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Abstract—In a sensor network, in practice, the communication
among sensors is subject to: 1) errors that can cause failures of
links among sensors at random times; 2) costs; and 3) constraints,
such as power, data rate, or communication, since sensors and
networks operate under scarce resources. The paper studies the
problem of designing the topology, i.e., assigning the probabilities
of reliable communication among sensors (or of link failures) to
maximize the rate of convergence of average consensus, when the
link communication costs are taken into account, and there is an
overall communication budget constraint. We model the network
as a Bernoulli random topology and establish necessary and
sufficient conditions for mean square sense (mss) and almost sure
(a.s.) convergence of average consensus when network links fail. In
particular, a necessary and sufficient condition is for the algebraic
connectivity of the mean graph topology to be strictly positive.
With these results, we show that the topology design with random
link failures, link communication costs, and a communication cost
constraint is a constrained convex optimization problem that can
be efficiently solved for large networks by semidefinite program-
ming techniques. Simulations demonstrate that the optimal design
improves significantly the convergence speed of the consensus
algorithm and can achieve the performance of a non-random
network at a fraction of the communication cost.

Index Terms—Consensus, convergence, distributed decision,
graph, Laplacian, sensor networks, spectral graph theory,
topology.

I. INTRODUCTION

WE DESIGN the optimal topology of a sensor network,
i.e., of its communication configuration, under the fol-

lowing conditions: the optimality criterion is the convergence
rate of the average consensus algorithm; the communication
channels fail at random times; the communication among sen-
sors incurs a communication cost; and the network operates
under an overall communication cost constraint.

The consensus algorithm is an iterative distributed algorithm;
we refer the reader to the existing considerable recent litera-
ture. We make a few brief comments. Agreement and consensus
have been important problems in distributed computing, [1], [2].
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The problem of dynamic load balancing for distributed multi-
processors leads to an algorithm that is essentially consensus.
Reference [3] gives spectral conditions on the weight matrix of
the network graph for its convergence. In the multi-agent and
control literature, [4] develops a model for emergent behavior,
schooling, and flocking described in [5], [6]. It presents condi-
tions for alignment, i.e., for all agents to agree to a value that lies
in the convex hull of the initial conditions. Consensus appears
explicitly in [7], [8] that solve the average consensus problem
specifically for distributed computation of functions over net-
works. This work identified the algebraic connectivity of the
underlying graph as controlling the convergence rate of the con-
tinuous-time average-consensus algorithm. For additional com-
ments and a survey of consensus for multi-agent coordination
see [9], [10], and the references there in. Conditions for conver-
gence of iterative distributed algorithms in a very generic frame-
work have actually appeared in early work in [11], [12].

Realistic networks operate under stress: noise and errors
cause links to fail at random times; communication among
sensors entails a cost; and scarcity of resources constrain the
operation of sensors and networks. To model the link failures,
we assume a Bernoulli network: 1) at each iteration, a network
link is active with some probability; 2) network links may
have different link probabilities; 3) links fail or are alive inde-
pendently of each other; and 4) the link probabilities remain
constant across the consensus iterations. Several authors con-
sidered the consensus algorithm on Bernoulli like networks.
Reference [13] shows that consensus with unreliable links
can be cast as a special case of the more general problem of
distributed minimization of the sum of convex functions over an
erasure network, while [14] optimizes the gossip probabilities
for a given network topology under the gossip protocol—only
two sensors, randomly selected with gossip probability, can
communicate at each iteration. The recent paper [15] proves
almost sure convergence of the consensus algorithm in random
networks using ergodicity of general doubly stochastic ma-
trices. Our almost sure (a.s.) convergence result, which follows
from [15], is more restrictive but applies to doubly stochastic
matrices with a specific structure, and by exploiting this struc-
ture, leads to a simpler convergence condition. Other work on
evolving topologies includes [8] that considers continuous time
consensus in networks with switching topologies and commu-
nication delays, and [16] that studies distributed consensus on
a complete graph with identical link probabilities. References
[17] and [18] consider the impact of a fixed (nonrandom)
topology on the convergence performance of the consensus
algorithm. The networks are deterministic but drawn from
several classes of graphs, including small-world graphs.

1053-587X/$25.00 © 2008 IEEE

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 16, 2010 at 18:17 from IEEE Xplore.  Restrictions apply. 



