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Robust Detection with the Gap Metric
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Abstract—In a multipath communication channel, the optimal
receiver is matched to the maximum likelihood (ML) estimate of
the muitipath signal. In general, this leads to a computationally
intensive multidimensional nonlinear optimization problem that
is not feasible in most applications. In this paper, we develop a
detection algorithm that avoids finding the ML estimates of the
channel parameters while still achieving good performance. Our
approach is based on a geometric interpretation of the multipath
detection problem. The ML estimate of the multipath signal is
the orthogonal projection of the received signal on a suitable
signal subspace S. We design a second subspace G, which is the
representation subspace, that is close to S but whose orthogonal
projection is easily computed. The closeness is measured by the
gap metric. The subspace G is designed by using wavelet analysis
tools coupled with a reshaping algorithm in the Zak transform
domain. We show examples where our approach significantly
outperforms the conventional correlator receiver (CR) and other
alternative suboptimal detectors.

I. INTRODUCTION

HE DETECTION of multipath signals is a problem of

major concern in many applications, such as wireless
communications, sonar, and radar. By multipath, we mean that
the signal to be detected consists of multiple returns of the
same transmitted signal. In a multipath channel, the received
signal r(t) is described mathematically as

r(t) = sm(t) +n(t) 0<t<T (1
K
= > os(Bit — 7) + n(t) )
k=1
where
s(t) transmitted signal,
$m(t) multipath noise-free signal,
K number of paths,
o, attenuation factor for path £,
Th time delay for path £,

Bk Doppler shift factor for path %,

n(t)  additive noise.
In most practical situations of interest, the channel parameters
{ar}, {8k}, {7x}, and K are unknown. For example, in wire-
less communications, surrounding obstacles create multiple
unknown delayed replicas of the transmitted signal, and if the
objects are also moving, which is the case in mobile wireless
communications, unknown Doppler shifts occur, which further
complicates the problem. In sonar and radar applications, time
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delays and Doppler shifts are due to a target’s range and
velocity, respectively. In sonar, the multipath signals result
from surface and bottom reflections as well as refractive
phenomena due to the nonhomogenous ocean media. In this
paper, we will consider only the case where the Doppler shifts
are assumed to be known; for simplicity, we take G, = 1,k =
1,--+, K. In the future, we will extend the approach to the case
where the Doppler is not known. Thus, in the following, we
omit the Doppler shifts and focus on the K unknown delays
T1,7T2,TK - .

When the transmitted signal s(¢) is deterministic known, the
traditional detector is the correlator receiver (CR). It correlates
the received signal r(t) with the transmitted signal s(¢) and
uses the peaks in the correlator output to estimate and detect
the multipath signal. The advantage of this method is that it
is simple and easy to implement. If different returns of the
transmitted signal are separated in time by more than the
effective duration of the signal autocorrelation function, the
CR is practically optimal. Unfortunately, this condition is not
satisfied in many practical situations. When the condition is
not satisfied, the CR is not optimal in any sense.

On the other hand, the optimal generalized likelihood ratio
test (GLRT) receiver requires the maximum likelihood (ML)
estimates of the channel parameters. In general, this involves
a computationally intensive multidimensional nonlinear opti-
mization because the multipath signal is a nonlinear function
of the channel delays. The dimension of the original parameter
space is 2K + 1. If K is large or unknown, the optimal GLRT
receiver is out of reach.

The goal of this paper is to develop a simple receiver that
avoids finding the ML estimates of the channel parameters
while still achieving good performance. Our approach is
based on a geometric interpretation of the multipath signal
detection problem. We see that the collection of all the possible
multipath noise-free signals forms a linear subspace: the signal
subspace S. If we assume that the noise is white Gaussian
and s(t) is known, then the generalized log likelihood ratio
function is the norm square of the orthogonal projection of the
received signal 7(¢) on S. However, finding the orthogonal
projection on the original signal subspace S involves the
multidimensional nonlinear optimization over all the possible
{7} as well as the number of paths K. Our approach is to
find an alternative subspace—the representation subspace G
[1]-[4}—whose orthogonal projection is easily computed and
approximates the original signal subspace & well. Once we
have designed the representation subspace G, the detector is
practically as simple as the CR.

There are two major questions. The first is how to decide
whether the subspace G is close to or a good approximation
of §. We propose to use the gap metric [S] to measure the
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closeness between S and G. The gap metric is a measure of
the distance between two closed subspaces. In other words, it
tells us how two subspaces match each other. The gap metric
is also related to a generalized ambiguity function; see [6].
With the gap metric, the problem is reduced to finding the
representation subspace G that minimizes the gap between S
and G.

The second question is concerned with designing the sub-
space G so that the orthogonal projection on G is easily
computed. Since we are studying the effects of translations,
it is natural to turn to the wavelet transform that represents
signals in terms of translates and dilations of a mother wavelet.
Wavelet transforms have led to the theory of multiresolution
analysis where the Hilbert space of square integrable functions
is decomposed into a nested sequence of subspaces. These
subspaces are used to approximate the original signal subspace
S. Using these subspaces as the representation subspace has
several advantages. First, the subspaces in the multiresolution
analysis are generated by the mother scaling functions and
mother wavelets. This reduces the design of the representation
subspace to the design of a single function, which is a much
easier task. Second, nice parameterizations of the orthonormal
compactly supported wavelets and scaling functions are avail-
able [7], [8] to facilitate the design of the subspace §. Finally,
the orthogonal projection on the multiresolution subspaces is
easily computed by taking inner products.

The outline of the paper is as follows. In Section II, we
discuss the geometric interpretation of the multipath signal
detection problem; we introduce the definition and important
properties of the gap metric. In Section III, we describe
in detail the design of the representation subspace G. In
Section IV, we give the structure of the new minimum
gap receiver (MGR) as well as the structure of some other
alternative receivers for comparison. In Section V, we present
experimental results to demonstrate the performance of our
new receiver and compare it ‘with the alternative receivers
described in Section IV. Finally, in Section VI, we conclude
the paper.

