Distributed Decision in Sensor Networks

José M. F. Moura
Department of Electrical and Computer Engineering
Carnegie Mellon University
http://www.ece.cmu.edu/~moura

Work with: Saeed Aldosari, Elijah Liu

IBM Watson Research Center
Hawthorne NY
March 23/ 2004

DARPA DSO ACMP Integrated and Sensing Program ARO grant
NSF Integrated Sensing Computation and Networked Systems for Decision and Action
Sensor Networks

• What about sensor networks:
 – Ad-hoc wireless networks? constraints

• Design issues:
 – Inference: decentralized detection
 ▶ Structure of detector
 ▶ Performance of detector
 ▶ Tradeoffs
 – Combine data from many sensors:
 – Fast fusion algorithms
Sensor Networks

- Integrated technology: inexpensive sensors, deployable, multiple modalities (EM, acoustic, IR, magnetic, ...)
- Survey large areas: environmental, security, surveillance, ...
- Many sensors/ many targets: global through local
Sensor Networks

- Distributed, Heterogeneous, Autonomous
- Resource starved: rate constraint
- Network as sensor: design with tradeoffs
Sensor Networks

• Main issues:
 – Detection: optimal algorithms and performance
 – Fusion: fast inference algorithms

• Constraints:
 – Common access channel rate constraint

• Tradeoffs:
 – Number of sensors
 – Number of bits per sensor
 – SNR
Sensor Network: Architectures

Physical Measurement

Soft Decision

Tandem Architecture

Parallel Architecture

Web Architecture
Sensor Networks: Optimal Detection

- Decentralized detection:
 - Performance: min P_e under rate constraint R
 - Decentralized detection:
 - Tradeoffs: $R = N \times b$: N, b, SNR
 - Optimal detector:
 - Global fusion rule
 - Local thresholds
 - Probability of error

- Optimal detector: Hard combinatorial problem

Asymptotic analysis: how good are the results for finite N; how large does N need to be (SNR dependence)

Numerical optimization: fusion rule intuitively pleasing generalization of majority rule for binary quantization
Decentralized Detection: Model

- **Source** H:
 - Binary Hypothesis H_0 vs. H_1
 - Prior probabilities: π_0, π_1

- **Observations** y_0, y_1, \ldots, y_N:
 - Conditionally independent given H
 - Identically distributed: $f_i(y) = f(y \mid H_i)$
 - Monotone likelihood ratio $f_1(y) / f_0(y)$

- **Compression**:
 - b bits per measurement
 - Observation space: $y_n \in \mathbb{R}$
 - Classification space: $u_n \in U = \{0, 1, \ldots, L - 1\}$
 - $\gamma^*_b : \mathbb{R} \rightarrow U$, $|U| = L = 2^b$

- **Communication**: Error-free, Bandwidth=R bits/sec
- **Fusion**: $\gamma^0 : U^N \rightarrow \{0, 1\}$

Standard model: Sandell & Tenney 81, Tsitsiklis 85
Optimized Decentralized Detection

- Local classifiers: $\gamma_b^1, \gamma_b^2, \ldots, \gamma_b^N$
- Conditional independ. + Monotone likelihood ratio
 - Gauss case, in general: $N \lfloor L(L-1)/2 \rfloor$ thresholds
 - Experiments for $b=2$: optimizing $L(L-1)/2$
 thresholds/local sensor always converges to simpler one with $(L-1)/$sensor $\Rightarrow N(L-1)$ thresholds
 - \Rightarrow Optimal classifiers scalar quantizers:
 \[
 u = \begin{cases}
 0 & -\infty < y < \lambda_1 \\
 1 & \lambda_1 < y < \lambda_2 \\
 \vdots & \vdots \\
 L-1 & \lambda_{L-1} < y < \infty
 \end{cases}
 \]
 - Each classifier characterized by threshold vector: $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_{L-1})$
 - N local classifiers with possibly different λ
 - Optimal thresholds λ? Optimal fusion γ^0?
Unquantized vs Quantized Local Decision

