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Abstract—The paper introduces DILOC, a distributed, itera-
tive algorithm to locate sensors (with unknown locations) in

�, with respect to a minimal number of �� anchors
with known locations. The sensors and anchors, nodes in the
network, exchange data with their neighbors only; no centralized
data processing or communication occurs, nor is there a central-
ized fusion center to compute the sensors’ locations. DILOC uses
the barycentric coordinates of a node with respect to its neigh-
bors; these coordinates are computed using the Cayley–Menger
determinants, i.e., the determinants of matrices of internode
distances. We show convergence of DILOC by associating with
it an absorbing Markov chain whose absorbing states are the
states of the anchors. We introduce a stochastic approximation
version extending DILOC to random environments, i.e., when the
communications among nodes is noisy, the communication links
among neighbors may fail at random times, and the internodes
distances are subject to errors. We show a.s. convergence of the
modified DILOC and characterize the error between the true
values of the sensors’ locations and their final estimates given by
DILOC. Numerical studies illustrate DILOC under a variety of
deterministic and random operating conditions.

Index Terms—Absorbing Markov chain, anchor, barycentric
coordinates, Cayley–Menger determinant, distributed iterative
sensor localization, sensor networks, stochastic approximation.

I. INTRODUCTION

L OCALIZATION is a fundamental problem in sensor net-
works. Information about the location of the sensors is

key to process the sensors’ measurements accurately. In ap-
plications where sensors are deployed randomly, they have no
knowledge of their exact locations, but equipping each of them
with a localization device like a GPS is expensive, not robust to
jamming in military applications, and is usually of limited use
in indoor environments. Our goal is to develop a distributed
(decentralized) localization algorithm where the sensors find
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their locations under a limited set of assumptions and condi-
tions. In this paper, we assume that there are anchors,
i.e., nodes in the network that know their coordinates in
space; for example, corresponds to nodes lying on a
plane, while for the nodes are in three dimensional
Euclidean space. The goal is then to locate the remaining
nodes in the network, which we call sensors and which do
not know their coordinates, with respect to the anchors.1 The
problem is practically interesting when . Two im-
portant characteristics in our work are i) we assume that the
sensors lie in the convex hull of the anchors; and, from this,
it follows that ii) each sensor can find nodes (i.e., a
possible combination of anchors and sensors) such that it lies
in the convex hull of these nodes. The paper will discuss
the practical significance of these assumptions.

With networks of interest in applications, the distance of most
of the sensors to the anchors is large, so that it is im-
practical for the sensors to communicate directly with the an-
chors. Further, because is assumed very large, to compute
the locations of the sensors at a central station is not feasible, as
it would require a large communication effort, expensive large-
scale computation, and add latency and bottlenecks to the net-
work operation. These networks call for efficient distributed al-
gorithms where each node communicates directly only with a
few neighboring nodes (either sensors or anchors) and a low
order computation is performed locally at the node and at each
iteration of the algorithm, for example, see [1]. We present here
the Distributed Iterative LOCalization algorithm (DILOC, pro-
nounced die-lock) that overcomes the above challenges in large-
scale randomly deployed networks.

In DILOC, the sensors start with an initial estimate of their
locations, for example, a random guess. This random guess is ar-
bitrary and does not need to place the sensors in the convex hull
of the anchors. The sensors then update their locations, which
we call the state of the network, by exchanging their state in-
formation only with a carefully chosen subset of of their
neighbors [see ii) above]. This state updating is a convex com-
bination of the states of the neighboring nodes. The coefficients
of the convex combination are the barycentric coordinates of the
sensors with respect to their neighbors [2], [3], which are deter-
mined from the Cayley–Menger determinants. These are the de-
terminants of matrices that collect the local internode distances,

1In the sequel, the term node refers to either anchors (known locations)
or sensors (locations to be determined). In a few exceptions, easily resolved
from the context, we will still write sensors, when we actually mean nodes.
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i.e., the distances among the sensors or among the sensors and
the anchors.

DILOC is distributed and iterative; each node updates locally
its own state and then sends its state information to its neighbors;
nowhere does DILOC need a fusion center or global communica-
tion. We prove almost sure (a.s.) convergence of DILOC in both
deterministic and random network environments by showing
that DILOC behaves as an absorbing Markov chain, where the
anchors are the absorbing states. We prove convergence under a
broad characterization of noise. In particular, we consider three
types of randomness, acting simultaneously. These model many
practical random sensing and communication distortions as,
for example, when: i) the internode distances are known up to
random errors, which is common in cluttered environments and
also in ad hoc environments, where cheap low resolution sensors
are deployed; ii) the communication links between the nodes
fail at random times; this is mainly motivated by wireless digital
communication, where packets may get dropped randomly at
each iteration, particularly, if the nodes are power limited or
there are bandwidth or communication rate constraints in the
network; and iii) the communication among two nodes, when
their communication link is active, is corrupted by noise.

Although a node can only communicate directly with its
neighbors (e.g., nodes within a small radius), we assume that,
when the links are deterministic and never fail, the network
graph is connected, i.e., there is a communication path (by
multihop) between any arbitrary pair of nodes. In a random en-
vironment, internode communication links may not stay active
all the time and are subject to random failures. Consequently,
there may be iterations when the network is not connected;
actually, there might never be iterations when the network is
connected. We will show under broad conditions almost sure
convergence of an extended version of DILOC that we term
the Distributed Localization in Random Environments (DLRE)
algorithm. DLRE employs stochastic approximation techniques
using a decreasing weight sequence in the iterations.

In the following, we contrast our work with the existing liter-
ature on sensor localization.

Brief Review of the Literature: The literature on localization
algorithms may be broadly characterized into centralized and
distributed algorithms. Illustrative centralized localization algo-
rithms include: maximum likelihood estimators that are formu-
lated when the data is known to be described by a statistical
model [4], [5]; multidimensional scaling (MDS) algorithms that
formulate the localization problem as a least squares problem at
a centralized location [6], [7]; work that exploits the geometry
of the Euclidean space, like when locating a single robot using
trilateration in -dimensional space (see [8]), where a geo-
metric interpretation is given to the traditional algebraic distance
constraint equations; localization algorithms with imprecise dis-
tance information (see [9]), where the authors exploit the geo-
metric relations among the distances in the optimization proce-
dure; for additional work, see, e.g., [10] and [11]. Centralized
algorithms are fine in small or tethered network environments;
but in large untethered networks, they incur high communica-
tion cost and may not be scalable; they depend on the availability
and robustness of a central processor and have a single point of
failure.