II. GEOMETRIC INTERPRETATION

In Section O-A, we discuss a geometric interpretation of
multipath signal detection. In Section 1I-B, we introduce the
gap metric to be used throughout the paper. In Section II-C, we
give a brief review of the compactly supported orthonormal
scaling functions and wavelets.

A. Geometric Interpretation of Multipath Signal Detection

Many problems of interest to the signal processing commu-
nity are cast in the general framework of detecting waveforms
with unknown parameters, i.e., from an observation of the form

Hy:r(t) = (Hels])(t) + n(t) 0<t<T €)]
Hy: r(t) =n(t) )
to decide which hypothesis is true. We use here the notation in
[6]. The received signal is r(¢), s(¢) is the transmitted signal,

He[-] is the channel operator parameterized by the vector
6 € ©, and n(t) is the additive noise. In other words, ¢ is
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the vector of channel parameters. With the multipath example
of (2), 0 is the vector [a1, g, -+, i T1, T2, -+, Tie; K], and

K
(Hols))(E) = sm(t) = 3 ans(t — ). )

We assume that the transmitted signal s(t) is deterministic
known, n(t) is zero-mean white Gaussian, and* ¢ € © is
unknown deterministic. ; ,

Before proceeding, we clarify our notation. As in most
engineering literature, we will use the notation s(t), g(t), -+,
to represent a function of time or the value of the function
at time ¢, depending on the context. In places where that may
cause confusion, we will use instead s(-), g(+), - -, to represent
explicitly the functions.

Denote by S the signal subspace

8 ={(Hels])("),0 € ©}. (©)
The GLRT is given by k

o
|Psr]ll* 2 navrr- @)
Hy
In (7), || - |} is the Ly norm, ngrgr is a threshold, and
(Ps[r])(®) = (Ho-[s](?) (®)
where v
0" = arg inf llr(-) = (He[s) ()]l )

is the vector that contains the ML estimates of the channel
parameters, and Pg[r] is the orthogonal projection of r(-) on
the signal subspace S. Generally, computing the ML estimate
#* is complicated because it involves a multidimensional
nonlinear optimization.

In the multipath channel case, the signal subspace S is

k=1

K
S = {sm() = Zaks(- —T), 0, Tk ERK € Z+} (10)

where 7T is the set of natural numbers.

To compute the GLRT statistic, we need to solve (9),.i.e.,
we need to optimize over all the channel parameters. Since the
multipath noise-free signal s,,(-) is a nonlinear function of all
the channel delays {7}, for a fixed K, solving (9) requires a
nonlinear optimization over a K -dimensional parameter space
[9]. For large K, this is not feasible from a practical point
of view. Furthermore, if K is not known, we have to iterate
on the value of K, which further increases the computational
complexity.

Our approach is motivated by the fact that the GLRT statistic
is only a function of the orthogonal projection of (-} on S. In
other words, the goal is to find this orthogonal projection; or a
good approximation of it. The receiver becomes simple if we
can find a representation subspace G that approximates S well
and whose orthogonal projection is easily computed. Then,
the orthogonal projection on G is-a good approximation to the
orthogonal projection on S. We propose to use the gap (S, G)
[5] as a measure of the closeness between S and G. The
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problem is then to find a linear subspace G that minimizes the
gap metric §(S, G). Once we have designed the representation
subspace G, we use ||Pg[r]||? as the test statistic instead of
| Ps[r]||?. The choice of G will be discussed in Section IIL

B. Gap Metric

The gap metric [5] is a measure of the distance between
two closed subspaces. In other words, it tells us how two
closed subspaces match each other. Two equivalent definitions
are given in [5] for the gap between two closed subspaces
in a Hilbert space. One is given in terms of the orthogonal
projection operators on the subspaces, whereas the second
definition, which is more mathematically involved, provides,
in general, an analytic formula for the gap. We will start with
the first definition because it is more intuitive and leads us
to a natural interpretation of the problem that we are solving.
Then, we will exploit the second definition in detail because
we use this definition to calculate the gap.

1) First Definition: Given two closed subspaces S and G
in a Hilbert space H, we denote by Ps and Py the orthogonal
projection operators on S and G, respectively. Then, the gap
between S and G is

6(5,6) = IPs - Pyl an

where || - || is the Lo-induced operator norm.

As we mentioned earlier in the last subsection, our goal is
to find a representation subspace G such that the orthogonal
projection of the received signal r(-) on G is close to the
orthogonal projection of r(-) on the signal subspace S. From
(11), we can achieve this goal by designing G to be close
to S in the gap sense. If the gap is small, then Pg is
close to Fg in the Ly-induced operator norm sense, and
we can approximate Pg[r] by Pg[r]. This definition matches
with our intuition. Unfortunately, calculating the gap using
this definition is difficult because it requires computing the
orthogonal projection operator on the signal subspace S. That
is exactly what we are trying to avoid. This difficulty leads to
the second definition.

2) Second Definition: We denote by Ss the unit sphere of
S (the set of all uw € § with ||ul| = 1), and let

5(8,6) = sup dist(u, G)

u€eSg

(12)

where

dist(u, G) = inf flu — ol = V/[Jull* — [Pg(w)I

(13)

is the distance between the vector u and the subspace G,
which is equal to the distance between u and the orthogonal
projection Pg(u) of u on G. Likewise, we define 6(G,S). The
quantity

§(8,6) = max(6(8,G),5(G,S)) (14)

is called the gap between S and G.

To ease the discussion in Section III, we call §(S,G) the
left side of the gap and 5(G,S) the right side of the gap,
where S is the signal subspace, and G is the representation
subspace. Fig. 1 illustrates the definition of the left side of the
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dist(u,G)

o

Fig. 1.