3316 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 7, JULY 2008

All the above references do not consider the design of the
topology of the network, the main concern here. The present
paper studies the design of the topology of the sensor network
that leads to improved convergence rate of the consensus algo-
rithm when the communication among sensors incurs a cost,
and when there is an overall budget constraint that taxes the
communication in the network. This contrasts with the work on
gossip algorithms in [14], which does not consider communi-
cation costs nor a network overall communication cost budget.
Reference [19] presents our own preliminary work on this con-
strained topology design problem.

We consider several versions of the topology design problem.
1) Fixed topology with equal costs: The communication cost

is the same for all links. The network communication
cost constraint constrains the number of network links.
A version of this simplistic topology design problem
has a “closed form” solution—the class of non-bipartite
Ramanujan graphs; for the precise statement and details
on the solution, see [20]–[23].

2) Fixed topology with different costs: In this case, sensors
communicate with different costs and there is an overall
communication cost constraint. We still place a cap on
the maximum number of links and the network should be
sparse but connected. This is a difficult combinatorial op-
timization problem and there is no closed form solution in
general.

3) Random topology with different costs: Since the net-
work is random, designing the topology is the problem
of distributing the available links among sensors and
determining the link probabilities, or the fraction of time,
that each link is used. The communication costs are link
dependent, there is an infrastructure communication cost
constraint, and a maximum number of links. Because
the network is random, it makes sense to constrain the
(network) average, or expected, communication cost per
iteration. This version of the problem relaxes the combi-
natorial fixed topology problem described in item 2) and
usually leads to solutions that are better than fixed topolo-
gies, especially under medium to low communication cost
constraints. This is because a fixed topology forces the use
always of the same network, while the random topology
can occasionally, with a small nonzero probability, make
use of very good, but costly links, still meeting the cost
constraint, while accelerating the rate of convergence to
consensus.

The paper establishes several spectral graph conditions for
problem 3) that guarantee mean square sense and almost sure
convergence of the consensus algorithm. Because problem 3) is
not convex, we approximate it in two convex steps. We can then
solve 3) and design the topology by semidefinite programming
techniques. Simulations show that the resulting topology has
very good convergence properties.

We outline the paper as follows. Section II summarizes spec-
tral graph theory concepts and formalizes the Bernoulli network
model. Sections III, IV, and V derive necessary and sufficient
conditions for mean square sense (mss) and a.s. convergence
of the state in the consensus algorithm in terms of the spec-
tral properties of the graph topology and present bounds on the

convergence rate. Section VI formulates the topology design
for the randomized distributed consensus with a communication
cost constraint (RCCC) problem, and then a convex constrained
approximation to RCCC, to which we apply semidefinite pro-
gramming (SDP) techniques. Section VII solves numerically
this SDP optimization. We show that these designs can improve
significantly the convergence rate, for example, by a factor of
3, when compared to geometric networks (networks where sen-
sors communicate with every other sensor within a fixed radius)
and that they can achieve practically the performance of a non-
random network at a fraction, e.g., 50%, of the communication
cost per iteration. Section VIII concludes the paper.

II. RANDOM TOPOLOGY AND DISTRIBUTED

AVERAGE CONSENSUS

This section discusses the Bernoulli random topology that we
adopt to model a sensor network with link failures and recalls
basic concepts from graphs and from distributed average con-
sensus.

Random Topology: Bernoulli Model: In a nonrandom
topology, the communication channels stay available whenever
the sensors need to communicate. However, in typical sensor
networks the bandwidth is constrained and the channels are
imperfect. The nonrandom topology no longer is a realistic
model; an alternative model that makes sense in many applica-
tions is the erasure link model: at each iteration, a link between
sensors and is online or offline with probabilities and

, respectively. We refer to as the link probability.
This models adequately, for example, networks using the ARQ
protocol, where, if no acknowledgement packet is received
within the protocol time window, the packet is assumed to be
dropped or lost, corresponding to an erasure or link failure.
Other similar situations include delayed transmissions (where
a large delay is equivalent to a loss), or when, occasionally, the
channel introduces large signal distortions.

We remark that the erasure link model is an approximation
since it implicitly assumes that sensors exchange quantized data.
On the other hand, the consensus algorithm involves commu-
nication of analog-amplitude data, in which case the effects of
additive noise are very relevant. A more appropriate analysis, al-
beit more complex, considers quantized data, additive noise in
the links, and link erasures. This analysis would divert the focus
of this paper and is pursued elsewhere, see [24], [25].

