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Abstract—The paper studies average consensus with random
topologies (intermittent links) and noisy channels. Consensus
with noise in the network links leads to the bias-variance
dilemma—running consensus for long reduces the bias of the
final average estimate but increases its variance. We present two
different compromises to this tradeoff: the A — A/D algorithm
modifies conventional consensus by forcing the weights to satisfy a
persistence condition (slowly decaying to zero;) and the A — N'C
algorithm where the weights are constant but consensus is run
for a fixed number of iterations 7, then it is restarted and rerun
for a total of p runs, and at the end averages the final states of
the p runs (Monte Carlo averaging). We use controlled Markov
processes and stochastic approximation arguments to prove al-
most sure convergence of A — AND to a finite consensus limit
and compute explicitly the mean square error (mse) (variance)
of the consensus limit. We show that A — AN/D represents the
best of both worlds—zero bias and low variance—at the cost
of a slow convergence rate; rescaling the weights balances the
variance versus the rate of bias reduction (convergence rate). In
contrast, A — A/C, because of its constant weights, converges
fast but presents a different bias-variance tradeoff. For the same
number of iterations 2p, shorter runs (smaller 7) lead to high bias
but smaller variance (larger number p of runs to average over.)
For a static nonrandom network with Gaussian noise, we compute
the optimal gain for .A — A/C to reach in the shortest number of
iterations 7p, with high probability (1 — §), (e, §)-consensus (e
residual bias). Our results hold under fairly general assumptions
on the random link failures and communication noise.

Index Terms—Additive noise, consensus, sensor networks, sto-
chastic approximation, random topology.

I. INTRODUCTION

ISTRIBUTED computation in sensor networks is a well-
D studied field with an extensive body of literature (see, for
example, [1] for early work.) Average consensus computes iter-
atively the global average of distributed data using local com-
munications, see [2]—[5] that consider versions and extensions
of basic consensus. A review of the consensus literature is in [6].
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Reference [7] designs the optimal link weights that optimize the
convergence rate of the consensus algorithm when the connec-
tivity graph of the network is fixed (not random). Our previous
work, [8]-[11], extends [7] by designing the topology, i.e., both
the weights and the connectivity graph, under a variety of con-
ditions, including random links and link communication costs,
under a network communication budget constraint.

We consider distributed average consensus when simultane-
ously the network topology is random (link failures, like when
packets are lost in data networks) and the communications
among sensors is commonly noisy. A typical example is time
division multiplexing, where in a particular user’s time slot the
channel may not be available, and, if available, we assume the
communication is analog and noisy. Our approach can handle
spatially correlated link failures and certain types of temporally
Markovian sequences of Laplacians and Markovian noise,
which go beyond independently, identically distributed (i.i.d.)
Laplacian matrices and i.i.d. communication noise sequences.
Noisy consensus leads to a tradeoff between bias and variance.
Running consensus longer reduces bias, i.e., the mean of the
error between the desired average and the consensus reached.
But, due to noise, the variance of the limiting consensus grows
with longer runs. To address this dilemma, we consider two
versions of consensus with link failures and noise that represent
two different bias-variance tradeoffs: the A — N'D and the
A — NC algorithms.

A — N'D updates each sensor state with a weighted fusion of
its current neighbors’ states (received distorted by noise). The
fusion weights «(7) satisfy a persistence condition, decreasing
to zero, but not too fast. A — ND falls under the purview of con-
trolled Markov processes, and we use stochastic approximation
techniques to prove its almost sure (a.s.) consensus when the
network is connected on the average: the sensor state vector se-
quence converges a.s. to the consensus subspace. A simple con-
dition on the mean Laplacian, L=E {L}, for connectedness is
onits second eigenvalue Ao (L) > 0. We establish that the sensor
states converge asymptotically a.s. to a finite random variable
6 and, in particular, the expected sensor states converge to the
desired average r (asymptotic unbiasedness.) We determine the
variance of #, which is the mean square error (mse) between
6 and the desired average. By properly tuning the weights se-
quence {«(4)}, the variance of # can be made arbitrarily small,
though at a cost of slowing .4 — A/ Ds convergence rate, i.e., the
rate at which the bias goes to zero.

A — NC is a repeated averaging algorithm that performs
in-network Monte Carlo simulations: it runs consensus p times
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with constant weight «, for a fixed number of iterations 7 each
time, and then each sensor averages its p values of the state
at the final iteration 7 of each run. A — N'Cs constant weight
a speeds its convergence rate relative to A — NDs, whose
weights «(7) decrease to zero. We determine the number of
iterations 2p required to reach (e, §)-consensus, i.e., for the bias
of the consensus limit at each sensor to be smaller than Ke,
with high probability (1 — §). For nonrandom networks, we
establish a tight upper bound on the minimizing 2p and compute
the corresponding optimal constant weight . We quantify the
tradeoff between the number of iterations 7 per Monte Carlo
run and the number of runs p.

Finally, we compare the bias-variance tradeoffs between
the two algorithms and the network parameters that determine
their convergence rate and noise resilience. The fixed weight
A — NC algorithm can converge faster but requires greater
intersensor coordination than the A — A/D algorithm.

A. Comparison With Existing Literature

Random link failures and additive channel noise have been
considered separately. Random link failures, but noiseless
consensus, is in [11]-[16]. References [11]-[13] assume an
erasure model: the network links fail independently in space
(independently of each other) and in time (link failure events
are temporally independent.) Papers [14] and [16] study di-
rected topologies with only time i.i.d. link failures, but impose
distributional assumptions on the link formation process. In
[15], the link failures are i.i.d. Laplacian matrices, the graph
is directed, and no distributional assumptions are made on the
Laplacian matrices. The paper presents necessary and sufficient
conditions for consensus using the ergodicity of products of
stochastic matrices.

Similarly, [17]-[19] consider consensus with additive noise,
but fixed or static, nonrandom topologies (no link failures.) They
use a decreasing weight sequence to guarantee consensus. These
references do not characterize the mse. For example, [18] and
[19] rely on the existence of a unique solution to an algebraic
Lyapunov equation. The more general problem of distributed
estimation (of which average consensus is a special case) in
the presence of additive noise is in [20], again with a fixed
topology. Both [17] and [20] assume a temporally white noise
sequence, while our approach can accommodate a more general
Markovian noise sequence, in addition to white noise processes.

In summary, with respect to [11]-[20], our approach con-
siders: i) random topologies and noisy communication links
simultaneously; ii) spatially correlated (Markovian) dependent
random link failures; iii) time Markovian noise sequences; iv)
undirected topologies; v) no distributional assumptions; vi) con-
sensus (estimation being considered elsewhere); and vii) two
versions of consensus representing different compromises of
bias versus variance.

Briefly, the paper is as follows. Sections II and III sum-
marize relevant spectral graph and average consensus results.
Sections IV and V treat the additive noise with random link
failure communication analyzing the A — A'D and A — NC
algorithms, respectively. Finally, Section VI concludes the

paper.
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II. ELEMENTARY SPECTRAL GRAPH THEORY

We summarize briefly facts from spectral graph theory. For
an undirected graph G = (V, E), V = [1--- N] is the set of
nodes or vertices |V| = N, and E is the set of edges |E| = M.
The unordered pair (n,!) € E if there exists an edge between
nodes n and [. We only consider simple graphs, i.e., graphs de-
void of self-loops and multiple edges. A path between nodes n
and [ of length m is a sequence (n = %g,%1,...,%m = ) of
vertices, such that, (ix,ix+1) € E,0 < k < m — 1. A graph
is connected if there exists a path, between each pair of nodes.
The neighborhood of node 7 is

Q. ={leV]|(nl) eE}. )

Node n has degree d,, = |2,,| (number of edges with n as
one end point.) The structure of the graph can be described
by the symmetric N x N adjacency matrix, A = [A,],
Ap =1, if (n,l) € E, 0 otherwise. Let the degree matrix
be the diagonal matrix D = diag(d;---dn). The graph
Laplacian matrix L is

L=D-A. ©))

The Laplacian is a positive semidefinite matrix; hence, its eigen-
values can be ordered as

0= (L) < Ao(L) <+ < An(LD). 3)

The multiplicity of the zero eigenvalue equals the number of
connected components of the network; for a connected graph
A2(L) > 0. This second eigenvalue is the algebraic connectivity
or the Fiedler value of the network; see [21]-[23] for detailed
treatment of graphs and their spectral theory.