One side of the gap.

gap. From the definition and the figure, we see that to calculate
(8, G), we first pick a vector u on the unit sphere Ss of S
and project 4 on G to get the distance dist(u,G) between u
and G. Once we have obtained this distance for all the vectors
on the unit sphere of S, we calculate 6(S,G) by taking the
supremum over all the vectors on the unit sphere of S. The
right side of the gap 8(G, S) is defined in a similar manner with
S and G switched. Thus, the gap metric is essentially a worst-
case distance measure between two closed subspaces. The
following relations follow directly from the second definition
of the gap [S].
i) 4(8,G) =0if and only if S C .

i) 6(8,G) =0if and only if S = G.
iii) 6(5,0) = 6(0,S).

iv) 0<4§(8,6) <1,

V) 6(8.9) < 8(5.U) + 6(14,9).

vi) 6(8,G6) =1or§(S,6) = 6(G,S).

Property i) says that if the left side of the gap 6 (8,9) is
zero, then S is included in G; however, this does not imply that
S(Q,S) is also zero, i.e., that G is included in S. Therefore,
only one side of the gap metric is not enough to measure
the similarity between two closed subspaces. Properties ii)-v)
guarantee that the gap metric is indeed a distance measure for
closed linear subspaces in a Hilbert space. Property iv) says
that the gap is bounded by 1.

Property vi) is important because the gap, in general,
requires that we compute both 6(S,G) and 6(G, S). However,
in most cases, only one of them is easy to compute. What
Property vi) tells us is that once we have computed (S, G), we
know immediately that (G, S) is either 1 or equal to 6(S, G),
or vice versa. If we can guarantee in some way that both
5(S,G) and 6(G,S) are not 1, then we need only to compute
one of them. This property avoids computing the orthogonal
projection Pg[r] of r(-) on the signal subspace S, which helps
us solve the problem that we have with the first definition.

C. Compactly Supported Orthonormal Scaling Functions

In our approach, we use the subspaces spanned by integer
shifts of the compactly supported orthonormal scaling func-
tions to approximate the signal subspace. The advantage is that
they are nicely parameterized. Thus, the subspace optimization
is reduced to parameter optimization.

A scaling function satisfies the two-scale dilation equation
[10}:

$(t) = (2t — k). (15)
k
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The coefficients {cy } are called scaling coefficients. A scaling
function is completely characterized by its scaling coefficients.
Once the scaling coefficients {ci} are given, ¢(¢) can be
constructed using an iterative procedure [10]. The wavelet
corresponding to ¢(t) is then defined [10] as

t) =" de(2t —k
k

where the coefficients {dj} are called wavelet coefficients.

Daubechies [7] provides a complete characterization of the
power spectrum of the sequences of scaling coefficients that
lead to compactly supported orthonormal scaling functions and
wavelets. Zou and Tewfik [8] provide a further parameteriza-
tion of these coefficients. They show that for a given support
2M — 1, there is an infinite number of scaling functions and
mother wavelets. They also show that all scaling functions and
wavelets of support 2M —1 are parameterizable, or designable,
by choosing just M — 1 parameters ({1, (2, -, Ca—1) Over
[0, 27 M1,

Specifically, denote by H(z) and G(z) the z transforms of
the sequences {cx} and {d}; it can be shown as in [8] that

L0t = veren ]

where the matrix E (z) is called the polyphase matrix given by

(16)

a7

1( VM 2(2) - Vi(2)Vo
3 —sin 3
4 ST
sin 3 3
i 1 cos | —
Vi(z) =T+ ( z—l)vkvk, I1<k<M-1. (18)
The vector vy, is given by
cos((x)
= | . 1<k<M-1. 19
¢ Lm(@)] shs 19

II1. SUBSPACE DESIGN

In this section, we discuss the computation and optimization
of the gap metric in detail.

A. Problem Statement

As we mentioned early in Section I, in a multipath channel,
the received signal r(¢) is described mathematically as

K
r(t) =) ags(t — &) + n(t).

k=1

(20)

We assume that {ay, }, {71 }, and K are deterministic unknown.
The signal subspace S is then given by (10). Our goal is to
find a closed subspace G* such that the gap §(S,G) between
S and G is minimized.

Since each element in S is a linear combination of different
delayed replicas of the transmitted signal s(t), it is intuitive to
design the representation subspace in a similar way. We use

g {gmt

Z Bng(- =n), ﬁneR} @1)

n=—oo
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to approximate S. Because of the structure of G given by (21),
designing G is equivalent to designing its generating function
g(-). We choose the function ¢(-), which is the generating
function of the representation subspace, to be. a compactly
supported orthonormal scaling function. We will ‘discuss in
detail the reason for this choice in the following subsections.

B. Algorithm

Computing and minirhizing'the gap 6(8,G) directly is not
an easy task. For example, from the definition, we have the
left side of the gap between S and G

5(8,6) =

sup inf
l[sm (-Yll=1 Gioe()EG

ll$m (-} = Gins ()] _(22)

Equation (22) says that in order to compute 6(S, G), we need
to compute first the orthogonal projection of s,,(:) on G for
a fixed s,,(+). This is accomplished by taking the infimum
over all the gi,t(-) € G. Then, we need to maximize the
distance between s,,(-) and its orthogonal projection on G
subject to the constraint that |[s,,(-)|] = 1. The first step is
easy; the orthogonal projection of s,,(+) on G is obtained by
calculating the inner products of s,,,(+) with integer shifts of a
biorthogonal function §(-) of g(-). Unfortunately, the second
step is difficult. Since s,,(+) is a nonlinear function of {7},
maximizing this distance, i.e., taking the supremum, requires
a multidimensional nonlinear optimization, which is precisely
what we are trying to avoid. Computing the right side of the
gap is even worse because getting the orthogonal projection
on S involves, from the start, a multidimensional nonlinear
optimization.

To circumvent these difficulties, we solve the problem in
two steps:

1) Design the generating function g(-) to minimize the gap

between S, and G.
2) Reshape the optimal ¢g*(-) obtained from step 1 to make
it nearly shiftable.