We represent the sensor network by a graph
where the sensors are vertices in the vertex set and the net-
work links or communication channels correspond to the edges
in the edge set . We assume that the graph is simple and con-
nected,1 and take and . The set collects
all the channels that can be established directly among pairs
of sensors, i.e., it is the set of realizable edges. These chan-
nels may fail at random times, but if then sensors
and cannot communicate directly—of course, they still com-
municate by rerouting their messages through one of the paths
connecting them in , since is connected. We call the su-
pergraph.

1A graph is called simple if it is devoid of loops (self-edges) and multiple
edges. It is connected if every vertex can be reached from any other vertex,
which in network terms may require a routing protocol.
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To model the random link failures, we take the state (online
or offline) of each link to be a Bernoulli process
with link probability, i.e., of the edge being online, to be ;
see also [14], [15], [19]. We assume that for distinct pairs of
realizable edges , the corresponding Bernoulli pro-
cesses are statistically independent. Under this model, at each
time , the sensor network topology is a random graph

, with a random subset. For example, the
neighborhood, , of vertex in that defines the net-
work topology is

(1)

The cardinality is the node degree and is the
number of edges online at time and connected to vertex .
To the supergraph and each random graph , we asso-
ciate standard matrices: adjacency matrices and
( if ), diagonal degree matrices and

, graph Laplacians and
, and weight matrices and . Of particular

interest is when the weights are all equal to

(2)

For the Bernoulli random topology, the matrices in the
sets , , and are statistically indepen-
dent, identically distributed (i.i.d.) random matrices. Note that

, where is the zero matrix and
stands for , . The probability of an
instantiation , , , and is . Define
the link probability matrix

The diagonal elements are zero because the graph is simple (no
loops). The structure of reflects the structure of the adjacency
matrix of the superset , i.e., if and only if .
The matrix is not stochastic since their row or column sums
are not normalized to 1. Abusing notation, we will refer to as
the probability distribution of the , and, likewise, of ,

, and .
The matrix means are , where

if
otherwise.

(3)

Average Consensus: Average consensus, see [8] computes
by a distributed algorithm the average of ,
where is available at sensor at time 0. At time , each
node exchanges its state , synchronously
with its neighbors specified by the graph edge neighborhood
set, . In vector form, the states are collected in
the state vector . Define the vector of ones and
the matrix . The vector of averages is written

(4)

For the sequence of random topologies, , state up-
date by average consensus proceeds according to the iterative
algorithm

(5)

(6)

where is the matrix of weights. The sparsity
of is determined by the underlying network connectivity
at time , i.e., for , the weight if .
Iterating (6),

(7)

The state is random. Section IV analyzes the impact of the
topology on the convergence of (7).

III. PRELIMINARY RESULTS

The section considers properties of the Laplacian and weight
matrices, needed in Sections IV through VI when studying the
random topology and random topology with communication
cost constraint problems; for additional graph theory concepts
see [26]–[28]. We will often drop the iteration index ; the con-
text should make it clear when the quantities are iteration de-
pendent.

The Laplacian is a symmetric positive, semidefinite ma-
trix with eigenvalues

(8)

The normalized eigenvector corresponding to
is

(9)

The multiplicity of is the number of connected com-
ponents of the graph. If is connected, , often
referred to as the algebraic connectivity (or Fiedler value), see
[29].

Lemma 1: Let the mean Laplacian be the weighted Laplacian
for a graph

(10)

Proof: The proof is simple and follows from [30].
The convergence results in Section IV involve the mean

, which is manifestly difficult to compute and manip-
ulate. A much easier quantity to compute is . By Jensen’s
inequality and recalling that is a concave function of
(see [31]), we have the following.

Lemma 2: .
Let be the spectral norm of the matrix . For symmetric

matrices the spectral radius is equal to the matrix 2-norm.
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Lemma 3: For a given , is convex on
.
For a given

(11)

Proof: To prove the first statement, note that, for a given ,
is a convex function of . In fact, let

and . We then have

(12)

Convexity and the first statement follow by taking expectation
on both sides of (12).

The second statement is similarly proved and follows from
Jensen’s inequality.

Lemma 3 and (12) provide an easily computable lower bound
on .

IV. CONVERGENCE OF AVERAGE CONSENSUS:
RANDOM TOPOLOGY

We study convergence of the state in average consensus for
random topologies

(13)

in some appropriate probabilistic sense. Let be the -norm.
We start by giving next two equivalent necessary and sufficient
conditions for convergence of the mean vector

(14)

Theorem 4: The mean converges iff either one of the fol-
lowing holds

1) .
2) and .

