Reconstruction of 3-D Dense Cardiac Motion from Tagged MRI Sequences

Hsun-Hsieh Chang and José M.F. Moura
Dept. of Electrical and Computer Engineering

Yijen Wu, Kazuya Sato, and Chien Ho
Pittsburgh NMR Center for Biomedical Research

Carnegie Mellon University, Pittsburgh, PA, USA

Work supported by NIH grants (R01EB/AI-00318 and P4EB001977)
Outline

• Introduction

• Methodology: Prior knowledge + MRI data
 – Myocardial Fiber Based Structure
 – Continuum Mechanics
 – Constrained Energy Minimization

• Results and Conclusions
2-D Cardiac MRI Images

- N slices
- M frames per slice

Y. Sun, Y.L. Wu, K. Sato, C. Ho, and J.M.F. Moura,
Proc. Annual Meeting ISMRM 2003
3-D Reconstruction: myocardial fiber model

Use a fiber based model to find the correspondence between transversal slices.
3-D Reconstruction: fiber deformation model

Use continuum mechanics to describe the motion of fibers.

Fit the model to MRI data by constrained energy minimization.
Outline

• Introduction

• **Methodology: Prior knowledge + MRI data**
 – Myocardial Fiber Based Structure
 – Continuum Mechanics
 – Constrained Energy Minimization

• Results and Conclusions
Prior Knowledge: myocardial anatomy

Multiple-layer view:

-60° Epicardium

+60° Endocardium

Mid-wall

Streeter, in *Handbook of Physiology Volume 1: the Cardiovascular System*, American Physiological Society, 1979
Prior Knowledge: fiber dynamics

Motion of a small segment

Displacement:
\[u(t) = a(t) - a(0) \]

\[a(t) + da(t) \]
\[da(t) \]
\[da(0) \]
\[a(0) \]
\[a(0) + da(0) \]

Notations are column vectors, ex:
\[a(t) = \begin{bmatrix} a_1(t) \\ a_2(t) \\ a_3(t) \end{bmatrix} \]

\[da(t) = \frac{\partial a(t)}{\partial a(0)} da(0) \]
Deformation Gradient Matrix

\[F(t) = \frac{\partial a(t)}{\partial a(0)} = \begin{bmatrix}
\frac{\partial a_1(t)}{\partial a_1(0)} & \frac{\partial a_1(t)}{\partial a_2(0)} & \frac{\partial a_1(t)}{\partial a_3(0)} \\
\frac{\partial a_2(t)}{\partial a_1(0)} & \frac{\partial a_2(t)}{\partial a_2(0)} & \frac{\partial a_2(t)}{\partial a_3(0)} \\
\frac{\partial a_3(t)}{\partial a_1(0)} & \frac{\partial a_3(t)}{\partial a_2(0)} & \frac{\partial a_3(t)}{\partial a_3(0)}
\end{bmatrix} \]

\[= I + dF(t) = I + \frac{\partial u(t)}{\partial a(0)} = I + \begin{bmatrix}
\frac{\partial u_1(t)}{\partial a_1(0)} & \frac{\partial u_1(t)}{\partial a_2(0)} & \frac{\partial u_1(t)}{\partial a_3(0)} \\
\frac{\partial u_2(t)}{\partial a_1(0)} & \frac{\partial u_2(t)}{\partial a_2(0)} & \frac{\partial u_2(t)}{\partial a_3(0)} \\
\frac{\partial u_3(t)}{\partial a_1(0)} & \frac{\partial u_3(t)}{\partial a_2(0)} & \frac{\partial u_3(t)}{\partial a_3(0)}
\end{bmatrix} \]

Deformation gradient \(F(t) \) **is a function of displacement** \(u(t) \).
Strain

- Strain is the displacement per unit length, and is written mathematically as

\[
S = \frac{1}{2} (F^T F - I)
\]

\[
S = \frac{1}{2} [(I + dF)^T (I + dF) - I] = \frac{1}{2} [dF^T + dF + dF^T dF]
\]

- When strain is small, it is approximated as

\[
S \approx \frac{1}{2} [dF^T + I + dF + I] - I = \frac{1}{2} (F^T + F) - I
\]

(\textbf{Note:} S is symmetric)
Linear Strain Energy Model

- S is symmetric, so we vectorize the entries at upper triangle.

$$S = \begin{bmatrix}
S_{11} & S_{12} & S_{13} \\
S_{12} & S_{22} & S_{23} \\
S_{13} & S_{23} & S_{33}
\end{bmatrix} \quad \Rightarrow \quad s = [S_{11}, S_{22}, S_{33}, S_{12}, S_{13}, S_{23}]^T$$

- Let C describe the material properties. It can be shown the linear strain energy is $e = s^T Cs = e(u)$

- The entire energy of the heart:

$$E(U) = \sum_{\forall \text{fibers}} \sum_{\forall \text{segments}} e(u) = \sum_{\forall \text{fibers}} \sum_{\forall \text{segments}} s^T Cs$$
Constrained Energy Minimization

\[E(U, \lambda) = \gamma_1 E_{\text{int}}(U) + \gamma_2 E_{\text{ext}}(U) + \lambda E_{\text{con}}(U) \]

- Internal energy: continuum mechanics governs the fibers to move as smooth as possible.

\[
E_{\text{int}}(U) = \sum \sum s^T Cs
\]

- External energy: pixel intensities of fibers should be kept similar across time.

\[
E_{\text{ext}}(U) = \| I(t) - I(t+1) \|^2
\]
2-D Displacement Constraints

\[
E(U, \lambda) = \gamma_1 E_{int}(U) + \gamma_2 E_{ext}(U) + \lambda E_{con}(U)
\]

D: 2-D displacements of the taglines

ΩU: picks the entries of \(U \) corresponding to \(D \)

2-D displacement constraints: \(\Omega U = D \)

\(\lambda \): Lagrange multiplier
Outline

• Introduction
• Methodology: Prior knowledge + MRI data
 – Myocardial Fiber Based Structure
 – Continuum Mechanics
 – Constrained Energy Minimization
• Results and Conclusions
Data Set

- Transplanted rats with heterotopic working hearts.
- MRI scans performed on a Bruker AVANCE DRX 4.7-T system

4 slices

256×256 pixels per image

10 frames per slice

Fiber Based Model

Whole left ventricle

endocardium

mid-wall

epicardium
3-D Reconstruction of the Epicardium
Conclusions

- Take into account the *myocardial fiber based structure*.
- Adopt the *continuum mechanics* framework.
- Implement *constrained energy minimization* algorithms.