In step 1, we restrict the delays {7} to be integer valued
rather than real valued. Instead of working with the subspace
S, we introduce the integer shift signal subspace Sy, and solve
the original problem with respect to S,y and not with respect
to §. We design the representation subspace G to be close
to Sine- In step 2, we modify the optimal G* by reshaping
its generating function ¢*() to be as translation invariant, or
shiftable, as possible so that the new representation subspace
cannot only represent linear combinations of the integer shifts
of s(t) but linear combinations of ‘its arbitrary real shifts as
well. To do this, we use the reshaping algorithm of Benno and
Moura; see [1]. In the following, we will explain these two
steps in detail.

Step 1—Gap Minimization: The major reason for the com-
plexity alluded to in the previous paragraphs is that in (22), we
have to optimize over arbitrary real-valued {75 }. We simplify
the optimization by considering in this stép the integer shifts
only, i.e., rather than approximating the original subspace S,
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we approximate the subspace

Sint = {Smt Z an - n , 0y € R}

n=—o0
by the subspace G given in (21). Note that in S;,;, we consider
only integer-shifted replicas of s(t).

The problem has now been reduced to finding a closed
subspace G* such that the gap §(Siy¢, G) between Siy, and G is
minimized. In the following, we assume that {s(-—n),n € Z}
is a Riesz basis [10] for Sy, ie., 3 A, B suchthat 0 < 4 <
B<oo and

A< Z|fs(f+l)|2 <B ae.
1

(23)

24

where F,(-) is the Fourier transform of s(-).
We first need an explicit formula for the gap 6(Siuw,9)
between S, and G. Theorem 1 provides this.
Theorem 1: Let
Y, an € R}

{Zﬂng n), By € R}

be two closed linear subspaces, where {s(- — n),n € Z} and
{g(- = n),n € Z} satisfy the Riesz basis condition in (24).
-Then, the gap between Si; and G is given by

5(Sint>g)
:\/1— inf Coy(f)

fefo,1)

2
Z]—" FHET,(f+k)

= [1- inf (25)
reloy Z|]—'S(f +ORSIE(f + 0P
1 1

where F;(-) and F,(-) are the Fourier transforms of s(-) and
g(+), respectively, and F,(f) is the complex conjugate of
F4(f)- The infimum is taken over the regions where Cj,(f)
is continuous.

Csy(f) is essentially the periodization of the normalized
magnitude squared cross-spectral density of the signals s(t)
and g(t). The function %, Fy(f + k)F,(f + k) is the dis-
crete time Fourier transform (DTFT) of the sampled cross-
correlation function between s(¢) and ¢(t), i.e., the DTFT of
the discrete sequence

csg(n) = (s(-), 9(- — n))
The functions Y| F,(f +1)|? and ;| F, (f +1)|? are the DTFT

of the sampled autocorrelation functions of s(t) and g(¢),
respectively.

The autocorrelation function of a deterministic energy signal
s(t) [11] is defined as

css(t) = /s(T)E(t —7)dr.

nel. (26)

@7
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The cross correlation between two deterministic energy signals
s(t) and g(t) [11] is defined as

Csg(t) = /s(v')g(t ~7)dr.

By the Schwarz inequality, the second term in (25) is less
than or equal to one, which makes 6(S;,;, G) satisfy Property
iv) of the gap metric, i.e.,

0 S 5(Sint)g) S 1

(28)

(29

As we know, the integral of the normalized magnitude squared
cross-spectrum over frequency is an indication of the average
similarity between s(t¢) and g(t). However, it is not enough
to measure the similarity between the subspaces S;,; and
G, which are spanned by integer shifts of s(¢) and g(t),
respectively. The infimum basically guarantees that it accounts
for the worst case over frequency, thus providing a reasonable
measure for the subspaces. This intuitively matches with our
definition of the gap because the gap metric is a worst-case
measure between the signals of two closed subspaces. Theorem
1 is proved in the Appendix. Theorem 1 can also be shown
using the notation of angles between subspaces; see [12] for
details. , ,

We use Theorem 1 here to find the optimal subspace G*
that minimizes 6(Siu, G), i.e

g* = arg mgin 5(Sint,g). (30)
Equivalently, the generating function ¢*(-) of G* is
() = inf O,
7= g iy S
. 2
ZF (f+R)F,(f+k)
= arg max inf

9() f€[01)Z|f (f+1) |2Z|]: (F+ 0

(31

To perform the optimization over g(-) in (31), we restrict the
search of the function g(-) to the set of compactly supported
orthonormal scaling functions of a multiresolution analysis.
There are three major reasons for doing this. First, it is clear
that if g(t) = s(t), then the gap in (25) is zero. However, s(-)
is, in general, not shiftable; see (35) below. After reshaping
s(+) using the algorithm in [1] to make it nearly shiftable, as
explained in step 2 of our algorithm, we have observed that
the subspace spanned by the integer shifts of the new reshaped
signal does not approximate the subspace S;;; well. On the
other hand, from our simulations, the subspace spanned by the
integer shifts of a reshaped compactly supported orthonormal
scaling function does still approximate Si,; well. Second, if
we look at 4(S;,,C) carefully, we notice that for a fixed
value of §(Sint,G), there are many choices of g(-) because
8(Sint, G) is only related to the minimum of Csq(f) over
frequency f. We use this additional freedom to require g(-)
to be a compactly supported orthonormal scaling function.
Finally, compactly supported orthonormal scaling functions
are nicely parameterized in terms of a vector ¢ of parameters
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[7], {8]. Using these parameterizations of the function g(-: ¢),
the optimization of §(Sint,G) is done by a search over the
parameter space of (, i.e.,

Csq(f: )
Zy—" (F+E)F(f+k: Q)
= arg max

in
¢ 01>Z|f f+l|§:1f (F+EQP
(32

inf

feon

" = arg m?x

where ¢ = [¢1, -+, (™77 is the vector of parameters defin-
ing the compactly supported orthonormal scaling functions,
and M — 1 is the number of unconstrained parameters [8].
The optimal scaling function is given by

g*(t) = g(t: ¢*).