Distributed localization algorithms can be characterized into
two classes: multilateration and successive refinements. In mul-
tilateration algorithms [12]–[15], each sensor estimates its range
from the anchors and then calculates its location via multilater-
ation [16]. The multilateration scheme requires a high density
of anchors, which is a practical limitation in large sensor net-
works. Further, the location estimates obtained from multilater-
ation schemes are subject to large errors because the estimated
sensor-anchor distance in large networks, where the anchors are
far apart, is noisy. To overcome this problem, a high density of
anchors is required. We, on the other hand, do not estimate dis-
tances to far-away nodes. Only local distances to nearby nodes
are estimated; these should have better accuracy. This allows us
to employ the minimal number of anchors (for localiza-
tion in ).

A distributed multidimensional scaling algorithm is pre-
sented in [17]. Successive refinement algorithms that perform
an iterative minimization of a cost function are presented in
[18]–[20]. Reference [18] discusses an iterative scheme where
they assume 5% of the nodes as anchors. Reference [20]
discusses a Self-Positioning Algorithm (SPA) that provides a
GPS-free positioning and builds a relative coordinate system.

Another formulation to solve localization problems in a dis-
tributed fashion is the probabilistic approach. Nonparametric
belief propagation on graphical models is used in [21]. Sequen-
tial Monte Carlo methods for mobile localization are considered
in [22]. Particle filtering methods have been addressed in [23]
where each sensor stores representative particles for its loca-
tion that are weighted according to their likelihood. Reference
[24] tracks and locates mobile robots using such probabilistic
methods.

Completion of partially specified distance matrices is consid-
ered in [25] and [26]. The approach is relevant when the (entire)
partially specified distance matrix is available at a central loca-
tion. The algorithms complete the unspecified distances under
the geometrical constraints of the underlying network. The key
point to note in our work is that DILOC is distributed. In par-
ticular, it does not require a centralized location to perform the
computations.

In comparison with these references, DILOC is equivalent to
solving by a distributed and iterative algorithm a large system
of linear algebraic equations where the system matrix is highly
sparse. Our method exploits the structure of this matrix, which
results from the topology of the communication graph of the
network. We prove the a.s. convergence of the algorithm under
broad noise conditions and characterize the bias and mean
square error properties of the estimates of the sensor locations
obtained by DILOC.

We divide the rest of the paper into two parts. The first part of
the paper is concerned with the deterministic formulation of the
localization problem and consists of Sections II–IV. Section II
presents preliminaries and then DILOC, the distributed iterative
localization algorithm, that is based on barycentric coordi-
nates, generalized volumes, and Cayley–Menger determinants.
Section III proves DILOC’s convergence. Section IV presents
the DILOC-REL, DILOC with relaxation, and proves that it
asymptotically reduces to the deterministic case without relax-
ation. The second part of the paper consists of Sections V–VI
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and considers distributed localization in random noisy environ-
ments. Section V characterizes the random noisy environments
and the iterative algorithm for these conditions. Section VI
proves the convergence of the distributed localization algorithm
in the noisy case that relies on a result on the convergence of
Markov processes. Finally, we present detailed numerical sim-
ulations in Section VII and conclude the paper in Section VIII.
Appendices I–III provide a necessary test, the Cayley–Menger
determinant, and background material on absorbing Markov
chains.

II. DISTRIBUTED SENSOR LOCALIZATION: DILOC

In this section, we formally state DILOC in -dimension Eu-
clidean space, , and introduce the relevant notation.
Of course, for sensor localization, (sensors in a straight
line), (plane), or (3D-space). The generic case of

is of interest, for example, when the graph nodes repre-
sent -dimensional feature vectors in classification problems,
and the goal is still to find in a distributed fashion their global
coordinates (with respect to a reference frame). Since our re-
sults are general, we deal with -dimensional “localization,”
but, for easier accessibility, the reader may consider or

. To provide a quantitative assessment on some of the as-
sumptions underlying DILOC, we will, when needed, assume
that the deployment of the sensors in a given region follows a
Poisson distribution. This random deployment is often assumed
and is realistic; we use it to derive probabilistic bounds on the
deployment density of the sensors and on the communication
radius at each sensor; these can be straightforwardly related to
the values of network field parameters (like transmitting power
or signal-to-noise ratio) in order to implement DILOC. We dis-
cuss the computation/communication complexity of the algo-
rithm and provide a simplistic, yet insightful, example that il-
lustrates DILOC.

A. Notation

Recall that the sensors and anchors are in . Let be the
set of nodes in the network decomposed as

(1)

where is the set of anchors, i.e., the nodes whose locations
are known, and is the set of sensors whose locations are to be
determined. By we mean the cardinality of the set, and we
let , and . For a set of nodes,
we denote its convex hull by .2 For example, if is a set
of three noncollinear nodes in a plane, then is a triangle.
Let be the generalized volume (area in , volume in

, and their generalization in higher dimensions) of .
Let be the Euclidean distance between two nodes ,
their internode distance; the neighborhood of node in a given
radius, , is

(2)

2The convex hull, ����, of a set of points in � is the smallest convex set
containing �.

Note that may contain anchors as well as sensors. In
, the subset introduced in Lemma 1 and (6) below

will play an important role.
Let be the -dimensional coordinate vector for node,
, with respect to a global coordinate system, written as the
-dimensional row vector

(3)

The true (possibly unknown) location of node is represented
by . Because the distributed localization algorithm DILOC is
iterative, will represent the estimated location vector, or
state, for node at iteration .

B. Distributed Iterative Localization Algorithm

We state explicitly the assumptions that we make when de-
veloping DILOC.

B0) Convexity: All the sensors lie inside the convex hull of
the anchors

(4)

B1) Anchor Nodes: The anchors’ locations are known, i.e.,
their state remains constant

(5)

B2) Nondegeneracy: The generalized volume for
.3

From B0, the next Lemma follows easily.
Lemma 1 (Triangulation): For every sensor , there ex-

ists some such that a triangulation set, , satisfying
the following conditions:

(6)

exists.4

Proof: Clearly, by B0, satisfies (6) and by taking
the Lemma follows.