III. DISTRIBUTED AVERAGE CONSENSUS WITH
IMPERFECT COMMUNICATION

In a simple form, distributed average consensus computes the
average r of the initial node data

1 N
r= an::lxn(O) 4)

by local data exchanges among neighbors. For noiseless and
unquantized data exchanges across the network links, the state
of each node is updated iteratively by

Eali+ 1) = wan(i)za(i)

+ > w(i)m(i), 1<n<N ()
1€Q, (3)

where the link weights, w,,;s, may be constant or time varying.
Similarly, the topology of a time-varying network is captured
by making the neighborhoods (2, s, to be a function of time.
Because noise causes consensus to diverge, [10], [24], we let
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the link weights to be the same across different network links,
but vary with time. Equation (5) becomes

Tn(i+ 1) = [1 — a(i)dn ()] T, (0)
+a(i) Z xy(7),

1€Q, (3)

1<n<N. (6)

We address consensus with imperfect intersensor communica-
tion, where each sensor receives noise corrupted versions of its
neighbors’ states. We modify the state update (6) to

Za(i+1) =[1 — a(i)dn(7)] 2, (7)
+a(i) Z fari [Ta(2)],

1€Q,, (1)

1<n<N (1)

where { fn1.i}1<n.1<n, i>0 is @ sequence of functions (possibly
random) modeling the channel imperfections. In the following
sections, we analyze the consensus problem given by (7), when
the channel communication is corrupted by additive noise. In
[25], we consider the effects of quantization (see also [26] for
a treatment of consensus algorithms with quantized commu-
nication.) Here, we study two different algorithms. The first,
A — N'D, considers a decreasing weight sequence (a (i) — 0)
and is analyzed in Section IV. The second, A — NC, uses re-
peated averaging with a constant link weight and is detailed in
Section V.

IV. A — N'D: CONSENSUS IN ADDITIVE NOISE AND
RANDOM LINK FAILURES

We consider distributed consensus when the network links
fail or become alive at random times, and data exchanges are
corrupted by additive noise. The network topology varies ran-
domly across iterations. We analyze the convergence properties
of the A — N/'D algorithm under this generic scenario. We start
by formalizing the assumptions underlying A — A/D in the next
Subsection.

A. Problem Formulation and Assumptions

We compute the average of the initial state x(0) =
[21(0)---2x(0)]" € RN*! with the distributed consensus
algorithm with communication channel imperfections given
in (7). Let {vni(2) }1<n.i<n, i>0 be a sequence of independent
zero mean random variables. For additive noise,

frri(y) =y + vn(3). (8)

Recall the Laplacian L defined in (2). Collecting the states x,, ()
in the vector x(1), (7) is

x(i + 1) =x(i) — a(i) [L()x(i) + n(3)] )
()], =m(i)
=— Y (), 1<I<N,i>0. (10)
ke (2)

We now state the assumptions of the A — N'D algorithm.!
1) Random Network Failure: We propose two models; the
second is more general than the first.

ISee also [27], where parts of the results are presented.
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1.1) Temporally i.i.d. Laplacian Matrices: The graph
Laplacians are

L(i)=L+L(i), Vi>0 (11)
where {L(7)}:>0 is a sequence of i.i.d. Laplacian ma-
trices with mean L = E [L(4)], such that X, (L) > 0.
We do not make any distributional assumptions on
the link failure model, and, in fact, as long as the
sequence {L(i)};>0 is independent with constant
mean L, satisfying Ay (L) > 0, the i.i.d. assumption
can be dropped. During the same iteration, the link
failures can be spatially dependent, i.e., correlated
across different edges of the network. This model
subsumes the erasure network model, where the link
failures are independent both over space and time.
Wireless sensor networks motivate this model since
interference among the sensors communication cor-
relates the link failures over space, while over time,
it is still reasonable to assume that the channels are
memoryless or independent.
Connectedness of the graph is an important issue. We
do not require that the random instantiations G(3) of
the graph be connected; in fact, it is possible to have
all these instantiations to be disconnected. We only re-
quire that the graph stays connected on average. This
is captured by requiring that As (L) > 0, enabling us
to capture a broad class of asynchronous communica-
tion models; for example, the random asynchronous
gossip protocol analyzed in [28] satisfies Ao (f) >0
and hence falls under this framework.
1.2) Temporally Markovian Laplacian Matrices:
Our results hold when the Laplacian matrix sequence
{L(i,%x(3)) }i>0 is state-dependent. More precisely,
we assume that there exists a two-parameter random
field, { L(4,X) };>0,xer~ x1 of Laplacian matrices such
that

E[L(i,x)] = L, Vi, x (12)

and A\o(L) > 0. We also require that, for a fixed
i, the random matrices, {L(7,X)}xcr~x1, are inde-
pendent of the sigma algebra, o (x(j),0 < j <i).2
It is clear then that the Laplacian matrix sequence,
{L(i,%(3)) }i>0, is Markov. We will show that our
convergence analysis holds also for this general link
failure model. Such a model may be appropriate in
stochastic formation control scenarios, see [29]-[31],
where the network topology is state-dependent.

2) Communication Noise Model: We propose two models;

the second is more general than the first.

2.1) Independent Noise Sequence : The additive noise
{vni1(?) }1<n.1<n, i>0 is an independent sequence

E[vni(i)] =0,V1<n,l<N,i>0,
sup E [v2,(i)] =p < .

n,l,i

(13)

2This guarantees that the Laplacian L(i, x(¢)) may depend on the past state
history {x(j), j < 4}, only through the present state x(¢).
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The sequences, {L(7)}i>o and {vn1(7)}1<ni<n, i>0
are mutually independent. Hence, L(i), {v.i(7)},
1<n, <N, 1 > 0 are independent of
o (x(4),0 < j < 1), Vi. Then, from (10)

E [n(i)] =0, Vi
supE [[n(i)[|] =n < N(N = 1D)u <oco.  (14)

No distributional assumptions are required on the noise
sequence.

2.2) Markovian Noise Sequence: Our approach
allows the noise sequence to be Markovian through
state-dependence. Let the two-parameter random field,
{n(i,x)};>0,xervx1 of random vectors

En(i,x)] =0, Vi,x. (15)

For fixed ¢, the random vectors {n(i,X)}, crnv=1 are
independent of the o-algebra, o (x(j),0 < j <1)
and the random families {L(i,X)}xcrvx1 and
{n(i,x)}xervx1 are independent. It is clear then
that the noise vector sequence {n(i,x(7))};>0 is
Markov. Note, however, in this case the resulting
Laplacian and noise sequences {L(i,x(z))},~, and
{n(i,x(7))},>, are no longer independent; they are
coupled through the state x(%). In addition to (15), we
require the variance of the noise component orthog-
onal to the consensus subspace [see (31)] to satisfy,
for constants ¢, co > 0

Elllne: (i, 0)[%] < ex + eallxe |1*. (16)

We do not restrict the variance growth rate of the
noise component in the consensus subspace. This
clearly subsumes the bounded noise variance model.
An example of such noise is

n(i, x(2)) = 9(i) (x(i) + w(i)) (17)

where {¥(i) }i>0 and {w(4)};>0 are zero mean finite
variance mutually i.i.d. sequences of scalars and vec-
tors, respectively. It is then clear that the condition in
(16) is satisfied, and the noise model 2.2) applies. The
model in (17) arises, for example, in multipath effects
in MIMO systems, when the channel adds multiplica-
tive noise whose amplitude is proportional to the trans-
mitted data.