If the mean converges, the choice of that minimizes
is

(15)

Proof: We sketch the first part of the proof. The matrix
satisfies

Using the i.i.d. properties of , we obtain from (7)

(16)

Convergence is now equivalent to condition 1. For the equiva-
lence of 1. and 2. in Theorem 4 note that

(17)

The theorem also follows from a straightforward generalization
to non-binary Laplacian matrices of the convergence results in
deterministic consensus in [32].

We now consider convergence in the mean-square-sense
(mss) in Section IV-A and almost sure convergence (conver-
gence with probability 1) in Section IV-B.

A. Mean Square Convergence

This section studies mean-square convergence

(18)

which implies convergence of the mean, but not the reverse.
Theorem 5: If , the state vector

sequence converges in mss.
Proof: From a result in [19], stated here without proof, for

any

(19)
Taking expectation on both sides of (19) and using the i.i.d.
properties of the ’s

(20)
The theorem follows. We dropped the index in in (20).

Theorem 5 shows that the smaller is, the
faster the mss convergence is. The value of
depends both on the probability distribution of the Laplacian

and on the constant weight . However, the probability dis-
tribution of must satisfy certain conditions to guarantee that
there are values of that lead to mss convergence. Otherwise,
no choice of will result in mss convergence. The next theorem
considers this issue. Before stating the theorem, let be the
maximum degree of the graph with edge set and define

(21)

Theorem 6: There is an such that the consensus algorithm
converges in mss iff . In other words, if ,
we can find an , in particular, defined in (21), that
leads to mss convergence. If , no choice of will
result in mss convergence.
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Proof: The proof of sufficiency is constructive. We show
that, if , we can find an for which

. Convergence then follows from Theorem 5.
Let . By Lemma 1, is irreducible. From the irre-

ducibility of , with non-zero probability, we have graph real-
izations, , for which is irreducible and so

. In particular, with non-zero probability, we can have a re-
alization for which the edge set ; by assumption, this
network is irreducible and hence connected (because the cor-
responding Laplacian matrix has the same sparsity pattern of

with non-zero entries of replaced by ones.) Hence, with
non-zero probability, , which makes .
Thus, we have

(22)

Also, it follows from spectral graph theory (see [30]), that, for
any realizable graph ,

(23)

We now claim mss convergence for . We note that

(24)

where the last step follows because, from (23) and (21),

(25)

Taking expectation on both sides of (24), and since
, we get

(26)

and mss convergence then follows from Theorem 4. This proves
sufficiency.

Necessity follows from the fact that, if , Theorem 4
precludes convergence of the mean vector. Since, by Corollary 9
(see below), convergence of the mean is necessary for mss con-
vergence, we conclude that, if , no choice of will
result in mss convergence.

Theorem 6 gives necessary and sufficient conditions on the
probability distribution of the Laplacian , i.e., on or , for
mean square convergence. This is significant as it relates mss
convergence to the network topology. Because this condition
is in terms of the algebraic connectivity of the mean Laplacian
associated with the link probability distribution , it is straight-
forward to check.

B. Almost Sure Convergence

We show that is also a necessary and sufficient
condition for a.s. convergence of the sequence . Be-
fore proceeding, we state the definition of a.s. convergence of
(scalar) random variables.

Definition 7 (A.S. Convergence of Random Variables): Let
be a sequence of random variables defined on some

common probability space . Then converges
a.s. to another random variable defined on

a.s. iff

(27)

For random vectors a.s. convergence means a.s. convergence
of each component. We recall that mss convergence of a se-
quence of random variables implies convergence in
probability through Chebyshev’s inequality. Also, convergence
in probability implies a.s. convergence of a subsequence (see
[33].)

Theorem 8: The sequence converges a.s. iff
. In particular, if , then for

a.s. On the contrary, if , then no choice
of leads to a.s. convergence.

Proof: We consider sufficiency first. Since the ’s in
this paper satisfy the conditions and ,
the assumptions of Theorem 6 in [15] are met and hence The-
orem 8 falls under the purview of Theorem 6 in [15]. However,
we provide a brief constructive proof here, which shows that

leads to a.s. convergence if . From The-
orem 6 above, the sequence

(28)

Thus, in probability and there exists a subsequence
that converges to 0 a.s. Further, from (23) and (24),

and using ,

(29)

In a similar vein to (19) and using (29)

(30)

Thus, is a non-increasing sequence of random vari-
ables, a subsequence of which converges a.s. to 0. Clearly

a.s. and sufficiency follows.
Necessity uses the argument given in Theorem 6.
We comment on Theorems 6 and 8. In this paper, we con-

sider only equal link weights, i.e., all the links are assigned
the same weight , see (2). However, whatever the weights
are, in particular, different weights for different links, a neces-
sary condition for mss convergence (and a.s. convergence) is

. This is because, if , the network sepa-
rates into two components with zero probability of communica-
tion between each other. Hence, no weight assignment can lead
to mss convergence. Thus, the necessary condition established
in Theorems 6 and 8 for mss convergence and a.s. convergence,
respectively, in the constant link weight case also holds for the
more general weight assignments.
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V. MSS CONVERGENCE RATE

We study how fast the consensus algorithm can converge. We
focus on mss convergence. A first result follows from Theorem
4 and Lemma 3.