Lemma 1 provides an existence proof, but, in localization in
wireless sensor networks, it is important to triangulate a sensor
not with the network diameter but with a small . In fact,
Section II-D discusses the probability of finding one such
with . In addition, Appendix I
provides a procedure to test the convex hull inclusion of a
sensor, i.e., for any sensor, , to determine if it lies in the convex
hull of nodes arbitrarily chosen from the set, , of
its neighbors. Finding is an important step in DILOC and
we refer to it as triangulation.

3Nondegeneracy simply states that the anchors do not lie on a hyperplane. If
this was the case, then the localization problem reduces to a lower dimensional
problem, i.e., instead of . For instance, if all the anchors in the net-
work lie on a plane in , by B0, the sensors also lie on the same plane, and the
localization problem can be thought of as localization in .

4Recall that the set���� � � groups the neighboring nodes of � within a radius
� . By (6),� �� � is a subset of ��� nodes such that sensor � lies in its convex
hull but is not one of its elements.
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To state the next assumption, define a communication link be-
tween nodes and , if and can exchange information. If and

have a communication link, and can both estimate the in-
ternode distance, , between them. This distance can be found
by received signal strength (RSS), time of arrival (ToA), or angle
of arrival (AoA); see [27] for details. The estimate of this dis-
tance may be noisy. The discussion on the effects of noise and
modifying DILOC such that it is robust to noise is deferred until
Section V. We state the third assumption underlying DILOC.

B3) Internode Communication: There is a communication
link between all of the nodes in the set .

With the above assumptions and notations, we present
barycentric coordinates that serve as the updating coefficients
in DILOC.

Barycentric Coordinates: DILOC is expressed in terms of
the barycentric coordinates, , of the node, , with re-
spect to the nodes, . The barycentric coordinates, ,
are unique and are given by (see [2] and [3])

(7)

with , where “ ” denotes the set difference, and
is the generalized volume of the set ,

i.e., the set with node added and node removed. The
barycentric coordinates can be computed from the internode
distances using the Cayley–Menger determinants as shown
in Appendix II. From (7), and the facts that the generalized
volumes are nonnegative and

(8)

it follows that, for each ,

(9)

We now present DILOC in two steps: setup and DILOC
proper. We then provide its matrix form useful for analysis
purposes.

DILOC Setup: Triangulation: In the setup step, each sensor
triangulates itself, so that by the end of this step we have paired
every with its corresponding neighbors in .
Since triangulation should be with a small , the following is a
practical protocol for the setup step.

Sensor starts with a communication radius that guarantees
triangulation with high probability with the given density of de-
ployment . This choice is explained in detail in Section II-D.
Sensor then chooses arbitrarily nodes within and tests
if it lies in the convex hull of these nodes using the procedure
described in Appendix I. Sensor attempts this with all collec-
tions of nodes within . If all attempts fail, the sensor
adaptively increases, in small increments, its communication ra-
dius and repeats the process.5 By B0 and (4), success is even-
tually achieved, and each sensor is triangulated by finding
with properties (6) and B3.

5The step size of this increment is also dependent on the density of the de-
ployment, � , such that a reasonable number of sensors are added in the larger
neighborhood obtained by increasing � . This will be clear from the discussion
in Section II-D.

If a sensor has directionality, a much simpler algorithm,
based on Lemma 2 below (see also the discussion following
the Lemma), triangulates the sensor with high probability
of success in one shot. To assess the practical implications
required by DILOC’s setup phase, Section II-D considers
the realistic scenario where the sensors are deployed using a
random Poisson distribution and computes in terms of deploy-
ment parameters the probability of finding at least one such
in a given radius .

DILOC Iterations: State Updating: Once the setup phase is
complete, at time , each sensor iteratively updates its
state, i.e., its current location estimate, by a convex combination
of the states at time of the nodes in . The anchors do not
update their state, since they know their locations. The updating
is explicitly given by

(10)

where are the barycentric coordinates of with respect to
. DILOC in (10) is distributed since i) the update is

implemented at each sensor independently; ii) at sensor ,
the update of the state, , is obtained from the states of
its neighboring nodes in ; and iii) there is no central
location and only local information is available.

DILOC: Matrix Format: For compactness of notation
and analysis purposes, we write DILOC (10) in ma-
trix form. Without loss of generality, we index the an-
chors in as and the sensors in as

. We now stack the
(row vectors) states , given in (3) for all the nodes in the
network in the -dimensional coordinate matrix

(11)

DILOC equations in (10) now become in compact matrix form

(12)

The structure of the iteration matrix is more apparent
if we partition it as

(13)

The first rows correspond to the update equations for the
anchors in . Since the states of the anchors are constant, see
B1 and (5), the first rows of are zero except for a 1 at
their diagonal entry . In other
words, these first rows are the block matrix

, i.e., the identity matrix
concatenated with the zero matrix .

Each of the remaining rows in , indexed by
, have only nonzero elements

corresponding to the nodes in the triangulation set of , and
these nonzero elements are the barycentric coordinates of
sensor with respect to the nodes in . The
block is a zero matrix, except in those entries
corresponding to sensors that have a direct link to anchors

. The block is also a sparse matrix
where the nonzero entries in row correspond to the sensors in
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Fig. 1. Deployment corresponding to the example in Section II-C.

. The matrices , and have important properties that
will be used to prove the convergence of the distributed iterative
algorithm DILOC in Sections III and IV.

Remark: Equation (12) writes DILOC in matrix format for
compactness; it should not be confused with a centralized algo-
rithm—it still is a distributed iterative algorithm. It is iterative,
because each iteration through (12) simply updates the (matrix
of) state(s) from to . It is distributed because each
row equation updates the state of sensor from a linear combi-
nation of the states of the nodes in . In all, the iteration
matrix, , is highly sparse having exactly
nonzeros out of possible elements. Also, note that
(12) is reminiscent of the consensus algorithm but the structure
of the DILOC matrix in (13) and the goal of DILOC are very
different from the corresponding objects in consensus. For a de-
tailed study on the similarities among consensus, DILOC, and
similar algorithms, see our recent work in [28] and [29] and the
references therein.