3) Persistence Condition: The weights decay to zero, but not

too fast

a(i) >0, > a(i) =00, Y a’(i) < co. (18)

i>0 i>0

This condition is commonly assumed in adaptive control
and signal processing. Examples include

a(i) = Liﬂ 5<B<1. (19)
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For clarity, in the main body of the paper, we prove the results
for the A — A/D algorithm under Assumptions 1.1), 2.1), and
3). In the Appendix, we point out how to modify the proofs when
the more general assumptions 1.2) and 2.2) hold.

We now prove the almost sure (a.s.) convergence of the
A — N'D algorithm in (9) by using results from the theory of
stochastic approximation algorithms [32].

B. A Result on Convergence of Markov Processes

A systematic and thorough treatment of stochastic approxi-
mation procedures has been given in [32]. In this section, we
modify slightly a result from [32] and restate it as a theorem
in a form relevant to our application. We follow the notation of
[32], which we now introduce.

Let X = {x(7)},>, be a Markov process on
erating operator £ of X is

RY*1 The gen-

LV (i,x) = E[V (i +1,x(i + 1)) |x(i) = x] — V(i,x) (20)

for functions V' (i,x), i > 0, x € RV*1, provided the condi-
tional expectation exists. We say that V (i, x) € D in a domain
A, if LV (i,x) is finite for all (7, x) € A.

Denote the Euclidean metric by p(-). For B C RV*1, the
e-neighborhood of B and its complement is

Ue(B) = {wl inf p(z,y) < 6} 21
Yy
V.(B) =R\ U.(B). (22)

We now state the desired theorem, whose proof we sketch in
the Appendix.

Theorem 1: Let X be a Markov process with generating op-
erator L. Let there exist a nonnegative function V' (i,x) € D
in the domain s > 0, x € RV*!, and B C RV*! with the fol-
lowing properties:

1)
inf  V(i,x)>0, Ve >0 (23)
i>0,xeV, (B)
V(i,x)=0, x€ B (24)
xh—I?B ?121%) V(i,x) =0 (25)
2)

LV (i,%) < g(i)(1 +V(i,x)) — a(i)p(i,x)  (26)

where (i, x),7 > 0, x € RV*! is a nonnegative function

such that
-, ,-
'L',xEH‘I’((B) o(i,x) >0, Ve > 0 27)
3)
a(i) >0, > a(i) = oo (28)
i>0
g(i) >0, > " g(i) < oc. (29)
i>0
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Then, the Markov process X = {x(7)},-, with arbitrary initial
distribution converges a.s. to B as ¢ — oco. In other words,

P lim p(x(i),B)=0) =1 (30)

Proof of Convergence of the A — N'D Algorithm

The A — N'D distributed consensus algorithm is given by (9)
in Section IV-A. To establish its a.s. convergence using Theorem
1, define the consensus subspace, C, aligned with 1, the vector
of 1s,

C={xeR¥"': | x=al,aeR}. (31)
We recall a result on distance properties in RV *! to be used in
the sequel. We omit the proof.

Lemma 2: Let S be a subspace of RV*!. For x € RVX!,
consider the orthogonal decomposition x = xs + Xg+. Then
p(x,8) = [xsu .

Theorem 3: (A — ND a.s. convergence) Let assumptions
1.1), 2.1) , and 3) hold. Consider the A — N'D consensus al-
gorithm in (9) in Section IV-A with initial state x(0) € RV *1.
Then,

P [ lim p(x(i),) = 0] =

7 —> 00

(32)

Proof: Under the assumptions, the process X = {x(7)},

is Markov. Define B

V(i,x) = x' Lx. (33)

The potential function V' (4,x) is nonnegative. Since x € C is
an eigenvector of L with zero eigenvalue

V(i,x)=0,x€C,

lim sup V(i,x) = 0. 34

x—C >0

The second condition follows from the continuity of V (i, x).
By Lemma 2 and the definition in (22) of the complement of
the e-neighborhood of a set

x € Vi(C) = ||xci|| > e (35)
Hence, for x € V.(C),
V(i,x) =xTLx
> X (L) [lxc+|?
>y (L) €. (36)

Then, since by assumption 1.1) A2(L) > 0 (note that the as-
sumption \y(L) > 0 comes into play here), we get

V(i,x) > Ao(L)e? > 0.

inf

37
i>0,x€V,(C) 7
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Now consider LV (,x) in (20). Using (9) in (20), we obtain
£V (i,%) = [x(i + 1) Tx(i + 1) | x(3)

[x — a(i)Lx — a(i)L(i)x — a(i)n(i)]T

= X] — XTZX

=E

T [X — a(i)Ix — a(i)L(i)x — a(i)n(i)} ]

—xTIx.

(38)

Using the independence of L(i) and n(i) with respect to x(i),
that L(7) and n(7) are zero-mean, and that the subspace C lies
in the null space of L" and L() (the latter because this is true

for both L(7) and L), (38) leads successively to
- Za(i)xTZQX + aZ(i)fo?)x
~ T_ /-
+E [a2(i) (L(z’)x) L (L(i)x)}
+E [o*(i)n(i)" Ln(i)]
< - 204(") T+ a2(D)Aw (L) [lxe - |12
o*(i)Av (L ) [IZG@)x 1]
o?())An (L)E [[In(i)||*]
< - 2a( )x TL x4 (DA (D)3 ||IxcL |2
02 ()N (T)E [N (2())] Iixe |1
a2( ))\N(L)
< = 2a(i)x" L x + > ()An (D) ||xc |I°
+40?())N?Ax (D) lxc- |1?
o (i) A (L)n-
The last step follows because all the eigenvalues of E(L> are less
than 2N in absolute value, by the Gershgorin circle theorem.

Now, by the fact x'Lx > Xo(L)||x¢1||? and A2(L) > 0, we
have

LV (i,x) =

(39)

LV (i,x)
y -
< —20()xTL’x + o2(i) | An(T)n + /;\J;((é’))XTZX
4N2\y (L) xTZx]
Xa(L)

< —a(i)p(i,x) + g(i) [1 + V (i, )] (40)

where
o(i,x) = 2XTZQX,

g(i)= a2@max </\N(f)77 ?V(Z)

A
" Xo(L)

b -
LAV AN(L)). (41)

A2(L)

It is easy to see that ¢(4,x) and g(¢) defined above satisfy the
conditions for Theorem 2. Hence,
p Lli)moop( (i),C) = o} ~ 1. 42)
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Theorem 3 assumes 1.1), 2.1), 3). For an equivalent statement
under 1.2), 2.2), see Theorem 11 in the Appendix.

Theorem 3 shows that the sample paths approach the con-
sensus subspace, C, with probability 1 as ¢ — oco. We now show
that the sample paths, in fact, converge a.s. to a finite point in C.

Theorem 4: (a.s. consensus: Limiting random variable) Let
assumptions 1.1), 2.1), and 3) hold. Consider the A — N'D con-
sensus algorithm in (9) in Section IV-A with initial state x(0) €
RN XL Then, there exists an almost sure finite real random vari-
able # such that

P [ lim (i) = 01] =1 43)
Proof: Denote the average of x(¢) by
1
Tavg(i) = 3717 x(0). (44)
The conclusions of Theorem 3 imply that
P [ lim[x(7) = vy (1)1 = o} -1 45)

Recall the distributed average consensus algorithm in (9). Pre-
multiplying both sides of (9) by 17/N, we get the stochastic
difference equation for the average as

= xavg(z') - E(L)
)= 3 €G)

0<j<i

Tavg(t + 1)
(46)

where

£(i) = $1Tn(i).