The corresponding representation subspace G* approximates
the integer shift signal subspace Sy, well, i.e., it can represent
linear combinations of integer shifts of the transmitted signal
s(t) well. In the next step, we consider representing linear
combinations of arbitrary real shifts of s(¢).

Step 2—Reshaping: Once we have designed the closed
subspace G* = {¥, OBng*(- — n),0, € R} that minimizes
8(Sint, G), we reshape g*(-) to get a nearly shiftable function
g%(+). The corresponding representation subspace is

{Zﬁngr n),Bn € R}

Hopefully, the new nearly shiftable g(¢) and its integer shifts
cannot only represent well the integer shifts of s(¢) but also
its arbitrary shifts.

A function ¢(t) is shiftable if there exists a set of real
coefficients {3, (7),n € Z} such that

Zﬁn

Equation (35) says that if a function g(t) is shiftable, then
any arbitrary delayed replica of the function g(t — 7) is well
represented by a linear combination of infeger shifts of the
same function. A simple example of a shiftable function is the
sinc function

(33)

(34

g(t =) glt—n) Vrel0,1). (35

sin(7t)

sinc(t) = "
T

(36)
The sinc function is a bandlimitted signal with bandwith
Af = 1.1t can be easily shown that this sinc function satisfies
the shiftability condition. If the transmitted signal s(t) is the
sinc function, then we can just choose the generating function
g(t) as the transmitted signal itself. Thus, the gap between
Sint and G is zero. In addition, because the sinc function is
shiftable, the gap between S and G is zero. This means that
linear combinations of the integer shifts of the sinc function
represent exactly linear combinations of arbitrary real shifts
of the sinc function itself.

Howeyver, in general, this is not the case, i.e., a function will
not be shiftable. For example, it is not possible for a function
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to be shiftable and to have compact support [1], [13]. In [1],
the authors relax the hard constraint of shiftability and consider
instead the design of signals, for which in (35), they have only
approximate equality. They design signals for which the mean
square error in representing of these signals arbitrary delayed
replicas by their integer shifted replicas

e(r) = Zﬂn n)|?

is minimized. This translation error is a- measure of the rep-
resentation’s robustness to continuous translations. A function
is nearly shiftable if the maximum of this translation error is
close to zero.

In [1], the authors show that the error given by (37) can
be expressed in terms of the Zak transform [14]-{16] of the
energy spectral density (ESD) of the function g(¢) as

o [MEEeU )
=1 Zr, o (F,0)

where |F,(f)|? is the energy density function of g(t), and
Z\F,12(f,7) its Zak transform. :

If the function g(¢) is not shiftable, then the error e(7) is
nonzero, and it is a function of the delay 7. The error () can
be reduced by modifying the term Z, _7.:g|2( f,7). Specifically,

e (f0P T

let
C(r) = / d (39)
() { o Zi7,p(f,0) d
and reshape the Zak transform Zz |2(f,7) as

Zr,(£,7) = C(1) 2z, 12(f,7)-

By choosing C(r) as in (39), the representation error is zero
if F;(f) is a valid ESD function. In general, that is not the
case. However, it can be easily shown that |F;(f)| is indeed
a valid ESD function. Therefore, in [1], the authors define in
the frequency domain the reshaped signal gq(¢) as

For () = VIF(f)]e?: ) 41

where 07 (f) is the phase of Fy(f). The reshaped time
domain signal g1(¢) is obtained by taking the inverse Fourier
transform of the expression in (41). The choice of the phase
in (41) makes the reshaped signal closely resemble. the ‘orig-
inal signal. Now, the representation error for.g; (), although
reduced, is no longer zero. The error is further reduced by
iterating the reshaping algorithm.

In the following, we illustrate the algorithm by reshaping a
scaling function obtained using the parameterization described
in Section II-C. Fig. 2(a) is a plot of the original signal and
of the reshaped signal after 12 iterations of the reshaping
algorithm. Fig. 2(b) shows the error given by (38) for the
original and the reshaped signal. The maximum representation
error is reduced from 0.275 to 0.014. Fig. 3(a) and (b) show
the normalized Zak transforms of the ESD for the original
signal and for the iterated reshaped signal, respectively. The
normalized Zak transform of the ESD of the signal ¢(t) is

|Zy7,12 (f,7)]?
Zlfg|2(f7 O) ‘

g —7) (37)

df (38)

(40)

(42)
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The result of the reshaping algorithm is to make the normalized
Zak transform more flat in the 7 direction.

IV. DETECTION

In this section, we describe the structure of the new min-
imum gap receiver (MGR) and analyze its performance. We
also discuss briefly the structure of other alternative receivers
with which we compare our new receiver and their perfor-
mance analysis. The alternative receivers that we consider are
‘the unrealistic subspace receiver (USR), the energy detector
(ED), the CR, and a suboptimal receiver called “matched filter
with integer shifts” (MFIS).

A. Minimum Gap Receiver (MGR)

- We are interested in the detection problem formulated in
Section II-A. The GLRT is

Hy

Lairr = || Ps[r]||? 5 NGLRT 43)
0
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(a) Original signal and reshaped signal after 12 iterations. (b) Representation error for the original signal and for the 12-times iterated reshaped signal.