- Assuming everything else is fixed, \(b \uparrow \Rightarrow P_e(b) \downarrow \) and \(P_e(b) \geq P_e(\infty) \)
- Problem: \(b = ? \) s.t. \(P_e(b) \approx P_e(\infty) \)
- Difficulty: \(P_e(b) \) is hard to evaluate (dependent on fusion rule \(\gamma^0 \))
- Asymptotic analysis: Assume \(N \rightarrow \infty \)
 - \(P_e(b, N) \rightarrow 0 \) exponentially fast as \(N \rightarrow \infty \)
 - The rate of decay is given by:
 \[
 C_b = - \lim_{N \rightarrow \infty} \frac{1}{N} \log P_e(b, N)
 \]
- Assuming everything else is fixed: \(b \uparrow \Rightarrow C_b \uparrow \) and \(C_b \leq C_\infty \)
- Problem: \(b = ? \) s.t. \(C_b \approx C_\infty \)

Design optimal detector and study \(P_e(b) \) **as function of** \(b \)**
Optimization

- Chernoff Information:

\[
C_\infty = - \min_{0 \leq s \leq 1} \log \int_{-\infty}^{\infty} \left[f_0(y) \right]^s \left[f_1(y) \right]^{1-s} dy
\]

\[
C_b(\lambda, s) = -\log \sum_{u=0}^{L-1} [\Pr(u | H_0)]^s [\Pr(u | H_1)]^{1-s}
\]

- Objective function:

\[
V_b(\lambda, s) = \log [1 - C_b(\lambda, s) / C_\infty]
\]

Optimization: Assume identical local detectors (negligible loss when \(N \to \infty\))

\[
\min_{\lambda, s} V_b(\lambda, s) \text{ subject to: } \lambda_1 < \lambda_2 < \cdots < \lambda_{L-1} \text{ and } 0 \leq s \leq 1
\]

- Alternatively: let \(\delta = (\delta_1, \delta_2, \ldots, \delta_{L-2})\), where \(\delta_1 = \lambda_1\), and

\[
\delta_k = \lambda_k - \lambda_{k-1}, k = 2, 3, \ldots, L-2
\]

\[
\min_{\delta, s} V_b(\lambda, s) \text{ subject to: } \delta_k > 0, k = 2, 3, \ldots, L-2 \text{ and } 0 \leq s \leq 1
\]

Asymptotic analysis abstracts out fusion rule
Local Thresholds Algorithm

- Optimization:
 \(L \)-Dimensional & nonlinear
 \(L = 2^b \)

- Algorithm:
 Gradient-descent

- Initialization:
 \(\alpha_i : \) convergence vs. speed

- Stopping:
 \(\Delta_i < \varepsilon, \ i = 1, 2, \ldots, L \)
Results: Unquantized vs Quantized

- Observation model:
 \[H_i : y = m_i + n \]
 \[E[n] = 0, \ Var[n] = \sigma^2 \]
 \[m_i \] are constants representing the signal mean

- Case Studies:
 - Noise distributions: Gauss, Laplace, Logistic
 - No. of bits: 1 to 8 bits/sample
 - SNR: 0 to 20dB

\[
f_{\text{logistic}}(y) = \frac{e^{-(y-m)/\rho}}{\rho \left[1 + e^{-(y-m)/\rho} \right]^2}, \quad \rho = \frac{\sqrt{3}}{\pi} \sigma
\]

\[
f_{\text{Laplace}}(y) = \frac{1}{2\vartheta} e^{-|y-m|/\vartheta}, \quad \vartheta = \frac{1}{\sqrt{2}} \sigma
\]
Results: Unquantized vs Quantized

Gauss, m_0 = -m_1, \sigma_0^2 = \sigma_1^2 = 1, SNR = 10dB

b = 8
256 Thresholds
Results: Unquantized vs Quantized

\[m_0 = -m_1, \sigma_0^2 = \sigma_1^2 = 1, \ SNR_L = 0dB, \ SNR_H = 20dB \]

\[V_b = \log(1-C_b/C_\infty) \]

- Gauss
- Laplace
- Logistic
Conclusions: Unquantized vs Quantized

- \(C_b \rightarrow C_\infty \) exponentially fast as \(b \uparrow \)
 \[\Rightarrow \text{Little gain if we go to higher number of bits } b. \]

- Threshold distribution:
 is such that threshold points are concentrated around the boundary between \(f_0(y) \) and \(f_1(y) \) (area where it is most hard to discriminate between \(H_0 \) and \(H_1 \)).