Corollary 9: mss convergence cannot be faster than conver-
gence of the mean vector.

To optimize the mss convergence rate, we note that, given a
particular distribution of the Laplacian , hence , the actual
choice of plays a significant role in determining the conver-
gence rate. To optimize the rate for a given , or , we perform
the minimization

(31)

We present the results in terms of the mss convergence rate for-
mally defined next.

Definition 10 (mss Convergence Rate): Let . If for
a given , , we call

(32)

the mss convergence gain per iteration or the mss convergence
rate of the consensus algorithm.

Because the ln is monotonic, the best achievable mss conver-
gence rate for a given or is

(33)

There is, in general, no closed form solution for the minimiza-
tion in (31). It depends on the probability distribution of the
Laplacian . By Lemma 3, is convex in

for a given or ; so, its minimum is attainable by numer-
ical procedures. Denote the minimizing by . The following
Lemma provides a range where the optimal lies.

Lemma 11: Let . Then

(34)

Proof: We note that, a necessary condition for mss con-
vergence is convergence of the mean vector. For a proof, let us
assume, that, we have mss convergence, i.e.,

(35)

Also, we have from Jensen’s inequality

(36)

since, the -norm is a convex function on . It then fol-
lows from ((35), (36)), that

(37)

thus, implying convergence of the mean vectors.
Hence, from Theorem 4, leading to fastest mss conver-

gence must belong to the range in (34).

We can bound the optimal mss convergence rate .
Lemma 12: If , then

(38)

Proof: By Theorem 6, if , then leads
to mss convergence and

(39)

(40)

(41)

VI. CONSENSUS WITH COMMUNICATION CONSTRAINTS:
TOPOLOGY OPTIMIZATION

The previous sections analyzed the impact of the link proba-
bility distribution on the convergence rate of the distributed
consensus algorithm. This section studies the design of the
sensor network topology that leads to the fastest rate of conver-
gence but when there is a cost for the sensors and to
communicate and there is an overall infrastructure communi-
cation cost constraint . We collect the costs into a symmetric
cost matrix . We assume equal link weights throughout. The
constraint captures the common fact that networks usually
have an overall average power budget to operate with.

A. Random Topology With Communication Cost Constraints
(RCCC)

We restate the RCCC problem presented in Section I. The
network has sensors and follows the Bernoulli random model
introduced in Section II. The communication costs between any
pair of sensors at each iteration is specified by the matrix

—entry , , is the cost incurred by a single
communication between nodes and . If , sensors

and do not communicate directly, only through other sensors
by a routing protocol. The total cost incurred at stage is

(42)

(43)

Equation (43) follows because is symmetric with zero diag-
onal entries. Equation (42) implicitly assumes that, if

, ; in other words, the edge is not in
the superset .

Let be the link probability matrix. The diagonal entries of
are zero, although each node accesses its data with zero cost.

The matrix induces a probability distribution on the Laplacian
. Since is random, the cost at step is random and

is between 0 (all links fail) and the total cost when all links with
non-zero are active. From (43), the expected cost incurred
at step is

(44)
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Let be the set of feasible (and hence ) given the
expected network cost constraint per step

(45)

The optimal RCCC topology is obtained by solving the fol-
lowing optimization problem:

(46)

The second inequality constraint comes from the fact that
, . The other conditions follow from the properties

of the Laplacian and the cost constraint. We note that the RCCC
optimal solution is a function of ; we denote it by

(47)

B. Alternate Randomized Consensus Under Communication
Cost Constraints (ARCCC)

The RCCC problem in (46) is difficult because it is non-
convex. Its objective function is the expected value of the spec-
tral norm of a matrix. This expectation is with respect to the
probability distribution of the Laplacian, which is the product
of the entries of the link probability matrix . Absorbing in

does not make the RCCC objective function convex
on this distribution of , as can be easily seen by working a
low order example. A second similar concern is that when is
absorbed into , the interpretation of the entries of as proba-
bilities is lost, and it is not possible to incorporate the cost con-
straint, which explicitly involves the probabilities.