N
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(®
(a) Normalized Zak transform of the ESD of the original signal. (b) Normalized Zak transform of the ESD of the 12-times iterated reshaped signal.

where S is the original signal subspace. We approximate the
subspace S by the subspace G given by

Gr = {Zﬁngz<-~n>,ﬂneﬁ}. (44)
The test statistic of the new MGR receiver is
Lucr = (| Pg: [r]]>- (45)

Since g (t) is the reshaped scaling function, {g}(-—n),n € Z}
are not necessarily orthogonal to each other. We orthonor-
malize {g:(- — n),n € Z} without changing the span of

{g7(- =mn),n € Z} by
fgi(f)

‘/ZIfg::(fH)l?
1

where F« (), and F:(-) are the Fourier transforms of
9 oren() and g7 (+), respectively, [10]. With the orthonormality

T4 roren () = (46)
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Fig. 4. Minimum gap receiver (MGR).

of {g} oren - —n), 1 € Z}, Pgy[r] is easily computed by

t) = Z bng:,arth@ - n)
= {r(

where {b, = (r(-), 97 orn(- — n)), 1 € Z} are the orthogonal
projection coefficients. In general, the sum has to be taken
from —oo to +oo. Since, for all practical purposes, r(¢) and
g7 o.p, (f) are time limited, we pick only those coefficients with
siéniﬁcmt value, and thus, we need only a finite sum. With
proper alignment, we can take the sum from 1 to IVy.

Collecting the coefficients {b,,n = 1,---, Ny} in the vector
B = [by,---,bn, |, we have the test

Zlb|

Under Hy, the test statistic Lyigr has a central chi-squared
distribution with Ny degrees of freedom. Under Hi, Lmgr
has noncentral chi-squared distribution with N; degrees of
freedom and noncentrality parameter

')7 g:prth(' - 'I’L)> ' g:,orth(t - TL) 47)

Lyar = 77MGR (48)

Ny
v=UTU =Y |u,|?

n=1
where
U=lu,-, and
Un = ($m (), I oren (- — 7)),
Fig. 4 shows the structure of the MGR. The new receiver is
essentially a bank of Ny linear filters followed by an energy
detector (ED). This structure is easy to implement, and no

nonlinear optimization is involved. It avoids the ML estimation
of the channel parameters.

UN1]T

n=1,---,Np.

B. Unrealistic Subspace Receiver (USR)

The USR assumes that the channel delays {r;} and the
number of paths K are known. The attenuations {ay} are
not known. It is a K -dimensional subspace detector. The

test statistic is the energy of the orthogonal projection of the
received signal on the K-dimensional signal subspace. It is
chi-squared distributed under Hy and noncentral chi-squared
distributed under H;. In practice, the channel delays and the
number of paths are not known; therefore; the ideal USR
provides only an optimistic upper bound for the performance.
The optimal GLRT receiver will degrade the performance of
the USR.

C. Energy Detector (ED)

Suppose that the received signal is sampled at the Nyquist
rate (Tw), ie.,

r(n) = r(nTn) n=1,--,Ng (49)

where N is the number of samples, then the ED test statistic
is given by

N,

LED = Z’f‘(n)z.

n=1

(50)

It is chi-squared distributed under Hy and noncentral chi-
squared distributed under Hy with noncentrality

N,
> sm(nTn)?
n=1

where s,,(nTy) is the sampled multipath noise free sig-
nal. This receiver is computationally simpler than the MGR
receiver.

(D)

D. Correlator Receiver (CR)

The CR correlates the received signal r(t) with the trans-
mitted signal s(¢) and uses the peaks in the correlator output
to form the test statistic. Mathematically, let

er = (r(9),5(- = 7))

, T the K delays that maximize [c,|, and
,cT;{]T. Then, the test statistic is

Ler = CfA;lOT

(52)

denote by 77, -
let Cr = [erz,

(53)
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Fig. 5. Matched filter with integer shifts (MFIS) receiver.

where A, is the covariance matrix of C,. Log is chi-squared
distributed under H, and noncentral chi-squared distributed
under H;. This receiver is computationally much more com-
plex than the MGR receiver.

E. Matched Filter with Integer Shifts (MFIS)

Finally, we compare our approach with a simplification of
the optimal GLRT receiver. The simplified GLRT receiver that
we use {we call it matched filter with integer shifts (MFIS)],
works in the following way: First, we take the inner product
of r(¢) with {s(- —n),n € Z}. Again, since in our examples
they are time limited, we have a finite number of nonzero
coefficients

cn = (r(),s(- = n))

In practice, we pick only those coefficients with significant
energy. Denote as N; the number of “significant” coefficients
and Np = N — N;. Without loss of generality, we assume that
we pick the first Ny of them. Let

,N. (54)

n=1,-

C=ler, - en]T, C1=ler, - en,]T and
Cy =leny41, - en] T
The test statistic of the MFIS receiver is
Lyris = CTATIC - CT AL Oy (55)
where
= ) @
is the covariance matrix of C, and As» is the covariance matrix
of Cs.

Fig. 5 depicts the structure of the MFIS receiver. It is
very similar to the MGR receiver. The difference is that the
MFHIS receiver matches with {s(- — n)}, whereas the MGR
receiver matches with {g; ,..,(- — n)}. Under Ho, Lyris is
central chi-squared distributed with N; degrees of freedom.
Under H;, Lyris is noncentral chi-squared distributed with
N, degrees of freedom and noncentrality parameter [17],

UT (A1t — A12AS) Aer)Us . (57)

The vector U; is given by

U = [ug, -+, un, |7 (58)
where

U = (sm()y5(- =), m=1,--e, Ny,

This receiver has a computational cost similar to the MGR
receiver.

V. EXPERIMENTAL RESULTS

In this section, we present numerical results to demon-
strate the performance of the MGR and compare it with the
alternative receivers that we describe in Section I'V.

A. Parameter Setup

Again, the general formula for the multipath noise free
signal is given by

K
sm(t) =Y st — i), (59)
k=1

In our examples, the number of paths K is set to 15. To test
the performance, we normalize the energy of s,,(t) so that
the absolute values of «y do not affect the result; only their
relative values matter. For simplicity, we set them all to be
equal to 1. The delays {73,k =1,---, K} are generated by a
random number generator as uniformly distributed.