C. Example

To illustrate DILOC, we consider an -dimensional
Euclidean plane with anchors and sen-
sors; see Fig. 1. The nodes are indexed such that the anchor
set is , and the sensor set is

. The set of all the nodes in the
network is, thus, .
The triangulation sets identified by using the convex
hull inclusion test are

. These triangulation sets satisfy the
properties in (6). Sensor 5 does not have any anchor node in its
triangulation set , while the other sensors have only one an-
chor in their respective triangulation sets. Since no sensor com-
municates with the anchors directly, no sensor can
localize itself in a single step.

At each sensor, , the barycentric coordinates
are computed using the internode distances (among the nodes
in the set ) in the Cayley–Menger determinant. It is
noteworthy that the internode distances that need to be known
at each sensor to compute are only the internode distances
among the nodes in the set . For instance, the
distances in the Cayley–Menger determinant needed by sensor
5 to compute are the internode distances among
the nodes in the set , i.e., .
These internode distances are known at sensor 5 due to B3.

Once the barycentric coordinates are computed, DILOC
for the sensors in is

(14)

We write DILOC for this example in the matrix format (12):

(15)

where the initial conditions are
, with , being ran-

domly chosen row vectors of appropriate dimensions.
Note here again that (15) is just a matrix representation of

(14). DILOC is implemented in a distributed fashion as in (14).
The matrix representation in (15) is included for compaction
of notation and for the convergence analysis of the algorithm.
The sparseness in the matrix in (15) illustrates the locality of
the communication among the nodes.

D. Random Poisson Deployment

For sensors to determine their locations, they need to triangu-
late. We first consider a sufficient condition for a sensor to tri-
angulate. We illustrate it on the plane ; the discussion can
be extended to arbitrary dimensions. Consider Fig. 2(a), which
shows the triangulation region, a circle of radius centered at
sensor . Let be four disjoint sectors partitioning
this circle with equal areas, i.e., .

Lemma 2: A sufficient condition to triangulate sensor
is to have at least one node in each of the four disjoint equal area
sectors , which partition the circle of radius
centered at .

Proof: In Fig. 2(b), consider the triangulation of
sensor located at the center of the circle; we choose ar-
bitrarily four nodes in each of the four sectors

. Denote the polygon with vertices
by . Consider the diagonal6 that partitions

6If ����� � � � � is concave, we choose the diagonal that lies inside
����� � � � �, i.e., � � � in Fig. 2(b). If ����� � � � � is convex, we
can choose any of the two diagonals and the proof follows.
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Fig. 2. (a) Sensor � identifies its triangulation set � in the circle of radius �

centered at sensor �. The circle is divided into four disjoint sectors with equal
areas � � � � � � � . A sufficient condition for triangulation is that there exists at
least one node in each of these four sectors. (b) Illustration of Lemma 2.

this polygon into two triangles and . Since
and

with , then either
or or belongs to both (when it

falls on the ). The triangle in which lies
becomes the triangulating set of .

This completes the proof. The generalization to higher dimen-
sions is straightforward; for instance, in , we have eight sec-
tors, and an arbitrary sensor is triangulated with at least one
node in each of these eight sectors (with equal volume) of a
sphere of radius centered around .

In the following subsections, we study various probabilities
associated with the triangulation, assuming a Poisson sensor de-
ployment. For simplicity, we restrict the discussion to ;
it can be extended to arbitrary dimensions.

1) Probability That a Sensor Can Triangulate: Here, we pro-
vide a local result concerned with the triangulation of an arbi-
trary sensor. We characterize the probability that a sensor can
triangulate successfully in a region of radius centered at . A
common deployment model in wireless sensor networks is the
Poisson deployment [30], [31]. For a Poisson distribution with
rate parameter or deployment density , the mean number
of nodes in a sector with area is . The numbers of
nodes in any two disjoint sectors and are independent

random variables, and the locations of the nodes in a sector
are uniformly distributed. Let be the set of nodes in the sector

. It follows from the Poisson deployment that the probability
of finding at least one node in each of the four sets
is the product

(16)

since the distribution of the number of nodes in disjoint sectors
is independent. Thus, we have

sensor can triangulate

exists satisfying (6) given

(17)

The probability that a sensor fails to triangulate is

sensor cannot triangulate

(18)

Equations (17) and (18) provide a tradeoff between and ,
Indeed, to guarantee triangulation of sensor with probability ,
arbitrarily close to 1, either

or

(19)

2) Probability That All Sensors Triangulate: Here, we
provide a global result, i.e., we (lower) bound the probability
that all sensors in the network triangulate. We have

sensor triangulates

sensor cannot triangulate

sensor cannot triangulate

(20)

where we use the union bound to go from the first equation to
the second. To get the third equation, we use (18) and assume
a flat network, i.e., a network where all the sensors have the
same characteristics (in particular, is the same for all sensors).
Clearly, the bound in (20) is only meaningful if is very
small.

3) Probability That the Resulting Sensor Network Triangu-
lates Given Triangulation Failures: Given that some sensors
may fail to triangulate, we ask the question of what is the proba-
bility that the remaining sensors can all triangulate. An exact ex-
pression is beyond the scope of this paper. Here, we give a plau-
sible argument when the number of sensors is large so that the
law of large numbers is valid. Since the probability of failure of
each sensor to triangulate is in (18), sensors fail to
triangulate. Hence, to compute the probability that the reduced
network (the network of sensors that can triangulate once we
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exclude the sensors that could not) triangulates, we simply re-
peat the steps in Sections II-D-1 and II-D-2, but, now with
sensors and deployment density , given by

(21)

(22)

From (20), the probability that the reduced network triangulates
is

(23)

(24)

Equation (24) shows that, althoughnotall sensorscan triangulate,
the probability of triangulating the reduced network can be made
arbitrarily high by choosing either , or , or both appropriately,
such that (or alternatively ).

