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Abstract—This paper concerns the problem of estimating a spa-
tially distributed, time-varying random field from noisy measure-
ments collected by a wireless sensor network. When the field dy-
namics are described by a linear, lumped-parameter model, the
classical solution is the Kalman–Bucy filter (KBF). Bandwidth and
energy constraints can make it impractical to use all sensors to es-
timate the field at specific locations. Using graph-theoretic tech-
niques, we show how reduced-order KBFs can be constructed that
use only a subset of the sensors, thereby reducing energy consump-
tion. This can lead to degraded performance, however, in terms of
the root mean squared (RMS) estimation error. Efficient methods
are presented to apply Pareto optimality to evaluate the tradeoffs
between communication costs and RMS estimation error to select
the best reduced-order KBF. The approach is illustrated with sim-
ulation results.

Index Terms—Communication cost, estimation error, field esti-
mation, Kalman–Bucy filter, Pareto optimality, tradeoffs, wireless
sensor networks.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) are promising for
large-scale environmental monitoring and control ap-

plications, such as temperature regulation in office buildings [1]
or data centers [2], soil moisture monitoring [3], and habitat
monitoring [4]. These applications call for estimating correlated
dynamical fields, often at locations other than where the sen-
sors are placed. This motivates the following problem: Estimate
the values of a dynamic field at specific locations of interest

based on measurements at sensor locations
, where is not necessarily contained in .

The field of interest is a physical quantity, say temperature,
over a space that we discretize into voxels (or pixels). The field
dynamics are described by a linear, lumped-parameter model,
whose state collects the field values at all the voxels. The field
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correlation is captured by the state intracorrelation, i.e., the cor-
relation among the components of the state vector. A Kalman-
Bucy filter (KBF) provides optimal estimates of the field in
minimal root-mean-squared (RMS) error sense. Bandwidth and
energy constraints can preclude the direct centralized imple-
mentation of the centralized KBF for a large-scale field, how-
ever. We propose an alternative based on deriving reduced-order
input-output models using graph-theoretic techniques. These re-
duced-order models are tuned to describe the field dynamics at
the locations of interest. The proposed procedure identifies state
variables that can be eliminated and other state variables that
are reassigned as input variables in the reduced models. This
makes it possible to construct reduced-order KBFs that esti-
mate the field at the desired locations using fewer sensors and
lower-dimensional state vectors, thereby reducing the amount
of communication needed to acquire the data from the WSN.
The penalty paid is that the quality of the estimates may also be
reduced, when compared to the full-order KBF that uses all of
the sensor values. We show that the quality of the estimation is
not determined strictly by the number of sensors that are used;
it is also influenced by the locations of the sensors employed
by the KBF relative to the locations at which the field is to be
estimated.

The above approach usually leads to many possible reduced-
order KBFs. This raises the problem of how to select one KBF
from among the many alternatives. We choose estimation error
and communication cost as performance metrics to compare dif-
ferent reduced-order KBFs and study tradeoffs among them. We
apply Pareto optimality to balance between these two competing
goals: minimize the RMS estimation error in the field estima-
tion and minimize the communication cost required by the esti-
mator. Simulation results illustrate these tradeoffs under Pareto
optimality.

We organize the paper as follows. The following section
presents the problem formulation and defines the KBF re-
quired to estimate the values of the field at the locations
specified in . Section III presents the graph-based approach
to constructing reduced-order KBFs. Section IV focuses on
the RMS estimation error for different KBFs and presents an
easily computable approximation to the RMS error. Section V
considers the communication cost associated with the KBFs
and derives from discrete event simulations an easily com-
putable approximation to the communication cost. Section VI
studies by Pareto optimality the tradeoffs between estimation
accuracy and communication cost and illustrates the approach
with simulation results. Finally, Section VII summarizes the
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contributions of the paper and discusses directions for future
research. A preliminary version of the graph-based method
presented in Section III appeared in [5].

II. PROBLEM FORMULATION

We consider the problem of estimating a real-valued, time-
varying random field defined over a planar region

, where and are the time and spatial variables in-
dexing the field, respectively. The field is monitored at sam-
pling times by sensors at locations in the set

. The measurements at these locations at
time are given by the vector

(1)

where denotes zero-mean, white Gaussian random
measurement noise. Our objective is to use the sensor measure-
ments to estimate the values of the dynamic field at locations
in the set

(2)

where is not necessarily a subset of .
To be concrete, we take to be a physical field, like a

temperature, heat, or light intensity field. With continuous in-
dexes (time and space), the field is commonly modeled by a par-
tial differential equation (PDE), e.g., a parabolic equation like
the diffusion heat equation (first-order partial derivative in and
second-order partial derivatives in the space variables). The fol-
lowing informal discussion motivates the models we use to de-
velop KBFs. For example, a linear PDE model is given by

(3)

where is a forcing input, and is the Laplacian operator

The PDE model is completed with an initial condition
at , and a boundary condition

, where is the boundary of the domain .
Rather than working with continuous indices, it is common to

discretize the continuous indexes model and work with PDEs.
For simplicity, discretize the domain so that is a regular finite
lattice. Take

and

and define

Standard discretization of the PDE model, e.g., central or for-
ward Euler difference, leads to (for a linear PDE, assumed in
the sequel)

(4)

where , defines the neighborhood
structure of the discrete pde resulting from the stencil (i.e., dif-
ference scheme) used, and are the coefficients coming
from the discretization of the PDE operator. Notice that usually
the discretizing lattice is assumed to be finite.