The transmitted signal s(t) is a modulated chirp pulse

(60)

c

‘ t
s(t) = rect(;) cos(2m fot + 27T’Yt2)

where rect(t) is the rectangular function with support
[0,1], T. = 25us is the duration of the chirp pulse, f. = 16.8
MHz is the carrier frequency, and v = 0.64 x 10* MHz/s is
the chirp rate. These numbers are scaled typical values used
in radar; see [18]. We sample equation (60) so that only the
in phase component is nonzero. The signal s(t) is shown in
Fig. 6(a). Fig. 6(b) shows a multipath noise-free signal s, (t)
with the parameters as we described in the previous paragraph.
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Fig. 6. (a) Transmitted signal s(t). (b) Multipath noise-free signal sm (t) (15 paths). (¢) Multipath noisy signal 7(t) (15 paths). (d) Minimum gap. scaling
function g*(t) and reshaped minimum gap scaling function g7 (t) (baseband).

Fig. 6(c) shows the same multipath signal with additive white
Gaussian noise. Since the signals in the figures are normalized
to unit energy, and r(t) is longer than s(t), Fig. 6(c) is not
at the same scale as Fig. 6(a).

B. Gap Minimization
In this case, the transmitted signal is a modulated chirp
signal. We handle the modulation in two steps. We first
design the generating function in baseband, i.e., we first let
%9% be the transmitted signal and design an optimal
generating function g (¢) to minimize the gap between S, and
~, where

e

K
Sb = {Sm,b(‘) = Zaksb(‘ — Tk),ak,’rk S R,K S Z+}

k=1
(61)

and G is given in (44). Then, we modulate this baseband
waveform to the carrier frequency.

To design the signal in baseband, we use the parame-
terization given by [8] to parameterize the scaling function

g(t: ¢) in (31). In the parameterization described in Section
II-C, we need to choose the number M — 1 of unconstrained
parameters. The choice of M — 1 is a compromise between
different requirements. The larger the number, the smoother
the scaling function and the larger the dimension of the
parameter space over which to carry out the optimization.
We choose M — 1 = 3, which leads to good acceptable
performance, as we will see in our results below, while keeping
the computational effort manageable. Denote by [(1, {2, (3] €
[0, 27] the three unconstrained parameters. The optimization is
done by searching the parameter space. We compute the gap
at the vertices of a 3-D cubic grid given by

2wl

) =) =60 =+,

and find the ¢* = [(7, (3, (3] that leads to the minimum value
of the gap. The optimal scaling function g*() is reconstructed
from ¢* using the algorithm described in [10]. Fig. 6(d) shows
the baseband scaling function that minimizes (31) and the
reshaped g*(t) of g*(¢) using the algorithm in [1]. Notice
that the reshaped function does not look drastically different
from the original function, but it is much more shiftable. The

[=0,--,49  (62)
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is the correlator receiver,

maximum representation error given by (37) has been reduced
from 0.3 to about 0.025.

C. Performance Comparison

We generate 500 delay patterns using a random number
generator, and compute the performance for each of these
delay patterns. The delay patterns of interest are where the
closest. replicas have considerable overlap since when they
are well separated, the CR performs reasonably well. For
the parameters described in Section V-A, below (60), we
compute roughly the bandwidth of the frequency-modulated
chirp signal at passband to be close to 480 KHz, corresponding
to an envelope correlation time of approximately 4 ps. In our
experiment, for 250 delay patterns, the 15 delays tested are

m=@Ax (k-1 +8)us k=115  (63)

while the 15 delays for the remaining 250 delay patterns are

m=@Ax(k=1)+8+05)us k=1,---,15 (64

where {65} are independent delays uniformly distributed in
[0, 1]us. The time spacing between consecutive filters in the
bank of filters (MGR and MFIS receivers) is 2 us. Fig. 7(a)
shows the average detection probabilities for these 500 trials
as a function of 10log(1/Ny) with the false alarm probability
Pr = 0.01. The signal energy is normalized to 1, and Nj is
the variance of the noise. Thus, 1/Nj is the SNR. The number
of paths K and the attenuation factors {oy}, as described
earlier in this section, are K = 15and ay = 1,k=1,--- , K.
The performance of the optimal GLRT receiver is not tested
because of its extremely high computational cost. Instead, we
use the USR. As we mentioned early, the USR gives us only an
optimistic performance upper bound. The detection probability
of the GLRT receiver is between that of USR and MGR.
There are five curves in Fig. 7(a). The solid line represents
the USR. The dashed line is for the MGR we have designed.
The dash-dotted line is for the CR, and the dotted line is for
the MFIS receiver. The “+” curve represents the ED. Table

“...” is the MFIS receiver, and “-+ is the energy detector. (b) Detection probabilities at 16.5 dB of the 500 trials.
“...” i the MFIS receiver, and “4” is the energy detector.

e

- s the minimum gap

TABLE 1
PRIOR INFORMATION USED BY EACH OF THE RECEIVERS
Computational
Transmitted| Delays |Attenuations| SOmPplexity
i Signal compared to
Receivers MGR
USR known known | unknown Unég?}llstgal]y
MGR known unknown | unknown
CR known unknown | unknown much more
complex
MFIS known unknown | unknown similar
Energy kn .
Detector unknown | unknown | unknown simpler

I presents the prior information used by each of the receivers
and the computational complexity compared with the MGR
receiver. The difference between the USR and the ED is about
6.3 dB. This is an optimistic estimate of how much SNR gain
over the ED we have available.

Analysis of Fig. 7(a) shows that the MGR provides an
average gain of about 2.5 dB over the CR, an average gain
of about 3.1 dB over the MFIS and about a 5-dB gain over
the ED.

The reason for the gain over the CR is that in our simulation,
different delayed replicas of the transmitted signal overlap;
therefore, the CR is not optimal in any sense. The reason for
the gain over MFIS is that ¥, 3,g;(- — n) not only matches
well with linear combinations of integer shifts of s(¢) but also
with linear combinations of arbitrary shifts of s(t¢), whereas
the MFEIS only matches with linear combinations of integer
shifts of the transmitted signal s(t).