- In all cases studied, \(s \) converges to 0.5

- For high \(b \), the ratio \(C_b / C_\infty \) is less sensitive to SNR when the noise Gaussian.
Fusion Rule

- Asymptotic studies abstracts the role of the fusion rule ⇒ consider finite number of sensors \(N \)
- In general, for finite \(N \), optimal local classifiers \(\gamma_1, \gamma_1, \ldots, \gamma_N \) might not be identical ⇒ \((L - 1)N\) thresholds
- No. of possible fusion rules: \(2^{LN} = 2^{N_b}\)

<table>
<thead>
<tr>
<th>(u_1)</th>
<th>(u_2)</th>
<th>…</th>
<th>(u_N)</th>
<th>(\tilde{H})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>…</td>
<td>0</td>
<td>(h_1)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>…</td>
<td>1</td>
<td>(h_2)</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>(L - 1)</td>
<td>(L - 1)</td>
<td>…</td>
<td>(L - 1)</td>
<td>(h_{LN})</td>
</tr>
</tbody>
</table>

Note: \(h_k \in \{0,1\} \)
Fusion Rule: Genetic Algorithm

- Setup:
 - Priors: $\pi_0, \pi_1 = 1 - \pi_0$
 - Noise: Gauss: $m_0 = 0, m_1 = 1, \sigma^2 = 1$
 - $(b, N): (1, N), (2, 2), (2, 3), (2, 4), (3, 2)$

Fusion rule: regardless of priors

$$\lambda^0 \approx \frac{1}{2} N (L - 1)$$

Local decisions

$$u_k \in \{0, 1, \ldots, L - 1\}$$

Fusion rule: Genetic Algorithm
2N Binary vs N Quaternary Sensors

- Rate Constraint: \(R = N \times b \)
- Unequal SNR

\[
\eta_2 = \eta_1 + 2.3 \text{dB}
\]

\[m_0=0, \sigma_0^2=\sigma_1^2=1\]

\(P_e \) Ranking

<table>
<thead>
<tr>
<th>(b)</th>
<th>(N)</th>
<th>Total Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
2N Binary vs N Quaternary Sensors

\[r_b = \frac{C_b(\eta_b)}{C_\infty(\eta_b)}, \quad r_{b\min} < r_b < r_{b\max}, \]

Use 2N Binary sensors

Use N quaternary sensors

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(2r_{1\text{min}})</th>
<th>(2r_{1\text{max}})</th>
<th>(r_{2\text{max}})</th>
<th>(r_{2\text{min}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauss</td>
<td>1.14</td>
<td>1.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistic</td>
<td>1.06</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laplace</td>
<td>1</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[m_0 = -m_1, \sigma^2 = 1 \]
Finite N Sensors vs Asymptotic Analysis

\[\hat{C}_b(N) \]

Gauss, $m_0 = -m_1, \sigma^2 = 1, \pi_0 = \pi_1 = 1/2, b = 2$

$C_b(\eta = -5\text{dB})$

$C_b(\eta = +5\text{dB})$

N
Performance Analysis: Finite large N

Lugannani-Rice approximation: $\frac{P_e^{LR} - P_e^{exact}}{P_e^{exact}} \times 100$
Performance Analysis

Lugannani-Rice approximation:

\[\xi_2 (N, \eta) = \log \frac{P_e (N)}{P_e (N + 2)} = \log \frac{C_b (N, \eta)}{C_\infty} \]
Network as Sensor: Detection

- **Fusion rule**: majority-rule
- **Under MAC constraint**: $R = N \times b$
 - Prefer quaternary over binary sensors if SNR 1.5 to 2 dB larger for quaternary sensors
- $P_e \rightarrow 0$ exponentially fast as $N \rightarrow \infty$
- The rate of decay $\hat{C}_b(N)$ approaches that predicted by asymptotic studies C_b as $N \rightarrow \infty$
- Convergence rate of $\hat{C}_b(N) \rightarrow C_b$ depends on system parameters, especially SNR: slower at lower SNR
- **Slow** convergence \Rightarrow very large number of sensors N is required to approach asymptotes (over thousands)
- **Local detectors tradeoffs**: How many levels of quantization of local decisions
 - Few bits/ decision at high SNR
 - More bits/ decision at low SNR – usually 1 to 2 bits more than at low SNR
 - Asymptotic analysis may lead to wrong decisions at low SNR
Fast Fusion: Fast Sum-Product