To get a compact notation, we stack the values of the field at
a given time over all sites of the lattice (pixels, or voxels) in a
vector , referred to as the state of the field. If lexicographic
order (scan from top to bottom, left to right) is used, the state
would be the dimensional vector

Below we will assume a different scanning order. In the sequel,
we take , so that . The model (4) now
becomes a lumped parameter, discrete-time linear (LTI) state
equation of the form

(5)

Equation (5) introduces that accounts for input
variables at locations where there are sources driving the field.
The vector collects the noise inputs. In this paper, we as-
sume that the model is linear time invariant (LTI). Note that here
we discussed a model derived from basic principles (from a PDE
model). More generally, and for particular applications, the LTI
model might be obtained from sensor data using system identifi-
cation techniques [5]. Also, the underlying model might be non-
linear, e.g., in fluid dynamics these models derive from highly
nonlinear Navier–Stokes equations under appropriate simpli-
fying assumptions, in which case (5) results from dynamical
linearization of the nonlinear model, a common technique in
applying Kalman filtering to nonlinear models. We have used
this approach in data assimilation studies in ocean circulation,
for example, [6] and [7]. For additional examples, see [8].

Based on the above motivation, we proceed with the formula-
tion of the problem considered in this paper. As stated in (1), the
field is measured by sensors. In this section, we assume that
all input variables are included in the noisy measurements,
which implies . In practice this is not necessarily the
case; Section III describes how to handle unmeasurable inputs.
Without loss of generality, we assume the inputs are at locations

. Thus, the first elements of the measurement
vector , denoted , correspond to noisy measurements
of ; that is,

(6)

where denotes the first elements of the measurement
noise vector . Substituting this expression for into (5)
gives the system

(7)

where . Note that (7) is a standard LTI
state equation and that the input is measured by the sensors.

We assume the state vector includes the values of the field at
the remaining sensor locations plus the values of the field
at any locations in that are not in . Without loss of generality,
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we let the first components of correspond to the last
components of and define the output vector as

(8)

where and is de-
fined as the last elements of . Finally, without loss
of generality, we assume the last elements of the state vector
give the values of the field at the locations in , the points at
which the field is to be estimated, and let

(9)

denote the vector of these state variables.
Remark: Although the model (7) and (8) only exhibit explic-

itly the time dependence and not the space dependence, we
notice that the state collects the field values at the voxels (spa-
tial sites) of interest in the domain . The spatial structure of the
field, i.e., the spatial correlation among field values at different
pixels, is encapsulated by the system matrices and . Also,
given a particular location , there will be sensors that will
be closer to than others. So, although not directly apparent in
the model equations, there is a notion of physical proximity be-
tween components of the state vector.

Using (7) and (8), the values of the field at the locations cor-
responding to the state variables, and hence at the locations in

, can be estimated using a standard steady-state Kalman–Bucy
filter (KBF) [9] given by

(10)

where is the a priori state estimate at time step before
processing the current measurement , is the a poste-
riori state estimate at step , and is the steady-state Kalman
gain matrix.

Equation (10) is a centralized KBF that uses all of the sensors
to estimate the field at the locations in . In large-scale appli-
cations where there are many sensors covering a large area ,
bandwidth and time constraints may limit the ability to collect
data from every sensor at every sampling time. If the points of
interest in are localized in a small region within , it would
be expected that not all sensor values from locations in are
needed to estimate the field at the locations of interest in . This
presents an opportunity to reduce the amount of communication
needed to perform state estimation by possibly sacrificing the
accuracy of the field estimates if fewer sensors are used. This
leads to the following problems addressed in the remainder of
the paper: 1) how to construct reduced-order KBFs (with lower
dimensional states) that use fewer sensors and 2) how to se-
lect the reduced-order KBF that achieves the “best” tradeoff be-
tween the accuracy of the field estimates and the cost of com-
munication. The following section deals with the first problem
and the remaining sections deal with the second problem.

III. GRAPH-BASED APPROACH TO MODEL REDUCTION

To obtain estimates of the field at the locations in using
a subset of the sensors at the locations in , it is reasonable

to select sensors that are in the vicinity of the locations in
(see the Remark in Section II regarding physical proximity of
sensors to site locations). In this section we present a method for
choosing subsets of sensors for which a dynamic model can be
constructed that is equivalent to the original LTI model (7) in the
sense that the model generates exactly the same field values at
the locations in when there is no process noise. Our approach
is based on the concept of system digraphs for LTI systems from
[10], which we modify slightly for our purposes and rename as
structure digraphs.

Definition 1 (Structure Digraph): Let the LTI system be
described by

(11)

where and , and, at
time , the input and state variables are
and , respectively. The structure digraph
of (11) is a tuple with vertex set and
edge set , where iff:

and , or and .

We refer to the structure digraph vertices in as input ver-
tices and the vertices in as state vertices. The directed arcs
into each state vertex indicate which state variables and input
variables influence the next value of that state variable in the
state transition (11). There are no arcs into input vertices.

To reduce the dimensionality of the system and handle un-
measured inputs we introduce the concept of cut-point sets. We
partition the vertex set into the measurable vertex set, denoted

, and the unmeasurable vertex set, denoted . Each of these
sets can contain both input and state vertices. Let denote the
complement of a subset of vertices with respect to ;
that is, . Given these definitions and notation, the
concept of a cut-point set is defined as follows.