Given (14), in particular, the sequence {n(7)} is time indepen-
dent, it follows that

E[£(i)] =0, Vi
a2 (i
S el = 3 WE [ngi?
>0 i>0
s%;wm
<o @7)
which implies
E [ (@avg(3))°] < 224 & >oa%G), Vi, 48

7>0

Thus, the sequence {Zavg(%)}i>0 is an Lo bounded martingale
and, hence, converges a.s. and in £ to a finite random variable
0 (see, [33]). The theorem then follows from (45). [ ]

Again, we note that we obtain an equivalent statement under
Assumptions 1.2), 2.1) in Theorem 7 in the Appendix. Proving
under Assumption 2.2) requires more specific information about
the mixing properties of the Markovian noise sequence, which
due to space limitations is not addressed here.
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C. Mean Square Error

By Theorem 3, the sensors reach consensus asymptotically
and converge a.s. to a finite random variable 6. Viewed as an esti-
mate of the initial average  (see (4)), # should possess desirable
properties like unbiasedness and small mse. The next Lemma
characterizes the desirable statistical properties of 6.

Lemma 5: Let 0 be as in Theorem 4 and r as in (4). Define
the mse ( as

(=E [(0 - r)ﬂ . (49)

Then, the consensus limit é is unbiased and its mse bounded as
shown

E 9] = (50)
C<xz 20’ (51)
i>0
Proof: From (46), we have
E [zavg ()] = 7, Vi. (52)

Since {Tavg(7)},>, converges in Ly to 6 (Theorem 4), it also
converges in L1, and we have

E[f] = lim E[zag(i)] =1

17— 00

(53)

which proves (50). For (51), by Theorem 4, the sequence
{(zavg(i) — )2}, converges in Ly to (§ — r)?. Hence

C=E[0-r)]
_ 2
el
?(4)
= > FE ()] (54)
i>0

Equation (51) follows from (54) and (48), with ) the bound on
the noise variance. [ |

Lemma 13 in the Appendix shows equivalent results under
Assumptions 1.2) and 2.1). Proving under Assumption 2.2) re-
quires more specific information about the mixing properties of
the Markovian noise sequence, which we do not pursue here.

Equation (54) gives the exact representation of the mse. As a
byproduct, we obtain the following corollary for an erasure net-
work with identical link failure probabilities and i.i.d. channel
noise.

Corollary 6: Consider an erasure network with M realizable
links, identical link failure probability, p, for each link, and the
n01se sequence {vn; () }1<n.1<n, i>0 be of identical variance
o2. Then the mse is

o2(1 —
M L=D S 02())

720

(= (55)

Proof: Using the fact that the link failures and the channel
noise are independent, we have
Elln(i)|I’] = 20°M (1 ~ p). (56)

The result then follows from (54). |
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While interpreting the dependence of (55) on the number of
nodes, IV, it should be noted that the number of realizable links
M must be O(N) for the connectivity assumptions to hold.

Lemma 5 shows that, for a given bound on the noise variance,
7, the mse ( can be made arbitrarily small by properly scaling
the weight sequence, {a(j)},>0. As an example, consider the
weight sequence

1
=

a(j) vj.
Clearly, this choice of «() satisfies the persistence conditions

of (28) and, in fact

S o)=Y 5=

720 =1’
Then, for any € > 0, the scaled weight sequence {&(j)} ;5

A7) V6eN
a)) = ——~
V(i +1)
will guarantee that ( < e. However, reducing the mse by scaling
the weights in this way will reduce the convergence rate of the
algorithm; this tradeoff is considered in the next section.

D. Convergence Rate

The A — N'D algorithm falls under the framework of sto-
chastic approximation and, hence, a detailed convergence
rate analysis can be done through the ODE method (see, for
example, [34].) For clarity of presentation, we skip this detailed
analysis here; rather, we present a simpler convergence rate
analysis, involving the mean state vector sequence only under
assumptions 1.1), 2.1) , and 3) . From the asymptotic unbiased-
ness of 4, it follows

lim E [x()] = r1.

71— oo

(57)

Our goal is to determine the rate at which the sequence
{E [x(¢)]}i>0 converges to 1. Since L(%) and x(7) are inde-
pendent, and n(7) is zero mean, we have

E[x(i+1)] = (I — a(i)L) E [x(i)], Vi. (58)
By the persistence condition (18) the sequence (i) — 0.
Without loss of generality, we can assume that

i) 2

< — Y ————0» V". 59
SN " &

Then, it can be shown that (see [11])

[IE [x(&)] = r1f| <

[T (-a(r(D)

0<j<i—1
IE [x(0)] =1l (60)
Now, sincel —a < e7%,0 < a <1, we have
JE (@] - ) < (o P (Eosszi0))
IE [x(0)] —r1]|. (61)
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Equation (61) shows that the rate of convergence of the mean
consensus depends on the topology through the algebraic con-
nectivity A2 (L) of the mean graph and through the weights (3).
It is interesting to note that the way the random link failures af-
fect the convergence rate (at least for the mean state sequence)
is through A2 (L), the algebraic connectivity of the mean Lapla-
cian, in the exponent, whereas, for a static network, this reduces
to the algebraic connectivity of the static Laplacian L, recov-
ering the results in [17].

Equations (61) and (51) show a tradeoff between the mse and
the rate of convergence at which the sequence {E [x(¢)]},~,
converges to 71. Equation (61) shows that this rate of conver-
gence is closely related to the rate at which the weight sequence
«(7) sums to infinity. For a faster rate, we want the weights
to sum up fast to infinity, i.e., the weights to be large. In con-
trast, (51) shows that, to achieve a small (, the weights should
be small.

We studied the tradeoff between convergence rate and mse of
the mean state vectors only. In general, more effective measures
of convergence rate are appropriate; intuitively, the same trade-
offs will be exhibited, in the sense that the rate of convergence
will be closely related to the rate at which the weight sequence,
«(7), sums to infinity, as verified by the numerical studies pre-
sented next.

E. Numerical Studies—A — N'D

We present numerical studies on the A — A/D algorithm that
verify the analytical results. The first set of simulations confirms
the a.s. consensus in Theorems 3 and 4. Consider an erasure
network on N = 100 nodes and M = 5N realizable links,
with identical probability of link failure p = .4 and identical
channel noise variance o> = 15. We take (i) = 1/4¢ and
plot on Fig. 1 on the left, the sample paths {2, (i) }1<n<n, Of
the sensors over an instantiation of the .4 — A/D algorithm. We
note that the sensor states converge to consensus, thus verifying
our analytical results.

The second set of simulations confirms the mse in
Corollary 6. We consider the same erasure network, but
take 02 = 30 and «(i) = 1/5i. We simulate 50 runs of the
A — N'D algorithm from the initial state. Fig. 1 on the center
plots the propagation of the squared error (z,,(i) — 7)? for a
randomly chosen sensor n for each of the 50 runs. The cloud of
(blue) lines denotes the 50 runs, whereas the extended dashed
(red) line denotes the exact mse computed in Corollary 6. The
paths are clustered around the exact mse, thus verifying our
results.