\[
p(T_1, T_2, T_3 | S_1, S_2, S_3) = \frac{1}{f_1} \frac{1}{f_2} \frac{1}{f_3} \frac{1}{g_1} \frac{1}{g_2} \frac{1}{g_3} p(T_1 | S_1, S_2, S_3) p(T_2, T_3 | S_2, S_3) p(T_1, T_3 | S_3)
\]

\[
p(T_1 | S_1, S_2, S_3) = \sum_{T_2, T_3} p(T_1, T_2, T_3 | S_1, S_2, S_3)
\]

- Map fusion of \(N \) sensors detecting \(K \) targets on bipartite graph
- Fuse sensor soft info. with sum-product algorithm
- Message flow alg.
- Compute marginals from 1D marginals
Sum-product algorithm (Compute function marginals)

Message updating around variable node

Message updating around function node

\[q_1^1 = r_1^3 \cdot g_1(T_1) \]

\[r_1^1 = \sum_{T_2} \left\{ q_2^1 \cdot f_1(T_1, T_2, S_1) \right\} \]

Message updating rules of sum-product algorithm

Send out only extrinsic info.
Fast Fusion: Fast Sum-Product

Fast implementation of sum-product algorithm:
• Divide and conquer, divide and multiply (reduce complexity by K/2)
• Approximate sensors soft info. by sums of Gauss
• Propagate means and covariances
• Convergence: if covariances converge, means converge to their correct values
• Fast algorithm: scenarios with hundreds of sensors and hundreds of targets
Fast Fusion: Convergence of Variances

Fig. 3. Sensor Network of General Topology

\[
(C_1^{(k+1)}, \ldots, C_n^{(k+1)}) = \left(F_1 \left(\left\{ C_j^{(k)} \right\}_{j \neq 1} \right), \ldots, F_n \left(\left\{ C_j^{(k)} \right\}_{j \neq n} \right) \right) \\
= F \left(C_1^{(k)}, \ldots, C_n^{(k)} \right) .
\]

(14)

Theorem 1. The operator \(F \) possesses a fixed point in \(D^n \). Furthermore, denoting this fixed point by \((C_1^*, \ldots, C_n^*) \)

\[
\lim_{k \to \infty} F^k \left(C_1^{(0)}, \ldots, C_n^{(0)} \right) = (C_1^*, \ldots, C_n^*)
\]

(15)

for all positive-definite diagonal matrices \(C_1^{(0)}, \ldots, C_n^{(0)} \).
Fast Fusion: Convergence of Means

\[M_i^{(k+1)} = H_i \left(\left\{ M_j^{(k)}, C_j^{(k)} \right\}_{j \neq i} \right) \]

\[A_{\Sigma, \{D_j\}_{j \neq i}} = \left(\Sigma_i^{-1} + \sum_{j \neq i} \xi_i (\lambda_{ij} (D_j^{-1})) - \sum_{j \neq i} \xi_i (\lambda_{ij} (I_0)) \right)^{-1} \quad \cdots \quad (11) \]

\[T_{\Sigma_1, \ldots, \Sigma_n} = \begin{pmatrix}
0 & \Theta_{1*} & \cdots & \cdots & \Theta_{1*} \\
\Theta_{2*} & 0 & \Theta_{2*} & \cdots & \Theta_{2*} \\
\vdots & \vdots & \ddots & \cdots & \vdots \\
\Theta_{(n-1)*} & \cdots & \Theta_{(n-1)*} & 0 & \Theta_{(n-1)*} \\
\Theta_{n*} & \cdots & \Theta_{n*} & \Theta_{n*} & 0
\end{pmatrix} \quad \cdots \quad (18) \]