E. Complexity of DILOC

Once the barycentric coordinates are computed, each sensor
performs the update in (10) that requires multiplications
and additions. Assuming the computation complexity of the
multiplication and the addition operations to be the same, the
computation complexity of DILOC is operations, i.e.,

per sensor, per iteration. Since each sensor exchanges
information with nodes in its triangulation set, the
communication complexity of DILOC is communi-
cations, i.e., per sensor, per iteration. Hence, both the
computation and communication complexity are for a
network of sensors. Note that, since the triangulation setup
phase,7 which identifies and computes the barycentric
coordinates, as explained in Section II-B, are to be carried
out only once at the start of DILOC, they require a constant
computation/communication complexity, so we do not account
for it explicitly.

III. CONVERGENCE OF DILOC: DETERMINISTIC SCENARIO

In this section, we prove the convergence of DILOC to the
exact locations of the sensors, , when there is no
randomness, i.e., the communication is noiseless, required dis-
tances are known precisely, and the communication links are
active all the time (no packet losses). Distributed localization in
random environments is the subject of Sections V and VI. To
formally state the convergence result, we provide, briefly, back-
ground and additional results, based on assumptions B0–B3.

The entries of the rows of the iteration matrix , in (12), are
either zero or the barycentric coordinates , which are nonneg-
ative, and, by (9), add to 1. This matrix can then be interpreted as
the transition matrix of a Markov chain. We then describe the lo-
calization problem and DILOC in terms of a Markov chain. Let

7It follows from Lemma 2 that if the sensors have directional capa-
bility then each sensor has to find one neighbor in each of its four sectors
� �� �� �� (in � � �-dimensional space). Once a neighbor is
found, triangulation requires choosing three out of these four, in order to
identify � . The computational complexity in � � �-dimensional Euclidean
space is � �����	 
 � �. Without directionality, the process of finding � has
the (expected) computation complexity of � �� �����	 
.

the assumptions B0–B3 in Section II-B hold, and the nodes
in the sensor network correspond to the states of a Markov chain
where the th element of the iteration matrix de-
fines the probability that the th state goes to the th state. Be-
cause of the structure of , this chain is a very special Markov
chain.

Absorbing Markov Chain: Let an matrix, ,
denote the transition probability matrix of a Markov chain with

states . A state is called absorbing if the prob-
ability of leaving that state is 0 (i.e., , in other
words ). A Markov chain is said to be absorbing if it has
at least one absorbing state, and if from every state it is possible
to go with nonzero probability to an absorbing state (not neces-
sarily in one step). In an absorbing Markov chain, a state that
is not absorbing is called transient. For additional background,
see, for example, [32].

Lemma 3: The underlying Markov chain with the transition
probability matrix given by the iteration matrix is absorbing.

Proof: We prove by contradiction. Since ,
the anchors are the absorbing states of the Markov chain. We
now show that the Markov chain is absorbing with the sensors
as the transient states.

Assume that the underlying Markov chain is not absorbing.
This can happen only if the transient states can be partitioned
into two disjoint clusters C1 and C2 (with C2 nonempty), such
that each nonabsorbing state (sensor) in C1 can reach, with
nonzero probability, at least one of the absorbing states (i.e.,
there is a directed path from each nonabsorbing state to at least
one of the anchors) and, with probability 1, the states in C2
cannot reach an absorbing state (i.e., there is no directed path
from the transient state to any anchor). It follows with proba-
bility 1 that the states in C2 cannot reach the states in C1 (in one
or multiple steps); otherwise, they reach an absorbing state with
a nonzero probability.

Now consider the nonabsorbing states (or sensors) that lie
on the boundary of the convex hull (C2), i.e., the vertices of

(C2). Because they are on the boundary, they cannot lie in the
interior of the convex hull of any subset of sensors in (C2), and,
thus, cannot triangulate themselves, which contradicts Lemma
1. In order to triangulate the boundary sensors in (C2), the
boundary sensors in C2 must be able to reach the nonabsorbing
states (sensors) of C1 and/or the absorbing states (anchors); that
is to say that the boundary sensors in (C2) have directed paths
to the absorbing states (anchors). This clearly contradicts the as-
sumption that the set C2 is nonempty and, hence, every nonab-
sorbing state has a directed path to the absorbing states. Hence,
the Markov chain is absorbing and the sensors correspond to the
transient states of the absorbing Markov chain.

Consider the partitioning of the iteration matrix, , in (13).
With the Markov chain interpretation, the block

is a transition probability matrix for the transient
states to reach the absorbing states in one step, and the

block is a transition probability matrix for the
transient states. With (13), can be written as

(25)
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and, as goes to infinity, we have

(26)

by Lemmas 5 and 6, in Appendix III. Lemmas 5 and 6 use the
fact that if is the matrix associated to the transient states of
an absorbing Markov chain, then , where is the
spectral radius of a matrix. With (26), DILOC (10) converges to

(27)

From (27), we note that the coordinates of the sensors in
(last rows of ) converge as to functions of the

anchors in (whose coordinates are exactly known). The
limiting values of the states of the sensors in are written
in terms of the coordinates of the anchors in weighted
by . To show that the limiting values are indeed
the exact solution, we give the following lemma.

Lemma 4: Let be the exact coordinates of a node .
Let the matrix be the
matrix of the barycentric coordinates of the sensors (in ) in
terms of the anchors in , relating the coordinates of the
sensors to the coordinates of the anchors by

(28)

Then, we have

(29)

Proof: Clearly is invertible, since, by (100) in
Appendix III, ; this follows from the fact that the
eigenvalues of the matrix are , where is the
th eigenvalue of the matrix and .