The third set of simulations studies the tradeoff between
mse and convergence rate. We consider the same erasure
network, but take 02 = 50, and run the A — N'D algorithm
from the same initial conditions, but for the weight sequences
{as(i) = s/i}i>0, s = .33,.1. Fig. 1 on the right depicts the
propagation of the squared error averaged over all the sensors
(1/N) Z;y:l(fl?n(t) — 7)? for each case. We see that the solid
(blue) line (s = .33) decays much faster initially than the
dotted (red) line (s = .1) and reaches a steady state. The dotted
line ultimately crosses the solid line and continues to decay at
a very slow rate, thus verifying the mse versus convergence
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90 — T T T T T T V. A — NC : CONSENSUS WITH REPEATED AVERAGING
80 | o o . : l The stochastic approximation approach to the average con-
sensus problem, discussed in Section IV, achieves arbitrarily
70 b o o ] small mse, see (51), possibly at the cost of a lower convergence
rate, especially, when the desired mse is small. This is mainly
S 60 Ff : : ; : _ : because the weights «(4)s decrease to zero, slowing the conver-
Ry gence as time progresses, as discussed in Section IV-E. In this
50 : : : ; ¢ : 1 section, we consider an alternative approach based on repeated
: : : : : : : averaging, which removes this difficulty. We use a constant link
40 |- 5568 5 : - T weight (or step size) and run the consensus iterations for a fixed
: number, 7, of iterations. This procedure is repeated p times, each
) [passisipusac RS e time starting from the same initial state x(0). Since the p final
: : states obtained at iteration 7 of each of the p runs are indepen-
0 160 260 360 4(')0 5(')0 660 760 800 dent, we average tl.lem anq get the law of large Eumbirs to work
] for us. There is an interesting tradeoff between 7 and p for a con-
7 stant total number of iterations 7p. We describe and analyze this
10 . : . . ; algorithm and consider its tradeoffs next. The section is orga-
: : nized as follows. Section V-A sets up the problem, states the as-
l . : sumptions, and gives the algorithm .4 — N/C for distributed av-
8 ‘ o ‘ v erage consensus with noisy communication links. We analyze
o y J T — i S ; the performance of the A — NC algorithm in Section V-B. In
= : : : : : Section V-C, we present numerical studies and suggest general-
B oo .
| izations in Section V-D.
'/N\ 5 ....................................................
E 4f ..... — T L | A. A — NC: Problem Formulation and Assumptions
= ' : : : Again, we consider distributed consensus with communica-
tion channel imperfections in (7) to average the initial state,
x(0) € RVXL, The setup is the same as in (8) to (10).
, : A — NC Algorithm: The A — NC algorithm is the fol-
0 Bl e lowing Monte Carlo (MC) averaging procedure:
0 200 400 600 800 1000 1200
i xP(i4+1) = xP(i) — a (LxP (i) + nP (7))
5 0<i<7-1,1<p<p, x"(0) =x(0) (62)
45 e Sarssarsasy 3 ressrmanes & (W '?3 1 where (i) is the state at sensor 7 at the ith iteration of the pth
o 4 e : : e MC run. In particular, 22 (7) is the state at sensor 7 at the end of
PP 3 | U VOO SN SOV DR SO the pth MC run. Each run of the A — NC algorithm proceeds
= ’ foAr 7 iterations and there are p MC runs. Finally, the estimate
\&E < 1M S S S M S 1 7P (7) of the average ,.4(0) at sensor 7 is
ng @ == ah (). (63)
~z Py
We analyze the A — ANC algorithm under the following
assumptions. These make the analysis tractable, but, are not
necessary. They can be substantially relaxed, as shown in

0 i i i i i i
0 100 200 300 400 500 600 Section V-D.
i 1) Static Network: The Laplacian L is fixed (deterministic,)
and the network is connected, A2(L) > 0. (In Section V-D
Fig. 1. Left: Sensors sample paths, {7,(i)}1<n<n, of the A—ND we will allow random link failures.) o
algorithm, verifying a.s. consensus. Center: Sample paths of the A — N'D 2) Independent Gaussian Noise Sequence: The additive
algorithm, verifying the mse bound. Right: mse versus convergence rate noise {Uﬁl(’b)} 1<nI<N, i,p>0 is an independent Gaussian

tradeoff. '
sequence with
E[v,(4)] =0, Y1 <n, <N, i,p>0,
rate tFadeoff, which we established rigorously by restricting sup E [ (UZI(Z))Z} <o o
attention to the mean state only. Lt
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From (10), it then follows that

E [n?(i)] =0, Vi, p
SUpE [[nf (i)|°] = ¢hax < (N = 1 < 00

i,l,p

(65)

3) Constant link weight: The link weight « is constant across
iterations and satisfies

0<a< (66)

2
An(L)

Letr = 17x(0)/N be the initial average. To define a uniform
convergence metric, assume that the initial sensor observations
x(0) belong to the following set (for some K € [0, c0)):

K={x(0) e RN*': |||x(0) —=r1|| < K}.  (67)

As performance metric for the A — A'C approach, we adopt the
€ — & averaging time T (e, §) given by

T, 6) = i*p* (68)
where
(i, p")
7P (7) —
= arg %?;f{(’iﬁ) | x(ior)lglci%fﬂ:" (W < e) >1- 5}
(69)

and the superscript o denotes explicitly the dependence on the
link weight c.

We say that the A — A/C algorithm achieves (e, §)-consensus
if T (e, 6) is finite. A similar notion of averaging time has been
used by others, see for example, [35] and [36]. The next section
upper bounds the averaging time and analyzes the performance

of A — NC.

B. Performance Analysis of A —

The A — NC iterations can be rewritten as

xP(i4+1)=WxP(i)+ xP(i), 0<i<7—1
1 <p<p, xP(0) =x(0) (70)
where
W=1I-alL
xP(i) = —an?(i), 0<i<7—1,1<p<p. (71)

Also, for the choice of « given in (66), the following can be
shown (see [7]) for the spectral norm

1
Y2 ZP(W— NJ>

:p([—aL—iJ><17J:11T (72)
N
where p(-) is the spectral radius, which is equal to the induced
matrix 2 norm for symmetric matrices.

We next develop an upper bound on the averaging time
T%(e,6) given in (68). Actually, we derive a general bound
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that holds for generic weight matrices W. This we do next,
in Theorem 7. We come back in Theorem 10 to bounding the
averaging time (68) for the model (70) when the weight matrix
W is as in (71) and the spectral norm is given by (72).
Theorem 7: Averaging Time Consider the distributed itera-
tive procedure (70). The weight matrix W is generic, i.e., is not
necessarily of the form (71). It does satisfy the following as-
sumptions:
1) Symmetric Weights:
W:WT7W1:1,V2:p<W—%J><1 (73)
2) Noise Assumptions: The sequence {x? (%) }i>0,>1 is a se-
quence of independent Gaussian noise vectors with uncor-
related components, such that
E[x"()] =0, sup sup E [(Xf(L)) ] < d)max
i>0,p>11<I<N
(74)
Then, we have the following upper bound on the averaging
time T2 (e, 6) given by (68)

T (e,6) <T7 (e, 6) (75)
. Ing 442, n(2)
V2 —(—2 “Pmax "\s)
T7 (e, 6) <1n'}/2 —i—l) [( oo
me 1 1-2 /7 4
. 2 — 4 —_— —
e 100

(Note we replace the superscript o by 2 because we prove re-
sults here for arbitrary W satisfying (73), not necessarily of the
form I — al..)

For the proof we need a result from [10], which we state as a
Lemma.

Lemma 8: Let the assumptions in Theorem 7 hold true. De-
fine

mi() =E [+ (@],
w(i) =E [(@} () = mu()’]
1<p<p 1<I<N. )

(Note that these quantities do not depend on p.) Then we have
the following:
1) Bound on error mean:

[mu(2) = r| <75(1%(0) — 1]

<K, Vx(0) €K, 1<I<N  (18)

2) Bound on error variance:

z 1 - 72 1_i
N -2 N

vx(0) e RV, 1<I<N (79

vi(1) < Groax

~

§=1 is an i.i.d. sequence, with
d .
z; (1) = N(mu(2),u(?)), 1 <p <p.

Proof: For proof, see [10]. ]
We now return to the proof of Theorem 7.

3) {7 ()
(80)
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Proof: [Theorem 7] The estimate T} (2) of the average at
each sensor after p runs is in (63). From Lemma 8 and a standard
Chernoff type bound for Gaussian random variables (see [37]),
then

7 (1) — mu(7)
P|——— <« >1—2exp{

—pKe
= } 81)

2’[}1( )

(For the present derivation we assume Gaussian noise; however,
the analysis for other noise models may be done by using the
corresponding large deviation rate functions.)