Definition 1 (Cut-Point Set): Given the system (11) with
structure digraph , and a set of state vertices

, the cut-point set for the set of state vertices is a set of
measurable vertices for which there exists an
extended state vertex set such that:

1) if , there exists such that ;
2) if , there is no such that .

The following example illustrates the concepts of structure
digraph and cut-point sets.

Example 1: Suppose that the system matrices and in
(11) are

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 5, 2010 at 06:09 from IEEE Xplore.  Restrictions apply. 



2386 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 6, JUNE 2009

Fig. 1. Structure digraph for Example 1: circle vertices are measur-
able; square vertices are unmeasurable; � ���—measurable state vertex;
� ���—unmeasurable state vertex; � ���—measurable input vertex;
� ���—unmeasurable input vertex. The dotted and dashed lines indicate two
cut-point sets for � � �� ���� � ����.

and

where the parameters , denote nonzero entries in the
matrices and , respectively. Assume that the state vector
is ,
where and are measurable and unmeasur-
able states, respectively, and the input vector is

, where and are
measurable and unmeasurable inputs, respectively. Fig. 1
shows the digraph for this system. The circle nodes represent
measurable vertices and the square nodes represent unmeasur-
able vertices. A directed edge shows the dependence
of vertex on vertex . For example, there is a directed edge

in the system digraph in Fig. 1 since is
nonzero, implying that the update of the state depends
in part on the value of the input .

We now explain cut-point sets with reference to the system
digraph in Fig. 1. Let the unmeasurable state vertex set

. One of the cut-point sets for is
, with the corresponding

extended state vertex set encircled

by the dotted line in Fig. 1. The other cut-point set for is
, with the corresponding

extended state vertex set encir-
cled by the dashed line in Fig. 1. and are the only
two cut-point sets for . We can see the following for either
cut-point set . There is at least one edge pointing to vertices
in the corresponding extended state vertex set ; all the edges
pointing to vertices in are from vertices in or other ver-
tices in . These facts reflect the conditions in the definition
of cut-point sets.

Reduced-order models for a given LTI system with state
model (11) with structure digraph are constructed
as follows. Let be a given subset of state variables from

, and, for a given cut-point set for with a corresponding
extended state vertex set , define the graph ,
where and . Thus,
is the subgraph of with vertices in . We construct the re-
duced-order system with state variables and input
variables by letting and be column vectors of the
variables in and , and defining the state model for as

(12)

where the elements of the matrices and
are given by

if
otherwise

(13)

and
if
if
otherwise.

(14)

As stated in the following theorem, the trajectories of the state
variables for a reduced-order model constructed as described
above are identical to the trajectories of the corresponding states
in the original system when the input sequence for the reduced-
order system (which may include some of the original state vari-
ables) are identical to the corresponding input and state variable
sequences in the original system.

Theorem 1 [5], [11]: Consider the LTI system with: 1) state
model given by (11) and structure digraph ; 2) set of
state variables ; 3) a cut-point set for with a cor-
responding extended state vertex set ; 4) initial state and input
sequence for given by and respectively;
and 5) the resulting state trajectory for . Fur-
ther, construct a reduced order system as described above and
define the initial state and input sequence
by the values of the corresponding state and input variables in

and
Then, the values of the state variables in the state resulting

trajectory for are identical to the values
of the corresponding state variables in the state trajectory

for .
Proof: The theorem follows by induction on the time index

. For , the state variables in equal the values of
the corresponding state variables in by definition of .
Now, suppose for arbitrary that the state variables in
equal the values of the corresponding state variables in ,
and consider element of , denoted by . The
th state variable for corresponds to the th state variable for

for some . We need to show that
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. From the definition of the elements of and , we
have

(15)

From the definition of the cutset and the structure digraph
for , (15) for is precisely the equation for
in . Therefore, the values of the state variables in
are equal to the elements of the corresponding state variables in

.
The result in Theorem 1 uses the known property that the

physical field arising from a PDE or pde and described by the
lumped parameter model in (11) is Markov.

To construct a reduced-order KBF for the field estimation
problem, is chosen as the state variables corresponding to
the points for which the field values are to be estimated. If none
of these state variables are measurable, at least one measurable
state variable is added to . We then construct a cut-point set
for and identify the corresponding extended state vertex set

. Regarding the measurable state variables in as the out-
puts of the system, a KBF can be constructed as described in
Section II to estimate the values of the field at the locations
in . Thus, each cut-point set results in a feasible KBF. Since
there are usually multiple cut-point sets for a given set of de-
sired locations with corresponding extended state vertex sets

, especially for large-scale WSNs, we have multiple choices
of KBFs to implement the real-time estimation at the desired
locations.

IV. RMS ESTIMATION ERROR

In field estimation applications, it is clear that the accuracy
of the estimates is an important performance goal. We let
collect the states at the locations where it is desired to estimate
the field but there are no sensors; we consider that there is at least
one location with a sensor. For simplicity, we assume a single
location where the field is to be estimated. Therefore,
a single state variable is of interest, which from (9) is given as

Generalizing for the case when it is desired to estimate the field
at more than a single location is straightforward. In practice,
if these desired locations are not in close vicinity, it may be
preferable to consider each location separately, i.e., to design
a reduced-order model and the corresponding KBF to estimate
the field at each individual location. This reduces the order of
the model and of the KBF, which reduces the amount of com-
munication (and therefore the energy) needed to perform state
estimation.