We consider a suboptimal version, the alternate randomized
consensus under communication cost constraint (ARCCC)
problem. ARCCC decouples the optimization in from the
optimization in and, when optimizing over , replaces the
convergence rate by the algebraic connectivity .
We show: (i) ARCCC is convex and can be solved by fast
numerical optimization procedures; (ii) ARCCC is a good
approximation to (46); and (iii) ARCCC leads to topologies
with good convergence rates. Point (i) is next; points (ii) and
(iii) are in Section VIII where we analyze the performance of
ARCCC. But first, we present ARCCC formally.

(48)

(49)

We show that ARCCC is a convex optimization problem.
Lemma 13: Each step in ARCCC is a convex optimization

problem.
Proof: We consider (48). The objective is concave

on . The set of satisfying the constraints is convex. Con-
cavity of (49) is equivalent to the minimization in Lemma 3,
which is convex.

The optimization problem in Lemma 13 is a semidefinite pro-
gramming (SDP) problem that can be solved numerically in ef-
ficient ways, see [34], [35] for SDP solving methods (see also
[31], [36] on the problem of constrained optimization of graph
Laplacian eigenvalues.)

In both the RCCC and ARCCC problems, the constraint is on
the average network communication cost. This is appropriate
in many practical situations but, as a consequence, the instan-
taneous communication cost per iteration in the ARCCC de-
sign will exceed from time to time the average communication
constraint . Applications where constraining the instantaneous
costs is required will lead, in general, to integer constraints and
to a much harder optimization problem.

VII. TOPOLOGY OPTIMIZATION: PERFORMANCE RESULTS

In this section, Section VII-A discusses in what sense
the ARCCC problem presented in Section VI-B and (48)
and (49) approximates well the RCCC problem described in
Section VI-A and (46). Section VII-B establishes bounds on
the optimal value of as a function of the communication
budget constraint . Finally, Section VII-C illustrates by simu-
lation the fast rate of convergence of distributed consensus on
the ARCCC derived topology.

A. ARCCC as a Good Approximation to RCCC

As noted, in RCCC, the joint optimization over and
is not convex. This leads to an alternative formulation, the
ARCCC topology optimization problem. We argue here why
this is plausible and then present numerical results that confirm
that ARCCC’s are good performing topologies.

We arrive at ARCCC by successively approximating RCCC
by the following steps.

1) We would like to decouple the joint nonconvex optimiza-
tion over and into two convex optimization steps. This
will in general result in a loss of optimality, as discussed
below.

2) When optimizing over , start by replacing the RCCC
convergence rate functional by the average alge-
braic connectivity . To justify this, we note that
(41) bounds from below, which suggests that larger
values of lead to higher values of . This
suggests that, intuitively, and are mono-
tonically related and the orderings they induce on the set
of distributions are equivalent. This is strictly not
true, but the numerical experiments below do confirm it as
a general trend. Hence, it is to be expected that a topology
that maximizes the quantity over the set
will exhibit fast mss convergence rate, while satisfying the
communication constraint .

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 16, 2010 at 18:17 from IEEE Xplore.  Restrictions apply. 



3322 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 7, JULY 2008

Fig. 1. Convergence rate S (L). Left: with varying E[� (L)]. Right: with varying � (L). The number of vertices is N = 500.

3) Replacing by does not lead, still, to
a numerically simple topology optimization problem,
since computing requires costly Monte Carlo
simulations (see [19].) So, in ARCCC, the optimization
of is replaced by maximization of , which
simply involves computing the second eigenvalue of

, no Monte Carlo simulations being involved. This
approximation is justified on the basis of Lemma 2, which
upper-bounds by suggesting that, for

to be large, should be large.
Putting together these steps, the RCCC problem in (46) is

successively approximated by

(50)

where is given by

(51)

In general, . If was a non-decreasing

function of , we would have . We also
note here, that, once we obtain from ARCCC, the op-
timal is computed by minimizing with re-
spect to , as given in (31). This is a scalar convex minimiza-
tion problem and can be done very efficiently using standard
line search techniques, because the range of the optimal is
bounded by Lemma 11.