Fig. 7(b) shows the detection probabilities at 16.5 dB for
these 500 trials. We see that the fluctuation of the MGR
receiver [top curve in Fig. 7(b)] is smaller than those of the
MFIS receiver and of the CR receiver. In other words, the
MGR is more robust to the multipath distortion. The ED
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‘[bottom curve in Fig. 7(b)] is also robust, but its average
performance is poor. This is because it does not utilize any
multipath structure.

Simulation results presented elsewhere carried out under
different conditions lead to gains similar to the ones in Fig. 7.

VI. CONCLUSION AND FUTURE WORK

This paper develops a minimum gap receiver that is fine
tuned to multipath detection. We design a representation
subspace G that is matched to the multipath signal subspace
S in the gap sense. The MGR is simple to implement. It
avoids the multidimensional nonlinear optimization required
by the optimal receiver while providing an average gain of
about 3.1 dB over the MFIS and about a 2.5 dB gain over the
~ CR. Further, the minimum gap receiver is robust to the delay
patterns tested, whereas for these alternative receivers, the
performance varies significantly with the actual delay patterns
tested.

In this paper, we consider only the case where the transmit-
ted signal s(t) is completely known. For the cases where s(#)
is not known, for example, s(¢) is random, the original signal
set § is no longer a subspace, and we need other measures
to quantify the closeness. The details of this extension will be
reported in future work.
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where

- St
Zﬁng —TL

and Pg|sig] is the orthogonal projection of siy(-) on G.
Since {g(- — n)} is a Riesz basis [10] of G, ie., 34,, B
such that 0 < A; < By < oo and

Ag <Y IF(f+0IP< B
l

Smt - n € Slnt

9 mt

a.e. (66)

the orthogonal projection Pg[siy] is obtained by taking the
inner product of si,;(-) with {§(- —n),n € Z}, where §(-) is a
biorthogonal function [10] of g(-), and its Fourier transform is

Fo(f)
T ==—"— 67)
D IF(F+DP
1
With §(-), we have
(Polsiae])(t) = D (sine(-), (- = k) - g(t — k). (68)

k

Taking the Fourier transform of (68) and substituting (67), we
get (69)—(72), shown at the bottom of the page. Taking the
norm square, we have (73)—(77), shown at the top of the next
page. Once we have dist?(si01(+), G), the square of the left side
of the gap 6*(Sint, G) is obtained by taking the supremum, i.e.,

APPENDIX
In this Appendix, we give the proof of Theorem 1. 6%(Sim, G) = . ?1)15 s dist* (sie (), G) (78)
From the second definition of the gap, we know that e ) )

§(Sint, G) is the maximum of §(Sin,J) and 8(G, Sins). We = ?1)155 (Hsmt()H — |1 Pelswe]ll”) (79

start with the left side 6(Sint, G). From (12) and (13), in order _ 1‘“‘ f » 5 %0
to compute 6(Sint, G), we need first to compute T (e 1P sint] (80) -

subject to
diStQ(Sint(‘),g) = - inf P ||5int(') - gint(')||2 Foo
s, ) lsmOIE = [ Isim(0) e 1)
= [I8ine ()I* = [|Pg [sint]l (65) —oo
+oo
Aol ) =540 5 | Fu 00T expsamk(s = )} (69)
Y s / FAfIF ) esploi2mh(f - pbew{=omndi} oo
e P AGERIE
]
voo T (FT (£ exp{—j2mk(f — i)} exp{—j2nnfi}
—F - an / : df (7
2] S IF (D 1
I
Y Flf +B)Fg(f + k)
=F,(f) {Z O, exp{—j27mf}}~ (72)

Y IF(f DI
!
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|1 Pg[sinelI” = I1F[PosinslII” (73)
__ 2
o Y Fuf +R)Fo(f + k)
= n exp{—j2 CF(f) & 74
/-OO {;a exp{~j an}} 4(f) Zlfg(f+l)l2 (74)
it Zf FERE, (R
= Z/ {; o exp{-ﬂMf}} Fy(f) - £ ST df (75)
: 2
) Folf+k)
- . exp{—j2 d 76
/0 zn:a exp{—j2rnf} Zlfg(f+l)|2 If (76)
: 2
. 2 Z;f F+ BT, (f+k)
— o 2
_/0 3 anexp{=s2m0f} zlj|f<f+)| Zlf f+lIZIf 0 Q)
/1 is minimized. The infimum is
= 2
0 Folf + ) Fy(f + &
SOVE P df (82) . E: SRR
inf (88)
1 ! ' 3) fe[“)Zlfs(f+l)|2§:|fg(f+l)l2
’ l 1

Since {s(-—n),n € Z} is also a Riesz basis, i.e., 3 A, B such
that 0 < A < B < oo and

ASD |F(F+DIP<B ae. (84)
l
the periodic function, integrand of (82)
2
> anexp{—j2rnf}| Y |F(F+DP (89
n !

can generate any positive function in L1[0, 1). Using a limiting
argument, we can choose it to be the Dirac delta function
located at the frequency where

2
Z]—" FHRF,(f+E)
(86)
Zlf-s DY _IFs(f +DP?
! !
has its infimum and continuous. Then, the quantity
2
1
E o, exp{—j2rnf}| - Z |F.(f + D)2
n 1
2
Folf +k)
df &7

Z|]-' f+0? pr (f+ 0P

This completes the calculation of 52 (Sint,G). The square
of the right side of the gap 42(G,Siy) can be obtained by
interchanging s(-) and g(-). However, observing that (88) is
symmetric about s(-) and ¢(-), interchanging s(-) and g(-) does
not affect the result, which means that

62(G, Sint) = 6*(Sint, G

Therefore, this proves Theorem 1.

89)
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