For arbitrary € > 0, define

Ine
We) = {ln%—‘ . (82)
Also, for arbitrary ¢,§ > 0, define
~ 2u(2)
6) = In — 83
e = | w3 . (53)
Then, we have from (78) in Lemma 8
|mi(@) — 7| _ € (€
Py =1 ¢ >7(= <<
<3 Vz_z(2)71_l_N (84)

Also, we have from (81),

(@) — m(i)

Pl ——F— <

Vﬁzﬁ(%,&), 1<I<N. (85)

From the triangle inequality, we get
[z} @) —r| < 17 @) —mu @)+ [mu (@) —r], VI < T < N. (86)

It then follows from (84) that

~

€ ~
(@) - m@)| < K5 = [7/({) —r| < Ke,

<<

?z?(%) 1<I<N. (87)

We, thus, have for 7 > %(e/2) and p > p( /2,6)

>1-61<I<N (88)

where the last inequality follows from (85).
From the definition of 772 (e, §), see (68), we then have

Pt £5(5)3(5)

In § du (7). 2
(11172 +1> ( Ke "5t

1- 22 1
R sy - 1
193 ( N> i

(90)

(89)
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where the third inequality follows from (79). |

We call the upper bound on T2 (¢, ¢) in (76) given in The-
orem 7 the approximate averaging time. We use T (e,0) to
characterize the convergence rate of A — NC. We state a prop-
erty of 772 (e, §).

Lemma 9: Recall the spectral radius, 2, defined in (73).
Then, for 0 < €,6 < 1, T (¢,8) is an increasing function of
72 in the interval 0 < vo < 1. R

Proof: The lemma follows by differentiating 172 (e, 6)
with respect to ya. ]

We now study the convergence properties of the A — A/C al-
gorithm, (62), i.e., when the weight matrix W is of the form
(71) and the spectral norm satisfies (72). Then, the averaging
time becomes a function of the weight . We make this explicit
by denoting as T (e, §) and T (e, 6) the averaging time and the
approximate averaging time, respectively.

Theorem 10: (A — NC Averaging Time) Consider the
A — NC algorithm for distributed averaging, under the as-
sumptions given in Section V-A. Define

T (e, 0) = . . (e, 0)
T*(e,6) = 0<a<'2/§N<L)T“(e,5). (91)
Then
D 0<a< g
T%,6) <00, Ve>0,6<1. (92)

This essentially means that the A — NC algorithm is real-
izable for « in the interval (0,2/An(L)).
2) For 0 < a < 2/An(L), we have

402 rznax In (%)
Ke

+ ke (L +1[ (94)
1—~2 N
andy, = p(I — al — 1/N.J).

3) For a given choice of the pair 0 < ¢,0 < 1, the best

achievable averaging time T™*(¢, §) is bounded above by
T*(e, 6), given by

93)

In <

T _: 2
T (e, 6) =il o (2/n@y+an (D) <—ln(1 oy " 1)

402 [znaxln (%)
Ke
In 5
Nn(l—a(L )) N
+1 (A—aXx(L))"e” aAz(L)Q 2 ]
1— (1 Oé)\g

Note that in (95) the optimization is over a smaller range on
« than in (91).

(95)
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Proof: The iterations for the A — NC algorithm are given
by (70), where the weight matrix W is given by (71) and the
spectral norm 2 by (72). Also, since (i) = —anP(i), we get

sup  sup E [(x](i))?] < @®¢pax <00 (96)

i>0,p>1 1<IKN

Then, the assumptions (73), (74) in Theorem 7 are satisfied for
« in the range (66) and the two items (92) and (94) follow. To
prove item 3), we note that it follows from 2) that T*(e,6) <
T* (e, 6), where

T*(,8) =  inf T, 6)

0<a<2/An (L)
. ( In § )
= inf —=+1
0<a<2/An(L) \ Inys

40> fnaxln(%)
X . A
Ke
g 1 1-%-/ 1 X
Ny Nt T2 \'"N)) T

and v = p (I — aL — 1/NJ). Now, consider the functions

4(;531% In (%) In %
= 1
9(72) e <1n’72 + >
In € 1 1— ﬁ 1
2 4

- + =4+ —7(1-= o7

[Nln’yg N 1—~3 < N)]
and

(98)

with v, as before. Similar to Lemma 9, we can show that, g(y2)
and h(vy2) are nondecreasing functions of +,. It can be shown
that v2» = p(I — aL —1/NJ) attains its minimum value at
a = a* (see [7]), where

= ———————. (99)

. 2
o §a<)\N(L> (100)
and
h<p<[—a'L—%J))§h(p I—aL——J))
. 2
0" Sa< = (0D
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which implies, that, for a® < a < 2/An (L)
1
T%(e,8) = I—al——J
(e,0) =a’g <p < al -+ ))
+h I L iJ
P ol —
> (a*)? T—a'lL— 27
Z g\p N
+h I °L ! J
P ! N
=T (e,06). (102)
So, there is no need to consider o > «°®. This leads to
T*(e,8) = inf TG, 6
(e:6) 0<a<12n/)\N(L) (e,6)
= inf T, 6).  (103)
0<a<2/(A2(L)+AN (L))
Also, it can be shown that (see [7])
1
’yg:p<l—aL—NJ> =1-—al(L)
0<a< (104)

- )\Q(L) + )\N(L) )

This, together with (103) proves item 3). [ ]

We comment on Theorem 10. For a given connected network,
it gives explicitly the weight a for which the A4 — N'C algo-
rithm is realizable (i.e., the averaging time is finite for any (e, §)
pair.) For these choices of «, it provides an upper bound on
the averaging time. The Theorem also addresses the problem
of choosing the « that minimizes this upper bound.3 There is, in
general, no closed form solution for this problem and, as demon-
strated by (95), even if a minimizer exists, its value depends on
the actual choice of the pair (e, ¢). In other words, in general,
there is no uniform minimizer of the averaging time.

C. A — NC : Numerical Studies

We present numerical studies on the .4 — N/C algorithm. We
consider a sensor network of N = 230 nodes, with communica-
tion topology given by an LPS-II Ramanujan graph (see [10]), of
degree 6.4 For the first set of simulations, we take ¢2,__ = 100,
K = 50, and fix 6 at .05 (this guarantees that the estimate be-
longs to the e-ball with probability at least 0.95.) We vary € in
steps, keeping the other parameters fixed, and compute the op-
timal (e, 6) averaging time, 7™ (¢, 6), given by (95) and the cor-
responding optimum «*. Fig. 2 on the top plots T*(e, 6) as a
function of €, while Fig. 2 on the bottom plots «* versus €. As ex-
pected, T* (¢, 6) decreases with increasing €. The behavior of «*
is interesting. It shows that, to improve accuracy (small ), the
link weight « should be chosen appropriately small, while, for
lower accuracy, a can be increased, which speeds the algorithm.
Also, as € becomes larger, o* increases to make the averaging
time smaller, ultimately saturating at «®, given by (99). This

3Note that the minimizer, o* of the upper bound Te (e, 6) does not neces-
sarily minimize the actual averaging time 7' (¢, ¢ ). However, as will be demon-
strated by simulation studies, the upper bound is tight and hence a* obtained
by minimizing 1" (¢, ¢) is a good enough design criterion.

4This is a 6-regular graph, i.e., all the nodes have degree 6.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 16, 2010 at 17:51 from IEEE Xplore. Restrictions apply.



366

3000

2500

2000

1500

T*(e, 8)

1000

500

0 T
0 005 01 015 02 025 03 035
€

0.18

0.14

0.1

0.08

0.06

0 005 01 015 02 025 03
€

Fig. 2. Top: Plot of f*(c, &) with varying €, keeping ¢ fixed at .05. Bottom:
Plot of o* with varying €, keeping 6 fixed at .05.

behavior is similar to the A — N'D algorithm, where slower
decreasing (smaller) weight sequences correspond to smaller
asymptotic mse at a cost of lower convergence rate (increased
accuracy.)