We verify by two sets of numerical studies how and in what
sense increases with and . For the first
set of simulations, we choose a network with sen-
sors and let the average degree of the network vary in
steps of 5 from 10 to 40. For each of these 7 values of ,

we construct 200 Erdös–Rényi random graphs by choosing at
random edges of the possible
pairings of vertices in the network. Each of these graphs fixes
the structure of the superset . For each of these 200 superset
(random) graphs, we generate randomly a link probability ma-
trix (hence a probability distribution of , and so an ) by
choosing for each edge a number between 0 and 1 drawn from
a uniform random distribution. With each such matrix, we
generate 400 random instantiations of the Laplacian ,

and average the corresponding values of
and to estimate the convergence rate

and the mean algebraic connectivity . For each , we
obtain the corresponding by (3). In total, the simulation
generated 560,000 Erdös–Rényi graphs of 500 vertices with the
number of edges ranging from 10,000 to 40,000. Fig. 1 plots
the numerically computed convergence rate with respect
to (left plot, blue solid line) and with respect to
(right plot, blue solid line.) These two plots are remarkably sim-
ilar and both show that, except for local oscillations, the trend
of the convergence rate is to increase with increasing

and . Of course, is much easier to eval-
uate than .

We now present a similar set of simulations for the class of
Random Geometric Graphs (see [37]), which are used as a rea-
sonable model for wireless sensor networks. In particular, we
consider a 35 35 square grid on the plane and deploy 500
sensors with a uniform distribution on the square. The random
network deployment is repeated 10 times. For each deployment,
the set is determined by the radius of connectivity defined as
the maximum distance to which a sensor can possibly commu-
nicate with another sensor. For each deployment, we increase
in steps of 3.5 units starting from to ,
totalling 14 steps. For each value of , we generate randomly
100 matrices. Each entry of , the link probability for
edge , is chosen randomly with a uniform distribu-
tion . To obtain by numerical average estimates of

and , we generate 120 random graphs from
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each . and . Fig. 1 plots using red lines versus
and averaged over the 10 sensor deployments.

Except for the local oscillatory behavior in Fig. 1, these plots
confirm that, as a trend, given a class of probability dis-
tributions of , we can set an ordering in by evaluating
the corresponding ’s. This ordering is in the sense that,
given two very different values of , the largest will most
likely lead to a better convergence rate (see also [19], where part
of these results were presented.) This study shows that optimal
topologies with respect to ARCCC should be good topologies
with respect to RCCC since is, as a trend, monotonic with
respect to .

B. ARCCC: Performance Analysis

To gain insight into ARCCC, we study the maximum value
of its functional as a function of the communication cost con-
straint

(52)

Lemma 14: Given a cost matrix , is a concave func-
tion of .

Proof: Let and . Consider the
matrices and , such that

It follows that and . Let
. Then,

(53)

Hence, . From this, we conclude that

(54)

Now, since is a concave function of , we get

(55)

Finally, using (54) and (55), we get

(56)

that establishes the concavity as a function of of the ARCCC
optimal cost .

We use the concavity of to derive an upper bound on
. Denote by the edge set of the complete graph—the

set of all possible edges. Recall that the set of
realizable edges

(57)

with the associated Laplacian. Also, let the total cost ,
i.e., the communication cost per iteration when all the realizable
links (links in ) are used, be

(58)

Lemma 15: Let be a cost matrix and . Then
. If, in particular, , then .

Further,

(59)

Proof: The best case is when all the network links
have link probability (the links in the complement set
must have zero link probability to satisfy the cost constraint.)

Then, . Now, if , then and hence
the first part follows. The case follows from the fact
that, for a complete graph, (see [26], [27].) The
second part follows from an exactly similar argument.

Using the concavity of (Lemma 14), we now derive a
performance bound when .

Lemma 16: Let be a cost matrix. Then

(60)

If, in particular, , then

(61)

Proof: From Lemma 15, . Then, using
the concavity of (see Lemma 14) and the fact that

, we have, for ,

(62)

This proves the Lemma. The case follows easily.
Lemma 15 states that , , and as func-

tions of reach their maximum value at . Equation (62)
also shows that lies above the straight line obtained by
linearly interpolating between and

. Now, since we argue that is,
in general, a non-decreasing function of , we expect the

versus the curve to lie above the straight line be-
tween and

. Lemma 16 is interesting in this sense, since
it states that the ARCCC optimal topology may achieve better
performance (in terms of the convergence gain ) than the
fraction of communication cost it uses would lead us to expect.
The numerical study in the next section helps to quantify these
qualitative assessments.
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Fig. 2. Left: Sensor placement of N = 80 sensors in a 25 � 25 square grid (� = 1). Right: Convergence gain versus communication cost U : ARCCC optimal
topology—top (blue) line; CRGG topology—bottom (red) line.