Each block matrix \(\Theta_{i*} \) in \(T_{\Sigma_1, \ldots, \Sigma_n} \) takes the form of

\[\Theta_{i*} = \Omega \left(A^{-1}_{C_i^*, \{C_j^*\}_{j \neq i}} \tau_i (A_{\Sigma_i, \{C_j^*\}_{j \neq i}}) - I_i \right) \quad \cdots \quad (19) \]

where the matrix \(A_{\Sigma_i, \{C_j^*\}_{j \neq i}} \) is defined as before in (11) and the matrix \(A^{-1}_{C_i^*, \{C_j^*\}_{j \neq i}} \) is defined as

\[\sum_{j=1}^{n} \tau_i ((C_j^*)^{-1}) - \sum_{j=1, j \neq i}^{n} \tau_i (\lambda_{ij} (I_0)) \]
Fast Fusion: Convergence of Means

Theorem 2. If \(\rho(T_{\Sigma_1, \ldots, \Sigma_n}) < 1 \), then \(\exists \) vectors \(M_1^*, \ldots, M_n^* \) such that, for any \(M_1^{(0)}, \ldots, M_n^{(0)} \) and any \(C_1^{(0)}, \ldots, C_n^{(0)} \in D \),

i. the sequence \((M_1^{(k)}, \ldots, M_n^{(k)})\) converges to \((M_1^*, \ldots, M_n^*)\).

ii. the estimated means for the marginal densities obtained from the message statistics are the true marginal means.

Lemma 9 If \(\max_{i \in \{1, \ldots, n\}} \rho(\Theta_{i*}) < \frac{1}{n-1} \), then \(\rho(T_{\Sigma_1, \ldots, \Sigma_n}) < 1 \).

\[
\begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & \cdots & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 \\
\end{pmatrix}.
\]

\[
\rho(T_{\Sigma_1, \ldots, \Sigma_n}) = \rho((\Theta_{1*} \oplus \ldots \oplus \Theta_{n*}) \cdot (\bar{I} \otimes I_\Omega)) \\
\leq \rho(\Theta_{1*} \oplus \ldots \oplus \Theta_{n*}) \cdot \rho(\bar{I} \otimes I_\Omega) \\
= \max_{i \in \{1, \ldots, n\}} \rho(\Theta_{i*}) \cdot \rho(\bar{I}) \rho(I_\Omega) \\
= \max_{i \in \{1, \ldots, n\}} \rho(\Theta_{i*}) \cdot (n - 1).
\]
Lemma 11 If $\Sigma_1 = \ldots = \Sigma_n = \Sigma$, then the sequence of covariance matrices converge to a unique fixed point (C, \ldots, C) in \mathcal{D}^n and $C \leq \delta(\Sigma)$. Moreover, $\rho(T_{\Sigma_1, \ldots, \Sigma_n}) < 1$.

Proposition 2 For any symmetric matrix $\Sigma > 0$ such that $\Sigma^{-1} - (n - 1)I_0 > 0$, if $\Sigma_i = (\Sigma^{-1} + \gamma_i I_0)^{-1}$ for $i = 1, \ldots, n$ then $(\Sigma_1, \ldots, \Sigma_n) \in \mathcal{C}$ for all $\sum_{i=1}^n \gamma_i = 0$ and $-\frac{1-(n-1)\lambda_{\max}(\Sigma)}{\lambda_{\max}(\Sigma)} < \gamma_1, \ldots, \gamma_n < \frac{1-(n-1)\lambda_{\max}(\Sigma)}{\lambda_{\max}(\Sigma)}$.
(a) Message Means Converge

(b) Marginal Mean Estimates Converge

Figure 6: Regular Sensor Network of 30 Sensors and 30 Targets

(a) $\rho(T_{\Sigma_1, \ldots, \Sigma_3}) = .7133$

(b) $\rho(T_{\Sigma_1, \ldots, \Sigma_75}) = 1.0214$

Figure 7: Effect of the Proximity of the Spectral Radius to One
Conclusions

• Sensor networks:
 — Optimal design: tough combinatorial problem
 — Decentralized detection (parallel network):
 ➢ Surprising fusion rule: majority rule
 ➢ Tradeoffs under rate constraint:
 ✓ N versus b as a function of SNR: may prefer N/2 w/ b=2, rather than N and b=1 if more reliable sensors (1.5 dB)

• Fusion:
 — Sum product algorithm
 — Convergence: under appropriate initial conditions on covariances, means converge to correct means
 ☐ This generalizes to arbitrary sensor network configurations result of Rusmevichientong and Van Roy (Feb 01) for a fully connected graph and 2 factor nodes