• Heart segmentation
• Heart structures segmentation
• Motion tracking
• Data:

– Untagged

– Tagged 
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Untagged Data: Active Contour Methods

• Kass, Witkin & Terzopoulos: classical snakes, edge-based
• Cohen: balloon snake, edge-based + constant force
• Xu & Prince: snake edge-based +new potential force field, Gradient 

Vector Field, (GVF)
• Malladi, Sethian & Vemuri method: edge-based + constant force
• Chan & Vese method: region-based + piecewise constant model

• Edge-based: only local information, sensitive to initial condition
• Initial contour must reside close enough to true boundary of the

object, or contour will not move if no edge information is present, 
contour may be trapped at spurious edge points

• Adding an external constant force causes leakage where edge of the 
object boundary is weaker than added constant force

• Piece-wise constant model fails when the image has low contrast 

Problems with existing methods
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Automatic Heart Segmentation: Results Current Methods

Papillary muscles not segmentedChest wall not segmented

Gradient Vector Field (Xu & Prince) Chan & Vese Energy Minimization

Initial contour not close enough to 
desired left ventricular endocardium, 
contour converges to undesired 
boundary

Problems: low contrast, lack edge information, no prior on shape
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Energy Minimization: Stochastic Active Contour
• Stochastic model: Works with low contrast, segments chest wall

• Region-based + Edge-based: robust to contour’s initial condition
• Prior knowledge about shape of heart: papillary muscle problem 

( ) ( ) ( ) ( ) ( )CJCJCJCJCJ 44332211 λλλλ +++=

Prior Knowledge 
(Shape)

Contour Smoothing 
(Snake)

Model Matching

(e.g., temporal)

Image gradient 
(Texture)

Minimization solution: PDE contour evolution & level sets

• Provides smooth and closed boundary
• Deformable: segments various anatomy parts
• High potential for tracking motion of heart
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Region-based forces: Contour not trapped at spurious edge points

Region-based forces: Contour keeps moving although edge information missing

Ellipse force

Ellipse force
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Region-based forces and edge-based forces: Balance keeps contour 
stationary at object boundary.

Ellipse force
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Automatic Heart Segmentation

Right 
Ventricular 

Endocardium

Left 
Ventricular 

Endocardium

Epicardium

Chest wall segmented

Papillary muscles segmented
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Results
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How good is 
automatic segmentation?
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Area Similarity
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Comparison

Contour tracked by our Active 
Contour scheme

Contour tracked 
manually

LV
Edge Similarity = 0.7141
Area Similarity = 0.9534

RV
Edge Similarity = 0.6500
Area Similarity = 0.9262
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Tagline Detection: tag centers
• Three types of tag centers: 

– Vertical taglines, horizontal 
taglines, and crossings of 
both taglines

– Each type of tag centers is 
associated with a model

Vertical 
model

Horizontal 
model

Crossing 
model
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Heart Segmentation

• Tagged Data
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• Tagline prediction
– Predict initial tag positions based on motion 

between two previous frames

Key Observations

Fi-1

• Motion of the taglines: sparse
– Model movement and then construct dense 

displacement field

Fi Fi Fi+1

?
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LV

RV

Isograft No Rejection

LV

RV

Allograft With Rejection

Tagged Data: Heterotropic Heart Transplantation

Goal: by monitoring the motion
of every pixel in the heart, 
monitor the function of the heart

Challenge: detect 
motion of every pixel 
in myocardium
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Heart Motion Detection
• Estimate dense motion of the heart from first detecting motion of 

taglines
• Expand motion of taglines to motion of every myocardial pixel.
• Many existing techniques:

– Single tagline detection: nothing to prevent two taglines from 
occupying same physical position 

– Valuable correlations between adjacent taglines are ignored

• Transplanted rats with heterotropic working heart.
• Cardiac tagging achieved by a modified DANTE sequence.
• MRI scans were performed on a Bruker AVANCE DRX 4.7-T 

system.
• 8 to 12 frames per cardiac cycle.

• The size of each matrix is 256×256 pixels.

Data
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Our Methodology
• Simultaneous detection of 

all tag lines: Energy 
minimization

• Taglines motion 
(displacement) field 

• Motion of myocardial 
pixels: dense motion field
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I

Task2: Tagline Detection
For each frame in cardiac cycle from diastole to systole:

Deform taglines: Minimize energy functional

Preprocessing: Get distance maps

Initialize taglines: Predict motion of taglines

Compute the motion of the taglines

CIHI
VI



49

Tagline Detection: energy functional
For the pixel (x,y) on a mesh, the energy functional is: 
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Tagline Detection: distance metrics
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Tagline Detection: internal energy

• Energy functional: { }( ) ++= ∑
∈ Vji
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• Control the smoothness of taglines 

A B C D
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Left Ventricle Tagline Detection

End of systoleEnd of diastole
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Dense Displacement Field Estimation

• The displacement 
field of the myocardial 
pixels is estimated 
based on the 
displacement field of 
the taglines.

• An affine model, A(x,y), is used to describe 
the motion of the myocardium locally.
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Affine Transform
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Displacement field

Dense
Motion 
Estimation

Tagline motion field
Dense motion field

Pixel affine motion model
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Conclusions
• Heart:

– Automatic segmentation: Untagged MRI
• Energy minimization stochastic active contour 

method segments heart and its structures
– Motion detection: Tagged MRI

• Energy minimization detects simultaneously all
taglines.

• Affine method estimates motion of all the 
myocardial pixels: dense motion estimate

• Kidney: 
– perfusion signal (automatic segmentation and organ 

monitoring)
• Future work: 

– monitor heart function by monitoring heart motion
– 3D: heart and kidney
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