C. Numerical Studies: ARCCC

This section determines the probability distribution and the
weight by solving the semidefinite programming optimiza-
tion in ARCCC given by (48) and (49). The matrix assigns
to each realizable link its probability of error, or the fraction of
time it is expected to be active. For fixed , the maximization
in (48) leads to and . For this , (49) is a scalar convex
minimization problem and Lemma 11 gives the range where
the optimal lies. Because of the boundedness of the search
interval, as noted before, practically any line search algorithm
will find the optimal easily. In the paper, we discretize the in-
terval with a very fine resolution, evaluate the objective at these
points and take the minimum. A fine resolution gives very good
performance (comparable to line search methods like Armijo
rule) because the spectral functions of these type of matrices
are well-behaved.

We compare the ARCCC optimal topology to a random geo-
metric graph topology of fixed radius connectivity. We refer
to them as constrained random geometric graphs (CRGG) be-
cause sensors only transmit to other sensors within a radius but
for which there is a finite communication cost, i.e., an edge in

. The sensor network, shown on the left of Fig. 2, deploys
with uniform probability sensors on a 25 25 square
grid. The set of realizable links is constructed by choosing

edges randomly from the set of all possible edges.
We assume a geometric propagation model: the communication
cost is proportional to the square of the Euclidean distance
between sensors and

if
otherwise

(63)

where is an appropriately chosen constant. With this CRGG
network, a sensor communicates with all other sensors with
a finite communication cost that lie within a radius .

Fig. 2 on the right plots, as a function of the cost constraint ,
the per step convergence gain for the ARCCC optimal
topology (top blue solid line) and the per step convergence gain

of the CRGG topology (bottom red dotted line).

The ARCCC optimal topology converges much faster than the
CRGG topology, with the improvement being more significant
at medium to lower values of .

The ARCCC topology has a markedly nonlinear behavior,
with two asymptotes (the dotted black lines): for small ,
the sharp increasing asymptote and for large the horizontal
asymptote (when all the realizable edges in are used.) The two
meet at the knee of the curve
For , the ARCCC convergence rate is

, while CRGG’s is ,
showing that the ARCCC’s topology is 3.3 times faster than the
CRGG’s. For this example, we compute ,
which shows that the ARCCC’s optimal topology achieves
the asymptotic performance while using less than 50% of the
communication cost.

VIII. CONCLUSION

The paper presents the design of the topology of a random
sensor network to maximize the convergence rate of the con-
sensus algorithm. We consider that the communication channels
among sensors may fail at random times, that communication
among sensors incurs a cost, and that there is an overall com-
munication cost constraint in the network. The solution to this
topology optimization specifies for each realizable link its prob-
ability of error, or the fraction of time the link is expected to be
active. We first establish necessary and sufficient conditions for
mss convergence and a.s. convergence of the consensus algo-
rithm in terms of the expected value of the algebraic connec-
tivity of the random graph defining the network topology and
in terms of the algebraic connectivity of the average topology.
We approximate the original optimization problem by an alter-
native two step algorithm, the approximate random communica-
tion cost constraint (ARCCC) problem. ARCCC is convex and
we solve it by semidefinite programming techniques.

We discuss briefly some tradeoffs presented by the ARCCC
design. Simulations show it can improve by about 300% the con-
vergence speed of average consensus over more common de-
signs, e.g., the CRGG design, i.e., geometric topologies where
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sensors communicate with sensors within a fixed distance. Our
study also shows that the optimal random topology can achieve
the convergence speed of a nonrandom network at a fraction of
the cost. But, by maximizing the algebraic connectivity of the
network to achieve these higher convergence rates, the ARCCC
solution is not always local; it involves, even if with low prob-
ability, long distance communications, since the transmission
radius is increased. This causes possibly added or stronger in-
terference with further away sensors. This requires more com-
plicated communication protocols (e.g., some form of multi-
plexing like time division multiple access protocols) than, for
example, with a fixed-radius connectivity topology, in order to
coordinate transmissions among sensors, avoid collisions, or
combat the stronger interference. These effects can still be ac-
counted for by the approach in this paper, but the price paid by
the ARCCC design is to increase the costs of communication
per iteration, i.e., the entries in the cost matrix . This means
that with the ARCCC design there is a price to pay. To be more
realistic, in Fig. 2, the ARCCC design with communication cost
constraint should have been compared with a CRGG
design with cost constraint , and, this may
be a subject of future work.
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