In the second set of simulations, we study the tradeoff be-
tween the number of iterations per Monte Carlo pass, 7, and the
total number of passes, p. Define the quantities, as suggested
by (89)

In 5
T In(1 - a*xa (D))
4a*?¢2  In (%)
Ke

s o (e

1 1
N i) <1 - N) +1 (106)

where a* is the minimizer in (95). In the following, we vary €
and the channel noise variance ¢2 , , taking K = 50, § = 0.05,
and using the same communication network. In particular, in
Fig. 3 (top) we plot (7*,p*) versus € for ¢, = 10, while
in Fig. 3 (center) and Fig. 3 (bottom), we repeat the same for

2« =30and ¢2 = 100, respectively. The figures demon-
strate an interesting tradeoff between 2* and p*, and show that
for smaller values of the channel noise variance, the number of
Monte Carlo passes, p* are much smaller than the number of
iterations per pass, 7%, as expected. As the channel noise vari-
ance grows, i.e., as the channel becomes more unreliable, we
note, that p* increases to combat the noise accumulated at each
pass. Finally, we present a numerical study to verify the tight-
ness of the bound 7 (¢, 6). For this, we consider a network of

N = 100 nodes with M = 5N edges (generated according

~x

+1 (105)
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Fig. 3. Plot of (2*, p*) with varying e: Top: ¢2 = 10. Center: ¢2 __ = 30.
Bottom: ¢2, . = 100.
. " : 2 _
to an Erdos-Renyi graph, see [37].) We consider ¢; .. = 80,

K = 50, and § = .05. To obtain 7™ (e, §) for varying e, we fix
o, sample x(0) € K and for each such x(0), we generate 100
runs of the A — A/C algorithm. We check the condition in (69)
and compute T (¢, §). We repeat this experiment for varying
« to obtain T* (e, §) = inf, T(e, §).5 We also obtain T* (e, )
from (95). Fig. 4 on the top plots T* (e, 6) (solid red line) and
T* (e, 6) (dotted blue line) with respect to €, while Fig. 4 on the
bottom plots the ratio f*g\e, 8)/T* (e, 6) with respect to €. The
plots show that the bound 7% (e, 6) is reasonably tight, especially
at small and large values of ¢, with fluctuations in between. Note
that, because the numerical values obtained for 7 (e, 0) are a
lower bound, the bound T* (e, 6) is actually tighter than appears
in the plots.

The bound 7*(e,8) is significant since: i) it is easy to
compute from (95); ii) it is a reasonable approximation to the
exact T* (e, 6); iii) it avoids the costly simulations involved in
computing T™* (e, §) by Monte Carlo; and iv) it gives the right

S5The definition of T* (e, §) [see (69)] requires the infimum for all x(0) €

K, which is uncountable, so we verify (69) by sampling points from K. The
T*(e, 8), thus obtained, is in fact, a lower bound for the actual T (¢, ).
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Fig. 4. Top: Plot of T*(e, 6),?*(6,6) with varying e. Bottom: Plot of
T+(e,8)/T* (e, 6) with varying e.

tradeoff between 7* and p* [see (105)—(106)], thus determining
the stopping criterion of the A — N'C algorithm.

D. A — NC: Generalizations

In this Subsection, we suggest generalizations to the A — N'C
algorithm. For convenience of analysis, we assumed before
a static network and Gaussian noise. These assumptions can
be considerably weakened. For instance, the static network
assumption may be replaced by a random link failure model
with Ao(L) > 0, where L = E[L]. Also, the independent
noise sequence in (64) may be non-Gaussian. In this case, the
A — NC algorithm iterations will take the form

xP(i +1) = (x"(i) — aLP(i)x"(i)) — an?(i),

0<i<7-1,1<p<p xP(0) =x(0) (107)

where LP(i) is an i.i.d. sequence of Laplacian matrices with
A2(L) > 0. We then have

I~

@) = [ [[ (- o?() | x0)+ H@), 1< p <7,
=0
(108)

It is clear that { HP (/Z\)}l<p<;)\ is an i.i.d. sequence of zero mean

random variables. Under the assumption Ay (L) > 0, there exists
« (see [11]) such that

PI{TI0-o2(G) | x(0)=r1| =1, 1<p<F.
j=0
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We, thus, choose 7'so that (H;;t (I- aLp(j))) x(0) is suffi-
ciently close to r1. The final estimate is

JoEE)S T1 (- a2 | x(0) + L

(110)

The first sum is close to r1 by choice of 7. We now choose p,
large enough, so that the second term is close to zero. In this way,
we can apply the A — NC algorithm to more general scenarios.
The above argument guarantees that (e, 8)-consensus is
achievable under these generic conditions, in the sense that
the corresponding averaging time, T (e, §), will be finite. A
thorough analysis requires a reasonable computable upper
bound like (94), followed by optimization over « to give the
best achievable convergence rate. (Note a computable upper
bound is required, because, as pointed earlier, it is very difficult
to find stopping criterion using Monte Carlo simulations, and
the resulting 7% (¢, 6) will be a lower bound since the set K is
uncountable.) One way to proceed is to identify the appropriate
large deviation rate [as suggested in (81).] However, the results
will depend on the specific nature of the link failures and noise,
which we do not pursue in this paper due to lack of space.

VI. CONCLUSION

We consider distributed average consensus when the
topology is random (links may fail at random times) and the
communication in the channels is corrupted by additive noise.
Noisy consensus leads to a bias-variance dilemma. We consid-
ered two versions of consensus that lead to two compromises
to this problem: i) A — N'D fits the framework of stochastic
approximation. It a.s. converges to the consensus subspace and
to a consensus random variable f—an unbiased estimate of the
desired average, whose variance we compute and bound; and
ii) A — NC uses repeated averaging by Monte Carlo, achieving
(€, 6)-consensus. In A — N'D the bias can be made arbitrarily
small, but the rate at which it decreases can be traded for vari-
ance—tradeoff between mse and convergence rate. A — N C
uses a constant weight « and hence outperforms A4 — N'D
in terms of convergence rate. Computation-wise, A — N'D is
superior since A — NC requires more intersensor coordination
to execute the independent passes. The estimate obtained by
A — NC does not possess the nice statistical properties, in-
cluding unbiasedness, as the computation is terminated after a
finite time in each pass.

Finally, these algorithms may be applied to other problems in
sensor networks with random links and noise, e.g., distributed
load balancing in parallel processing or distributed network
flow.

APPENDIX
PROOF OF THEOREM 1 AND A — N'D GENERALIZATIONS
UNDER ASSUMPTIONS 1.2) AND 2.2)

Proof: [Theorem 1] The proof follows from that of [32,
Theorem 2.7.1]. Suffices to prove it for x(0) = x¢ a.s.,
xo € RY¥*! is a deterministic starting state. Let the filtration
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{FX=0{x(j):0<i <}y, wrt which {x())};5.
x € RV*1 (and, hence, functionals of {x(i)},s ) are adapted.