The RMS estimation error is usually taken as the mea-
sure of accuracy for the error performance of the KBF:

(16)

where is the estimate of the field at provided by the KBF.
In large physical areas monitored by sensor networks, there

may be an excessively large number of possible cut-point sets
associated with a given and so there are many feasible

KBFs that can be used to compute . To study the tradeoffs
among these, we need to evaluate the RMS error performance
for each KBF, which may be too costly to compute directly. In
this section, we present an alternative measure of performance
that is simple to compute a priori, i.e., before actually deploying
the sensor network in the field, and can serve as a surrogate mea-
sure for the RMS error. To motivate the discussion, we consider
the following simulated scenario.

Spatial Distribution of Sensors: We consider that the field
being monitored by the sensor network covers a large area .
The sensors are deployed randomly over this area. To be spe-
cific, we assume that the sensors are distributed in according
to a Poisson distribution with parameter . This parameter rep-
resents the average number of sensors per unit area. The Poisson
probability distribution has been adopted by many others as the
distribution model for sensors in WSNs [12]–[14]. It is a rea-
sonable model when the number of randomly deployed sensors
is large [15]. With this model, the probability of sensors being
in a region depends only on the area of the region

and is given by

sensors in (17)

The average number of sensors in an arbitrary shaped region of
area is .

For simplicity, we assume that the region of interest is tes-
selated by a uniform grid and that the locations of the sensors
and the locations where the field is to be estimated lie on the
nodes of this grid. This assumption greatly simplifies our simu-
lation study, but the resulting analysis and conclusions are valid
for generic sensor networks where the sensors are arbitrarily
placed on the plane, not necessarily on the vertices of a uniform
grid.

We adopt as a motivating application the problem of air
temperature monitoring from [11] in a region consisting of
10 10 nodes on the 2-D coordinate plane.1 The grid nodes,
referred to as “pixels,” are located at integer coordinates, as
shown in Fig. 2. In this figure, the sensors, represented by cir-
cles, have been deployed according to the Poisson distribution
with . In this example, the total number of sensors
is 53. We could consider several locations where to estimate
the field; we focus here on the single location , the pixel
with coordinate represented by the square in Fig. 2. This
position was randomly selected.

To estimate the field at , we select a state set that
includes and at least one sensor location, i.e., a measurable
vertex. This will guarantee that any resulting extended state
vertex set will include at least one sensor measurement. We
can associate with several cut-point sets. Fig. 3 shows an
example of one of these cut-point sets, where the overlapped

1This example is presented to motivate the need to evaluate the trade off be-
tween estimation accuracy and communication cost. The details of the dynamic
model and how the parameters can be estimated from experimental data are dis-
cussed in [5] and [11].
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Fig. 2. Sensor distribution and the location to estimate: sensors—circles; loca-
tion to estimate—square.

Fig. 3. Example of a cut-point set: the overlapped blue circle/stars are elements
of the cut-point set, the green diamonds are elements of the extended state vertex
set, the overlapped red-square/green-diamond is the desired location, and the
overlapped blue-circle/green-diamond is the output of the corresponding KBF.

circles/stars are elements of the cut-point set, the diamonds are
elements of , the overlapped square/diamond is the desired
location, and the overlapped circle/diamond is the output of
the corresponding KBF. Using the approach described in
Section III, we derive for each cut-point set a corresponding
KBF. For the example in Fig. 2, we find, by exhaustive search,
a total of 447 cut-point sets that correspond to 447 different
KBFs. Each of these KBFs provides an estimate of the field at
the desired location .

Before comparing these 447 KBFs, we define the size of a
KBF as follows.

Definition 3 Size of a KBF: The size of a KBF is the total
number of its inputs and outputs, i.e., the size of a KBF equals

—the total number of sensors used by the KBF.

Fig. 4. Comparison of the estimation error performance of KBFs with different
sizes: each circle represents a feasible KBF; the dashed lines are estimation error
thresholds.

The size is the number of measurements used, either as inputs
or outputs by the KBF. For example, the maximum possible size
among all the 447 KBFs for the example in Fig. 2 is 53; this
is the total number of sensors in region . Note that different
KBFs may have the same size. One would expect that KBFs with
larger sizes should lead to better RMS error performance. As we
see next, this is not the case as proximity of the sensors to the
locations of interest also influence the quality of the estimates
because, as discussed in Section II, it is expected that the field
at a pixel will exhibit higher correlation with the field at nearby
locations than with the field at more distant locations.

To find a surrogate measure to the KBF RMS error that
is simple to compute, we plot in Fig. 4 the RMS estimation
error for each of the 447 KBFs versus its size. For each
KBF, is calculated using (16) over 2000 time increments
based on sensor measurements with Gaussian noise distribu-
tion . Fig. 4 exhibits the following three interesting
phenomena.

1) KBFs of the same size may have quite different RMS esti-
mation error performance. For example, the of KBFs
with size 35 ranges from 0.12 to 0.28.

2) KBFs can be explicitly grouped according to their RMS er-
rors. For the example under study, we can group them into
three sets. These three classes are defined by two thresh-
olds and , displayed by the two
dashed lines in Fig. 4.

3) A key factor in determining the RMS error performance is
the proximity of sensors to the location where we wish to
estimate the field.