It suffices to show that

(30)

since (29) follows from (30). In (30), and are both
matrices, whereas is an matrix whose nonzero

elements are the barycentric coordinates for the sensors in .
Hence, for the th element in (30), we need to show that

(31)

For an arbitrary sensor, , its triangulation set, , may con-
tain nodes from both and . We denote as the elements of

that are anchors, and as the elements of that are sen-
sors, i.e., nonanchors. The exact coordinates of the sensor
can be expressed as a convex combination of the coordinates of

its neighbors in its triangulation set , using the barycen-
tric coordinates , i.e.,

(32)

since the scalars are given by

if
if
if

(33)

Equation (32) becomes, after writing each in terms of the
anchors in ,

(34)

This is a representation of the coordinates of sensor, , in terms
of the coordinates of the anchors, . Since for each ,
the value inside the parentheses is nonnegative with their sum
over being 1, and the fact that the barycentric representa-
tion is unique, we must have

(35)

which, comparing to (28), completes the proof.
We now recapitulate these results in the following theorem.
Theorem 1 (DILOC Convergence): DILOC (10) converges to

the exact sensor coordinates, , i.e.,

(36)

Proof: The proof is a consequence of Lemmas 3 and 4.
Convergence Rate: The convergence rate of the localization

algorithm depends on the spectral radius of the matrix , which
by (100) in Appendix III is strictly less than one. In fact, using
standard matrix arguments, one can show that DILOC is charac-
terized by geometric convergence rate with exponent . This
is a consequence of the fact that is a uniformly substochastic
matrix. The convergence is slow if the spectral radius is
close to 1. This can happen if the matrix is close to a zero
matrix . This is the case if the sensors cluster in a region of
very small area inside the convex hull of the anchors, and the
anchors themselves are very far apart. In fact, it can be seen
that in this case the barycentric coordinates for the sensors with

(see Lemma 4 for this notation) corresponding to the
elements in are close to zero. When, as in practical wireless
sensor applications, the nodes are assumed to be deployed in a
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geometric or a Poisson fashion (see details in Section II-D), the
above event is highly improbable.

IV. DILOC WITH RELAXATION

In this Section, we modify DILOC to obtain a form that is
more suitable to study distributed localization in random envi-
ronments. We observe that in DILOC (10), at time , the
expression for does not involve its own co-
ordinates at time . We introduce a relaxation parameter

in the iterations, such that the expression of
is a convex combination of and (10). We refer to this ver-
sion as DILOC with relaxation (DILOC-REL). It is given by

(37)

DILOC is the special case of DILOC-REL with . Clearly,
DILOC-REL is also distributed as the sensor updates now have
additional terms corresponding to their own states. The matrix
representation of DILOC-REL is

(38)

where and is the identity
matrix. It is straightforward to show that the iteration matrix
corresponds to a transition probability matrix of an absorbing
Markov chain, where the anchors are the absorbing states and
the sensors are the transient states. Let ,
partitioning as

(39)

We note the following:

(40)

(41)

from Lemmas 5 and 6. Lemmas 5 and 6 apply to , since is
nonnegative and . To show , we recall that

and the eigenvalues of are , where
are the eigenvalues of . Therefore, we have

(42)

The following theorem establishes convergence of DILOC-
REL.

Theorem 2: DILOC-REL (37) converges to the exact sensor
coordinates, , i.e.,

(43)

Proof: It suffices to show that

(44)

To this end, we note that

(45)

which reduces to (44) and the convergence of DILOC-REL fol-
lows from Lemma 4.

As mentioned, DILOC-REL is the basis for the distributed
localization algorithm in random environments (DLRE) that we
discuss in Sections V and VI.

V. DISTRIBUTED LOCALIZATION IN RANDOM ENVIRONMENTS:
ASSUMPTIONS AND ALGORITHM

This and the next section study distributed iterative localiza-
tion in more realistic practical scenarios, when the internode dis-
tances are known up to errors, the communication links between
nodes may fail, and, when alive, the communication among
nodes is corrupted by noise. We write the update equations for
DILOC-REL, (38), in terms of the columns of
the coordinate matrix . Column corresponds to the vector
of the th estimated coordinates of all the nodes.8 The up-
dates are

(46)

We partition as

(47)

where, corresponds to the th coordinates of
the anchors, which are known (hence, we omit the time index),
and corresponds to the estimates of the th co-
ordinates of the sensors, hence not known. Since the update is
performed only on the , (46) is equivalent to the following
recursion:

(48)

Thus, to implement the sequence of iterations in (48) perfectly,
the th sensor at iteration needs the corresponding rows of
the matrices and , and, in addition, the current estimates

(the th component of the th sensor coordi-
nates) of its neighbors’ positions. In practice, there are several
limitations: i) The computation of the matrices and re-
quires internode distance computations, which are not perfect
in a random environment; ii) the communication channels, or
links, between neighboring channels may fail at random times;
and iii) because of imperfect communication, each sensor re-
ceives only noisy versions of its neighbors’ current state. Hence,
in a random environment, we need to modify the iteration se-
quence in (48) to account for the partial imperfect information
received by a sensor at each iteration. We start by stating for-
mally our modeling assumptions.

C1) Randomness in System Matrices: At each iteration, each
sensor needs the corresponding row of the system matrices

8In the sequel, we omit the subscripts from the identity matrix, �, and its
dimensions will be clear from the context.
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and , which, in turn, depend on the internode distance mea-
surements and can be, possibly, random. Since a single mea-
surement of the internode distances may lead to a large random
noise, we assume the sensors estimate the required distances at
each iteration of the algorithm (note that this leads to an implicit
averaging of the unbiased noisy effects, as will be demonstrated
later). In other words, at each iteration, the th sensor can only
get estimates and of the corresponding rows of the

and matrices, respectively. In the generic imperfect com-
munication case, we have

(49)

where is an independent sequence of random ma-
trices with

(50)

Here, is the mean measurement error. Similarly, for , we
have

(51)

where is an independent sequence of random ma-
trices with

(52)

Likewise, is the mean measurement error. Note that this way
of writing does not require the noise model to be
additive. It only says that any random object may be written as
the sum of a deterministic mean part and the corresponding zero
mean random part. The moment assumptions in (50) and (52)
are very weak and, in particular, are satisfied if the sequences

and are i.i.d. with finite variance.
C2) Random Link Failure: We assume that the internode

communication links fail randomly. This happens, for example,
in wireless sensor network applications, where occasionally
data packets are dropped. To this end, if the sensors and
share a communication link (or, ), we assume that the
link fails with some probability at each iteration, where

. We associate with each such potential network
link a binary random variable , where indicates
that the corresponding network link is active at time , whereas

indicates a link failure. Note that .
C3) Additive Channel Noise: Let be a family

of independent zero mean random variables such that

(53)

We assume that, at the th iteration, if the network link is
active, sensor receives only a corrupt version of sensor

’s state , given by

(54)

This models the channel noise. The moment assumption in (53)
is very weak and holds, in particular, if the channel noise is i.i.d.
with finite variance.