The first phenomenon shows that the size of the KBF is not the
key factor to predict its estimation performance. For example,
the best KBF of size 25 has a much smaller RMS error than
the worst KBF of size 35. With respect to the second issue, the
classes grouping the KBFs can be refined. In fact, each of the
three major classes in Fig. 4 can be further divided into sub-
groups, though these groups are not as the classification of the
major classes. For example, the KBFs in the class for which
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Fig. 5. Locations of the outputs of KBFs: the circles are sensors; the square is
the location to estimate; � ’s are discussed outputs of KBFs.

can clearly be grouped into several additional sub-
classes. Finally, the third point above shows that the estimation
error performance of a KBF does not depend only on its size,
but, more importantly, depends on how close its outputs are to
the desired location.

The following two examples support these conclusions.
Example 2: We start by grouping the KBFs in Fig. 4 into

three classes, but according to the following criteria. First, we
label the sensor locations by using lexicographic order, starting
from the bottom left location and proceeding from left
to right and bottom to top. The sensor at location is la-
beled as . We then consider the distance between
nodes and in the graph as the graph distance defined by
the shortest path length between connecting these nodes. For ex-
ample, . From Fig. 5, we see that the two sensors

and are closest to the desired location , denoted by
, with distance of 1. We can group all the KBFs into three

classes as follows:
1) Class C1: KBFs whose outputs include both and ;
2) Class C2: KBFs whose outputs include only one of or

;
3) Class C3: KBFs whose outputs include neither nor .
Fig. 6 shows the grouping of the KBFs in Fig. 4 according

to the new criteria. We see that the groups are exactly the same
as the groups resulting from the thresholds of the RMS error in
Fig. 4.

Example 3: From Fig. 5, the sensors closest to the desired
location , after and , are sensors , , and ;
their distance to the desired location is . We now refine
Class C1, i.e., the group of KBFs where both and are
simultaneously used as outputs, into four subclasses as follows:

1) Subclass SC1: KBFs whose outputs include all of ,
and ;

2) Subclass SC2: KBFs whose outputs include two of
, and ;

3) Subclass SC3: KBFs whose outputs include one of
, and ;

Fig. 6. Classification of all KBFs: Classes C1, C2, and C3 are represented by
circles, squares, and triangles, respectively.

Fig. 7. Classification of the KBFs in Class C1: Subclasses SC1, SC2, SC3,
and SC4 are represented by circles, squares, triangles, and inversed triangles,
respectively.

4) Subclass SC4: KBFs whose outputs include none of
, and .

The result of this classification scheme is shown in Fig. 7,
which is equivalent to classifying the KBFs in Class C1 if we
use three RMS error thresholds: , and 0.16.
Similarly, we could divide the classes C2 and C3 into subclasses,
since a clustering similar to that in Fig. 7 appears if one zooms
in on the C2 and C3 regions in Fig. 6. We can further refine
each subclass according to whether or not the KBFs include the
closest sensors.

Alternative Cost: The above examples show that the estima-
tion error performance of a KBF depends on the number and
the locations of its outputs: the outputs that are the closest to
the desired location play a more important role in determining
the estimation error performance. This conclusion provides a
simple and effective method to obtain an approximation to the
RMS estimation error of the KBF based only on the topology
information of the associated sensors. This is very important in
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practice, since the number of feasible KBFs is potentially very
large. We call this error approximation the RMS estimation error
approximate cost.

Definition 4 (RMS Estimation Error Approximate Cost): As-
sume that the KBF has outputs corresponding to sensors

. Let be the location where it is desired to
estimate the field, and be the distance between
sensor and the desired location . The RMS estimation error
approximate cost is

(18)

where and are constants, and and are given expo-
nents.

The above definition can be easily extended to multiple
desired locations. Assume there are desired locations

, and let be the distance
between sensor and the desired location . The RMS esti-
mation error approximate cost can be taken to be

(19)

In this paper, we focus on the single desired location problem,
which illustrates the major tradeoff of interest.

To use the RMS estimation error approximate cost as a sur-
rogate for the RMS error to evaluate the KBFs performance,
we first fit the parameters in (18) to data collected with a small
subset of the possible reduced-order KBFs. In other words, the
values of , and are determined empirically, using
experimental data or simulation results based on the state-space
models for a subset of the feasible KBFs. Once the parameters
and have been determined, the RMS estimation error approxi-
mate cost will only depend on the knowledge of the distance be-
tween the desired location and the sensors associated with the
output of the given KBF. This distance is found directly from
the topology of the network and is trivial to compute.

We illustrate this methodology for the sensor distribution in
Fig. 2. Fig. 8 shows a plot of the RMS estimation error approxi-
mate cost versus the actual RMS estimation error for all 447 fea-
sible KBFs. Each feasible KBF is represented by a blue circle.
The parameters , and are determined by minimizing
the mean square difference between the RMS estimation errors
for a subset of the feasible KBFs and their corresponding RMS
estimation error approximate costs. This subset is obtained by
choosing at random 50 out of the 447 feasible KBFs. The re-
sulting estimated parameters are ,
and . The slope of the linear curve fitting plot in Fig. 8
is around 1, which means that the RMS estimation error approx-
imate cost is approximately equivalent to the actual RMS esti-
mation error, though a polynomial curve may provide a slightly
better fit. We repeated the estimation of the parameters of the
approximate cost with several different sets of 50 KBFs chosen
randomly with similar results. Therefore, we conclude that the
RMS estimation error approximate cost given by (18) can be
used as an alternative to the actual RMS estimation error.