C4) Independence: We assume that the sequences
, and are mu-

tually independent. These assumptions do not put restrictions
on the distributional form of the random errors, only that they
obey some weak moment conditions.

Under the random environment model [Assumptions
C1–C4], the algorithm in (48) is not appropriate to update the
sensors states. We consider the following state update recursion
for the random environment case.

Distributed Localization in Random Environment Algorithm
(DLRE):

(55)

In contrast with DILOC-REL, in (55) the gain is now time
varying. It will become clear why when we study the conver-
gence of this algorithm. To write DLRE in a compact form,
we introduce notation. Define the random matrices,

and , as the matrices with
entries given by

(56)

Clearly, by C2 and C4, the matrices and
are zero mean. Note that . Also,

by the bounded moment assumptions in C1, we have

(57)

Hence, the iterations in (55) can be written in vector form as

(58)

where the th element of the vector is given by

(59)

By C1–C4, the sequence is zero mean, independent,
with

(60)
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From C1, the iteration sequence in (58) can be written as

(61)

We now make two additional design assumptions.
D1) Persistence Condition: The weight sequence satisfies

(62)

By this condition, common in adaptive control and signal pro-
cessing, the weights decay to zero, but not too fast.

D2) Low Error Bias: We assume that

(63)

Clearly, . Thus, if the nonzero bias in the system
matrix (resulting from incorrect distant computation) is small,
(63) is justified. This condition ensures that the matrix

is invertible. In the next sections, we prove that, under
C1–C4, D1–D2, DLRE’s state vector sequence , a.s.
converges to a deterministic vector for each , possibly different
from the exact sensor locations, due to the random errors in the
iterations. We characterize this error and show that it depends
on the nonzero biases and in the system matrix compu-
tations and vanishes as and .

VI. DLRE: A.S. CONVERGENCE

We show the almost sure convergence of DLRE under the
random environment presented in Section V.

Theorem 3 (DLRE a.s. Convergence): Let
, be the state sequence generated by the iterations, given

by (61), under the assumptions C1–C4, D1–D2. Then

(64)

DLRE’s convergence analysis is based on the sample path
properties of controlled Markov processes, which has also been
used recently to prove convergence properties of distributed it-
erative stochastic algorithms in sensor networks, e.g., [33] and
[34]. The proof relies on the following result [35] stated as a
theorem.

Theorem 4: Consider the following recursive procedure:
(65)

where are vectors in . There is an underlying
common probability space ; let be the canonical el-
ement of the probability space . Assume that the following
conditions are satisfied.9

1) The vector function is Borel measurable and
is measurable for every .

9In the sequel, � denotes the Borel sigma algebra in . The space
of twice continuously differentiable functions is denoted by � , while � ���
denotes the gradient ��� ���������.

2) There exists a filtration of , such that the family
of random vectors is measurable, zero-mean
and independent of .

3) There exists a function with bounded second
order partial derivatives satisfying:

(66)

(67)

4) There exist constants , such that

(68)

5) The weight sequence satisfies the persistence
condition D1 given by (62).

Then the Markov process converges a.s. to .
Proof: The proof follows from [35, Theorem 4.4.4] and is

omitted due to space constraints.
We now return to the proof of Theorem 3.

Proof (Proof of Theorem 3): We will show that, under the
assumptions, the algorithm in (61) falls under the purview of
Theorem 4. To this end, consider the filtration , where

(69)

Define the vector as

(70)

Equation (61) can be written as

(71)

In the notation of Theorem 4, (71) is given by

(72)

where

(73)

and

(74)

This definition satisfies assumptions 1) and 2) of Theorem 4. We
now show the existence of a stochastic potential function
satisfying the remaining assumptions of Theorem 4. Define

(75)
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Clearly, with bounded second-order partial deriva-
tives, with

(76)

Also, we note that, for ,

(77)

where the last step follows from D2. Thus, assumption 3 in The-
orem 4 is satisfied.

To verify 4, note that

(78)

where is a constant.
Finally, by assumptions C1–C4, we have

(79)

The cross terms dropped in the second step of (79) have zero
mean by the independence assumption C4. For example, con-
sider the term . It follows from (51) and
(56) that the th entry of the matrix is given
by

(80)

From the independence and zero-mean assumptions, we have
the following, :

where we have repeatedly used the fact that

(81)

From (80)–(81) it is then clear that

(82)

In a similar way, it can be shown that the other dropped crossed
terms in (79) are zero mean.

We note that there exist constants, , such
that

(83)
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Hence, from (79) and (83), we have

(84)

where and . Combining (78) and
(84), we note that assumption 4 in Theorem 4 is satisfied as

(85)

Hence, all the conditions of Theorem 4 are satisfied, and we
conclude that

(86)

Since (86) holds for all , and takes only a finite number of
values , we have

(87)

We now interpret Theorem 3. Referring to the partitioning of
the matrix in (47), we have

(88)

where each row of corresponds to an estimated sensor lo-
cation at time . Theorem 3 then states that, starting with any
initial guess, , of the unknown sensor locations,
the state sequence generated by the DLRE algorithm
converges a.s., i.e.,

(89)

However, it follows from Lemma 4, that the exact locations of
the unknown sensors are given by

(90)

Thus, the steady-state estimate given by the DLRE algorithm is
not exact, and, to characterize its performance, we introduce the
following notion of localization error as

(91)

We note that is only a function of , the nonzero
biases in the system matrix computations, resulting from noisy
internode distance measurements (see Section V). We note
that the DLRE algorithm is robust to random link failures and
additive channel noise in internode communication. In fact, it is
also robust to the zero-mean random errors in the system matrix
computations, and only affected by the fixed nonzero biases.

Fig. 3. Deterministic environment: (a) Estimated coordinates of sensor 6 in
Section II-C as a function of DILOC iterations. (b) Trajectories of the sensors’
estimates obtained by DILOC.

Note that for . Clearly, if we assume suf-
ficient accuracy in the internode distance computation process,
so that the biases are small, the steady-state error
will also be negligible, even in a random sensing environment.
These are illustrated by numerical studies provided in the next
section.