Fig. 8. RMS Estimation Error Approximate Cost versus Actual RMS Error:
each circle represents a feasible KBF; the solid line is the linear curve fitting.

Instead of the actual RMS error, we will use in Section VI
the RMS estimation error approximate cost given
in (18) to study the tradeoffs among all feasible KBFs. This
approach is much simpler since in general it is expensive to first
evaluate the RMS error performance for all feasible KBFs.

V. COMMUNICATION COSTS FOR ALTERNATIVE KBFS

Sensors in WSNs are normally untethered and autonomous,
consuming energy from their own power sources, e.g., batteries,
that are usually difficult or costly to replenish. Therefore, power
consumption is a critical problem in most applications of WSNs.
Power is consumed not only by sensing, but also by communi-
cation and data processing. For most passive sensors, the power
consumed by sensing is very limited. Also, if the local pro-
cessing is limited, the computational burden and related power
consumption at each sensor node can be assumed to be negli-
gible. Most of the power consumed by each sensor node is re-
lated to the transmission of the sensor data, which is related to
the amount of data that will be transmitted. Therefore, we focus
in this section on the communication cost. As in Section IV, this
cost is expensive to compute for all feasible KBFs, because of
their sheer number for reasonably large WSNs. Our main goal
in this section is to derive an alternative cost that is simple to
compute and can serve as a surrogate to the exact computational
cost.

To evaluate the power consumption for each KBF, we intro-
duce the following definition of communication cost.

Definition 5 (Communication Cost): The communication
cost of a KBF in a WSN is the power consumed by its sensors
to transmit their readings at each filtering updating step to the
corresponding fusion center.

We now explain how to evaluate the communication cost as-
sociated with a given KBF, . We denote this communication
cost by . To evaluate this cost, we need to assume a model
for the communication. For simplicity, we adopt the following
assumptions.
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1) The sensor measurements for the reduced-order KBF
are fused at a single fusion center associated with that .
This center may be a node in the WSN. This is very realistic
in many applications when the computational capabilities
at most nodes are limited. When the nodes are more pow-
erful, distributed filtering algorithms [8], [16], [17] can be
applied.

2) The communication between sensors and the fusion center
is achieved by multi-hop transmission; the network de-
ploys for each hop link the stop-and-wait ARQ protocol
[18]. That is, a node will repeat the transmission of a
(sensor reading) packet until an ACK indicating correct
transmission is received. We discuss the details of the
stop-and-wait ARQ protocol below.

The power consumption associated with a KBF, should
consist of transmission power consumption for sensor reading
packets, reception power consumption for sensor reading
packets, transmission power consumption for ACKs, and re-
ception power consumption for ACKs. A closed-form version
for the communication cost is not possible given the complexity
of this cost. We make the following assumptions that reflect
the usual relative amounts of power consumption for various
operations in WSNs:

1) reception power consumption is negligible compared to
transmission power consumption;

2) ACK has a much shorter length than a sensor reading
packet, so the power consumption for both transmission
and reception of ACK is negligible;

3) the power consumption used for each transmission/retrans-
mission is similar.

Based on the above assumptions, the communication cost
can be represented by the total number of required trans-

missions, denoted by , to transfer all the sensors readings
used at each update step by to the fusion center at a given
location, i.e.,

(20)

As in the previous section, computing the communication
cost for every possible KBF is expensive, since there can be
many potential alternative cut-point sets and corresponding
KBFs. As done with the RMS estimation error, we look for an
alternative equivalent cost function that is easier to compute.
To motivate and support our definition below of a metric that is
simple to compute and serves as a surrogate for the communi-
cation cost, we carry out a simulation study that shows that this
new metric is a good indicator to the communication cost.

In our study, we regard the communication process in wire-
less sensor networks WSNs as a discrete event system, since the
start and end of packet transmissions and the searching for the
next hop in routing schemes are both discrete events that happen
only at certain points in time. Accordingly, we use a discrete
event simulator to simulate the communication process for all
the available KBFs for the sensor distribution in Fig. 2. We as-
sume that the communication between sensors and the fusion
center is multi-hop transmission. For each hop link, an ARQ
protocol is employed. We select the Greedy Routing Scheme
(GRS) [19] as our routing scheme because of its simplicity. In

Fig. 9. Communication cost versus size of KBF: each circle represents a fea-
sible KBF; the solid line is the linear curve fitting.

the GRS scheme, each node selects from among its neighbors
the node closest to the final destination node as the next hop
destination.

The results of the discrete event simulation are shown in
Fig. 9. This figure plots by circle marks the different commu-
nication costs for all KBFs within the sensor communication
range . We choose as transmission success probability

, as transmission waiting time (ms), and
as transmission delay time , where is a random number
drawn from a uniform density over the interval .

Fig. 9 shows that the communication cost, i.e., the total
number of transmissions needed to send a packet from each
of the sensors used by a given KBF to the fusion center, is
approximately linearly proportional to the size of the KBF.
Therefore, we define an approximate communication cost for
a KBF that is based only on its size. We name it the communi-
cation approximate cost.

Definition 6 (Communication Approximate Cost): Assume
that the size of the KBF is , i.e., the total number of sen-
sors (inputs and outputs) used by is . Then, the commu-
nication approximate cost of is defined as

(21)

where and are given constants.
The values of and are determined by fitting the linear

relation (21) to the available simulation/experimental data for
a small subset of KBFs. Once the parameters and have
been determined, only depends on the size of , which
is found by inspection of the KBF. In Fig. 9, the solid line is
the communication approximate cost derived by linearly curve
fitting the data points; the parameter values are and

. These values were obtained by using the costs as-
sociated with 50 randomly chosen KBFs out of the 447 feasible
KBFs. As we did for the approximate error cost, we repeated the
estimation of these parameters with several sets of 50 different
KBFs chosen randomly among the set of 447 feasible KBFs,
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obtaining each time a similar linear approximation as repre-
sented in Fig. 9. This numerical study supports the strategy of
replacing the expensive-to-compute communication cost by the
much simpler communication approximate cost when studying
the tradeoffs between RMS estimation error performance and
communication cost. This is what we will do in the next sec-
tion, where we study the sensor network tradeoffs between es-
timation error performance and communication cost among all
feasible KBFs. We use the communication approximate costs
instead of the actual communication costs whenever these are
not available or are only partly available from simulations or
experiments.

VI. PARETO OPTIMALITY FOR THE

ESTIMATION-COMMUNICATION TRADEOFF

Since, in general, there are multiple choices of cut-point sets,
i.e., multiple choices of KBFs, for the real-time estimation of
the field value at the desired locations, an important question is:
which KBF is the “best” one? We address this issue for field
estimation applications in WSN using the two cost functions in-
troduced in Sections IV and V, namely: 1) accuracy of the esti-
mation of the field and 2) cost of communication among sensors.
Therefore, the selection of the appropriate cut-point set and the
corresponding KBF is actually a problem of balancing the trade-
offs between these two competing objectives.

In this section we adopt Pareto optimality techniques [20] to
evaluate and optimize this trade off. Pareto optimality strikes
a balance between competing objectives in multi-criteria opti-
mization problems. Most real-world problems have several ob-
jective functions that are to be simultaneously minimized with
respect to the decision variables. A solution is said to be Pareto
optimal if there exist no feasible solution that would improve
one of the objective functions without causing a simultaneous
deterioration in at least one other objective function. In most
Pareto optimality problems, there is more than one Pareto op-
timal solution; the set of all feasible Pareto optimal solutions is
called the Pareto-optimal set. The Pareto optimal feasible solu-
tions are referred to as nondominated solutions. The other pos-
sible feasible solutions not on the Pareto optimal set are referred
to as dominated solutions. The Pareto front is the plot of the non-
dominated solutions in the multidimensional cost space [20].

To apply this framework to the field estimation sensor net-
work problem, the decision variables correspond to variables
chosen to define KBFs, each arising from a feasible cut-point
set. Our two competing objectives are the estimation perfor-
mance measured by the RMS estimation error associated with
the KBF, and the communication cost associated with trans-
mitting the data to a fusion center to implement the KBF.

To find a particular solution on the Pareto front, we propose
the following scalar cost function that is a linear com-
bination of the RMS estimation error and the communication
cost .

Definition 7 (RMS Error Versus Communication Cost
Tradeoff): For a given KBF , let be its RMS estima-
tion error, and let be its communication cost. The cost

Fig. 10. Pareto optimality: Tradeoff between estimation and communication
using the approximate cost functions. The circles are feasible KBFs; the
dash-dot line is the Pareto front; the cost function ���� ��� � for different �
values: � for � � ���, resulting in the KBF � � � for � � ���, resulting in
the KBF � � � for � � ���, resulting in the KBF � .

function for RMS error versus communication cost is defined
as

(22)

where is a constant, and and are constants used
for normalization purposes.

The constant , referred to as the regularization parameter,
determines the relative emphasis placed on each term of the cost
function: makes the communication cost the sole con-
cern; places the entire design burden on the field estima-
tion errors.

To calculate the cost function for each KBF, we
need to know both the RMS estimation error and the com-
munication cost for the KBF. In Sections IV and V, we dis-
cussed how to obtain these values from experimental/simula-
tion results. When the number of feasible KBFs is large, it is
not feasible to obtain experimental/simulation KBF results for
all possible cut-point sets. In these cases, we use the surrogate
cost metrics we introduced in Definitions 4 and 6, namely, the
RMS estimation error approximate cost and the commu-
nication approximate cost . The resulting cost function

can be regarded as an approximate alternative to
the original cost function .

Example 4: To illustrate the Pareto optimality approach to
choose the best KBFs, we consider the set of KBFs from the pre-
vious examples. We denote the 447 KBFs by .
To find Pareto optimal solutions, we start by populating the
Pareto plane with many points representing feasible KBFs using
the approximate cost functions and then draw the Pareto front.
Fig. 10 shows the Pareto front and cost function
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Fig. 11. Pareto optimality: Tradeoff between estimation and communication
using the exact cost computations. The circles are feasible KBFs; the dash-dot
line is the Pareto front; the cost function ���� ��� � for different � values: �
for � � ���, resulting in the KBF � � � for � � ���, resulting in the KBF
� � � for � � ���, resulting in the KBF � .

(22) for different values. In Fig. 10, each circle represents
a feasible KBF with its communication approximate cost and
RMS estimation error approximate cost as its coordinates. The
Pareto front, denoted by the dash-dot line in Fig. 10, is not
smooth because the KBFs are discrete points in the space. The
minimum values of the cost function were com-
puted for three values of , 0.1, 0.5, and 0.8, by simply com-
puting the weighted sum for each point in the figure for each
value and sorting the results to find the minimum. The resulting
costs are given by , in the figure caption, and the
points with these cost values are labeled in Fig. 10 as , ,
and , respectively.