VII. NUMERICAL STUDIES

We carry out two studies of the localization algorithm in
-dimensional Euclidean space. First, we study DILOC (the

deterministic case), and second, we present DLRE in random
environments.

DILOC: We consider the example presented in Section II-C,
which has anchors and sensors with no
noise in the system. DILOC, as given in (14), is implemented,
where Fig. 3(a) shows the estimated coordinates of sensor 6, and
Fig. 3(b) shows the trajectories of the estimated coordinates for
all the sensors with random initial conditions. Both figures show
fast convergence to the exact sensor locations, which should be
the case because of the geometric convergence rate.

We further consider a network of nodes shown in
Fig. 4(a) after triangulation. The communication radius is in-
creased until each sensor triangulates. DILOC is implemented
with zero initial conditions and Fig. 4(b) shows the estimated co-
ordinates of two arbitrary sensors; this illustrates that geometric
convergence of DILOC estimates to the exact sensor locations.
Fig. 4(c) shows a typical histogram of the internode distances
(normalized by the mean of all anchor-anchor distances) over
which the DILOC communications are implemented. It can be
verified that the ninety-fifth percentile of the internode distances
are within 10% of the mean anchor-anchor distance.

DLRE: We now consider the DLRE. To simulate the random
scenario, we assume that the communication links are active
90% of the time, i.e., the probability,

, as discussed in C2, and there is an additive commu-
nication noise that is Gaussian i.i.d. with zero-mean and vari-
ance 1 for each link. We further assume that the perturbation
matrices, are zero-mean Gaussian i.i.d. with vari-
ance 0.1 and ; see (49) and (51). Recall that the
elements of and lie in the unit interval so the variance
chosen for the simulation is a small signal perturbation of these
elements.
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Fig. 4. Deterministic environment: (a) An� � ��� node network and the re-
spective triangulation sets. (b) Estimated coordinates of two arbitrarily chosen
sensors as a function of DILOC iterations. (c) Histogram of normalized in-
ternode distances over which the DILOC communications are implemented.

DLREis implemented for theabovesetupwithzero initial con-
ditions on a network of nodes shown in Fig. 5(a). We

Fig. 5. Random environments (noisy distances, communication noise, link fail-
ures): (a)� � �� node network and the respective triangulation sets. (b) DLRE
estimates for two arbitrarily chosen sensors. (c) Log of the normalized MSE .

use a decreasing weight sequence , and the esti-
mated coordinates for two arbitrarily chosen sensors are shown in
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Fig. 5(b). The estimates converge to the exact sensor locations.
To study the error decay, we consider the following quantity:

(92)

and plot in Fig. 5(c). We use the log-
scale in Fig. 5(c) so the error plot is visible. Otherwise, due to the
fast convergence speed, the plot looks almost like a vertical line.
The fast convergence rate of the DLRE estimates can be verified
since the estimates become very close to the exact locations in
a very few iterations.

VIII. CONCLUSION

The paper presents an algorithm for distributed iterative sensor
localization in -dimensional Euclidean space that
finds the location coordinates of the sensors in a sensor network
with only local communication. The algorithm uses the minimal
number of anchors (network nodes with known location)
to localize an arbitrary number of sensors that lie in the
convex hull of these anchors. In the deterministic case, i.e.,
when there is no noise in the system, we show that our distributed
algorithms, DILOC and DILOC-REL, lead to convergence to
the exact sensor locations. For the random environment sce-
nario, where internode communication links may fail randomly,
transmitted data is distorted by noise, and internode distance
information is imprecise, we show that our modified algorithm
DLRE leads to almost sure convergence of the iterative location
estimates. In this case, we explicitly characterize the resulting
error between the exact sensor locations and the converged
estimates. Numerical simulations illustrate the behavior of the
algorithms under different field conditions.

As long as the weight sequence satisfies the persistence
conditions D1, the DLRE converges a.s. However, the second-
order characteristics of convergence like rate, smoothness of the
trajectory, etc., depend on the particular choice of , which is
studied in the context of distributed stochastic consensus aver-
aging in [33]. In the future, we would like to pursue this analysis
in the context of DLRE. Natural extensions to the results in this
paper, i.e., with more than anchors, dynamic network
topology and more than neighbors in the triangulation
set are studied in [36].

APPENDIX I
CONVEX HULL INCLUSION TEST

We now give an algorithm that tests if a given sensor, ,
lies in the convex hull of nodes in a set, , using only the
mutual distance information among these nodes .
Let denote the set of nodes, and let denote the
convex hull formed by the nodes in . Clearly, if , then
the convex hull formed by the nodes in is the same as the
convex hull formed by the nodes in , i.e.,

if (93)

With the above equation, we can see that, if , then the
generalized volumes of the two convex sets and
should be equal. Let denote the generalized volume of ,

Fig. 6. Convex Hull Inclusion Test (� � �): The sensor � is shown by a “�”,
whereas the anchors in � are shown by “�”. (a) � � ���� � � � �
and (b) � �� ���� � � � � .

and let denote the generalized volume of , we
have

if (94)

Hence, the test becomes

if (95)

if (96)

This is also shown in Fig. 6. The above inclusion test is based
entirely on the generalized volumes, which can be calculated
using only the distance information in the Cayley–Menger
determinants.

APPENDIX II
CAYLEY–MENGER DETERMINANT

The Cayley–Menger determinant [37] is the determinant of
an (symmetric) matrix that relates to the gener-
alized volume of the convex hull of the points
in through an integer sequence . Let denote a
column vector of 1 s, the Cayley–Menger determinant is
given by

(97)

where is the matrix of squared distances
among the points in and

(98)

APPENDIX III
IMPORTANT RESULTS

Lemma 5: If the matrix corresponds to the transition prob-
ability matrix associated to the transient states of an absorbing
Markov chain, then

(99)
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Proof: For such a matrix , we have

(100)

from Lemma 8.3.20 and Theorem 8.3.21 in [38], where
denotes the spectral radius of a matrix and (99) follows from
(100).

Lemma 6: If the matrix corresponds to the transition prob-
ability matrix associated to the transient states of an absorbing
Markov chain, then

(101)

Proof: The proof follows from Lemma 5 and Lemma 6.2.1
in [38].
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