For comparison, Fig. 11 shows the results using the exact
computations of the RMS estimation errors and communica-
tion costs. We note that, although the numbers differ slightly,
the general distributions of points in Figs. 10 and 11 are very
similar. Moreover, the KBFs selected by each approach are the
same, or very close, as shown in Fig. 12.

The difference in computation time is significant. Using the
approximate cost functions required only 140 ms, where as the
computations using the exact cost functions took 130 s, three
orders of magnitude more time than using the approximate cost.
The absolute times for this example, which involves only 53
sensors and limited data (2000 readings from each sensor), are
not the issue here, since in real applications with a very large
WSN the computation time for using the exact cost functions
will be much larger, most likely prohibitive.

The above example illustrates how to use Pareto optimality
to trade off estimation error performance and communication
cost. In summary, implementing the proposed Pareto optimal
approach involves the following steps: 1) obtain the actual esti-
mation errors and communication costs for a small subset of the
feasible KBFs by experimentation or simulation; 2) compute the

Fig. 12. Compare of Pareto optimality results between using the exact cost
computations and using the approximate cost functions. The coordinates are the
exact computation of the communication costs and RMS estimation errors. The
circles are the Pareto optimality results by using the exact cost computations; the
stars are the Pareto optimality results by using the approximate cost functions.

approximate alternatives to the estimation errors and communi-
cation for the remaining KBFs; 3) populate the Pareto plane with
the data points representing all feasible KBFs; 4) choose a KBF
that minimizes the cost function (22) for a value of

that reflects the desired relative emphasis on estimation accu-
racy versus communication cost.

Remark: Although we motivated our approach with exam-
ples, our methodology is not limited to the examples presented.
The approach is general and applies to the class of models
that we consider (physical fields arising from partial differential
equations, or Markov fields). In particular, the steps in the pro-
cedure, summarized in the previous paragraph, can be applied
to other problems for which the assumed LTI model is appro-
priate. Also, as we point out in Sections IV and V, Monte Carlo
simulations were used for our case study to evaluate RMS es-
timation error and the communication cost, and several cases
were run to validate the approximation functions in Figs. 8
and 9.

This method can be easily extended to balance other goals
in other WSN applications. The only difference is finding the
appropriate approximate alternatives for the different objective
functions used in this WSN application.

VII. CONCLUSION

Operation of a wireless sensor network (WSN) involves
tradeoffs due to the limited resources of sensors and their
potentially large number. This paper proposes an approach to
evaluate the network tradeoffs between field estimation error
and communication cost in a WSN. We present a graph-based
approach to field estimation in WSNs proposed in [5]. We ex-
ploit the field correlation as captured by an underlying physical
model. To estimate the field values at spatial locations where
there are no sensors, we apply Kalman–Bucy filtering (KBF)
to deal with sensor measurement noise. Rather than using a
single global KBF, we derive a reduced-order model of much
lower dimension to estimate the field at specified locations.
Each reduced-order model is associated with a cut-point set

that encircles the desired location. There are many possible
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cut-point sets, so there are many feasible KBFs. The design
issue is now which of these KBFs should be adopted to esti-
mate the field at the desired location. Different KBFs estimate
the field with different estimation errors and incur different
communication costs. Computing these two metrics and is
costly. We introduce approximate alternatives to compute the
estimation error and communication cost in order to dramat-
ically reduce the burden of their exact computation. Finally,
we propose a Pareto optimality scheme to balance between
the two contradictory goals: minimum estimation error and
minimum communication cost . We use simulation results to
explain and verify our approach to selecting the best KBF by
Pareto optimality.

In this paper, we give a generalized framework for real-time
field estimation of correlated distributed fields in WSNs. This
method is useful in many WSN applications such as building
climate control and environmental monitoring. The Pareto opti-
mality scheme we use to trade off between estimation errors and
communication costs can also be used to balance other goals in
WSN applications.

Directions to extend the work in this paper include the
following.

1) Distributed KBFs for field estimation. In this paper, we
assume that for each KBF there exists a single fusion
center. With the improvement of the processing capability
of sensor nodes, distributed KBFs may be appropriate
for many WSN applications. The problem of distributed
KBFs has been studied in several articles [8], [16], [17].
References [16] and [17] assume that each node has ob-
servations of the state of the physical process, which is
not true in our case where each sensor has only obser-
vations of a subset of the state variables. Reference [8]
derives a completely distributed version of the KBF by
applying the cut-set approach presented in Section III. It
will be important to study in the context of the distributed
solution in [8] the tradeoffs between estimation errors and
communication costs.

2) Grouping method for field estimation of multiple locations.
If there are multiple distributed field locations to be es-
timated, we have two choices to implement real-time
estimation: establish a KBF to estimate collectively the
field at all desired locations; or divide the desired locations
into several subgroups, and establish a KBF for each of
the subgroups. When the desired locations are sparsely
distributed, considering both estimation error performance
and communication cost, it will be important to determine
which approach is better. If the second choice is selected,
the question is then to determine the optimal grouping
method for the desired locations. In this case, the tradeoff
between estimation error performance and communication
cost becomes more complicated.
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