Define the function W (i,x),i > 0, x € RV*! as

Wii,x)=(1+V@Ex) [0+ A
Jjzi
It can be shown that
LW (i,x) < —a(i)p(i,x), i > 0, x € RV*? (112)
and, hence, under the assumptions ([32, Theorem 2.5.1])
p (liuglglofp(x(z)73) - 0) - (113)
which, together with assumption (25), implies
P (E;Iglgfv (i,x(i)) = 0) ~ 1 (114)

Also, it can be shown that the process (W (i,x(i)), F;X) is a
nonnegative supermartingale ([32, Theorem 2.2.2]) and, hence,
converges a.s. to a finite value. It then follows from (111) that
V(i,x(7)) also converges a.s. to a finite value. Together with
(114), the a.s. convergence of V' (7,x(7)) implies

( lim V(i,x(4)) = 0) =

17— 0o

(115)

The theorem then follows from assumptions (23) and (24) (see

also [32, Theorem 2.7.1].) [ |

Theorem 11: (A — ND: Convergence) Consider the

A — N'D algorithm given in Section IV-A with arbitrary initial

state x(0) € RV 1, under the Assumptions 1.2), 2.2), 3). Then

P[Llirgop( ()C)_O]_l. (116)

Proof: In the A — N'D (9), the Laplacian L(,x(z)) and

the noise n(i,x(4)) are both state dependent. We follow The-

orem 3 until (38) and modify (39) according to the new as-

sumptions. The sequences {L(7,x)} and {n(i,x)} are inde-

pendent. By the Gershgorin circle theorem, the eigenvalues of

(L(i,x) — L) are less than 2N in magnitude. From the noise
variance growth condition we have

E[

*(i)n” (i,x)Ln(i, x)]

a*()E [ng. (i,x) Lnet (4,%)]
(i) A (L)E I (5,311’

<a®(@An(D) [ + ez [xer |IP] -

Q

IN

(07

IN

(117)
Using (117) and a sequence of steps similar to (39) we have

LV (i,x)
= —2a(i)x TLx—i—a() TTx
+E[02() (LG, %) - T) %) T (L (i,%) - T) x]
+E [a2(z')n (i,x)" In (i,x)}
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< —2a(i)xTL*x + a2(i)An (I)? ||xc- ||?
+ 40’ ()N’ An (L) [Ixc- ||*
o2()AN(E) [e1 + ez lxex ]

Now, using the fact that x” Lx > Az(L) ||xc.]|>, we have

LV (i,x) < — 2a(i)xTZQX + a?(4)

L, A (D)
X [ClAAT(L) + )\;\ (Z) X

AN2AN(L) =
TN @ " ()
<~ ali)p (i x) + () [1 +V (i,x

~—
—_

where o(i,x) = 2xTL'x,g(i) = o2(i)max(ciAn(D),
)\?\7(3)/)\2(3) +4N2)\N(Z)/)\2(Z) + CQ/\]\T(Z)//\Q). It can
be verified that (i,x) and g(i) satisfy the conditions for
Theorem 1. Hence, (116). |

Theorem 12: Consider the A — N'D algorithm under the
Assumptions 1.2), 2.1), and 3). Then, there exists a.s. a finite
real random variable @ such that

[ lim x(i) =

17— oo

91} (118)
Proof: Note that 17 L (i,x(i)) = 0, Vi. The proof then

follows from Theorem 4, since the noise assumptions are the

same. [ |
Lemma 13: Let 6 be as given in Theorem 12 and r, the

initial average, as given in (4), under the Assumptions 1.2), 2.1),

and 3). Let the mse ¢ = E [ — ]°. Then we have

1) Unbiasedness:

E[9) = r. (119)

2) MLS.E. Bound

n
<3 DI (120)
120
Proof: Follows from Theorem 12 and Lemma 5. [ ]
It is possible to have results similar to Theorem 12 and
Lemma 13 under Assumption 2.2) on the noise. In that case,
we need exact mixing conditions on the sequence. Also, As-
sumption 2.2) places no restriction on the growth rate of the
variance of the noise component in the consensus subspace. By
Theorem 6, we still get a.s. consensus, but the mse may become
unbounded, if no growth restrictions are imposed.

REFERENCES

[1] J. N. Tsitsiklis, “Problems in decentralized decision making and com-
putation,” Ph.D., MIT, Cambridge, MA, 1984.

[2] R. O. Saber and R. M. Murray, “Consensus protocols for networks of
dynamic agents,” in Proc. Amer. Control Conf., Jun. 2003, vol. 2, pp.
951-956.

[3] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE Trans.
Autom. Control, vol. AC-48, pp. 988—1001, Jun. 2003.

[4] C. Reynolds, “Flocks, birds, and schools: A distributed behavioral
model,” Comput. Graph. , vol. 21, pp. 25-34, 1987.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 16, 2010 at 17:51 from IEEE Xplore. Restrictions apply.



KAR AND MOURA: LINK FAILURES AND CHANNEL NOISE

[5] T. Vicsek, A. Czirok, E. B. Jacob, I. Cohen, and O. Schochet, “Novel
type of phase transitions in a system of self-driven particles,” Phys. Rev.
Lett., vol. 75, pp. 1226-1229, 1995.

[6] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” IEEE Proc., vol. 95, no. 1,
pp. 215-233, Jan. 2007.

[7] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Contr. Lett., vol. 53, pp. 65-78, 2004.

[8] S.KarandJ. M. F. Moura, “Ramanujan topologies for decision making

in sensor networks,” in Proc. 44th Allerton Conf. Commun., Control,

Comput., Monticello, IL, Sep. 2006.

S. Kar and J. M. F. Moura, “Topology for global average consensus,” in

Proc. 40th Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA,

Oct. 2006.

[10] S. Kar, S. A. Aldosari, and J. M. F. Moura, “Topology for distributed
inference on graphs,” IEEE Trans. Signal Process., vol. 56, no. 6, pp.
2609-2613, Jun. 2008.

[11] S. Kar and J. M. F. Moura, “Sensor networks with random links:
Topology design for distributed consensus,” IEEE Trans. Signal
Process., vol. 56, no. 7, pp. 3315-3326, Jul. 2008.

[12] Y. Hatano and M. Mesbahi, “Agreement over random networks,”
in Proc. 43rd IEEE Conf. Decision Control, Dec. 2004, vol. 2, pp.
2010-2015.

[13] M. G. Rabbat, R. D. Nowak, and J. A. Bucklew, “Generalized con-
sensus computation in networked systems with erasure links,” in Proc.
6th Int. Wkshp. Signal Proc. Adv. in Wireless Commun., New York,
2005, pp. 1088-1092.

[14] C. Wu, “Synchronization and convergence of linear dynamics in
random directed networks,” IEEE Trans. Autom. Control, vol. 51, pp.
1207-1210, Jul. 2006.

[15] A.T. Salehi and A. Jadbabaie, “On consensus in random networks,” in
Proc. Allerton Conf. Commun., Control, Comput., Allerton House, IL,
Sep. 30, 2006.

[16] M. Porfiri and D. Stilwell, “Stochastic consensus over weighted di-
rected networks,” in Proc. 2007 Amer. Control Conf., New York, Jul.
11-13, 2007.

[17] Y. Hatano, A. K. Das, and M. Mesbahi, “Agreement in presence of
noise: pseudogradients on random geometric networks,” in Proc. 44th
IEEE Conf. Decision Control, and Eur. Control Conf. (CDC-ECC),
Seville, Spain, Dec. 2005.

[18] M. Huang and J. Manton, “Stochastic Lyapounov analysis for con-
sensus algorithms with noisy measurements,” in Proc. 2007 Amer.
Control Conf., New York City, Jul. 11-13, 2007.

[19] M. Huang and J. Manton, “Stochastic approximation for consensus
seeking: mean square and almost sure convergence,” in [EEE 46th
Conf. Decision Control, New Orleans, LA, Dec. 12-14, 2007.

[20] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus-based dis-
tributed parameter estimation in ad hoc wireless sensor networks with
noisy links,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
Honolulu, HI, 2007, pp. 849-852.

[21] F. R. K. Chung, Spectral Graph Theory. Providence, RI: Amer.
Math. Soc., 1997.

[22] B.Mohar, “The Laplacian spectrum of graphs,” in Graph Theory, Com-
binatorics, and Applications, Y. Alavi, G. Chartr, O. R. Oellermann,
and A.J. Schwenk, Eds. New York: Wiley, 1991, vol. 2, pp. 871-898.

[23] B. Bollobas, Modern Graph Theory. New York: Springer-Verlag,
1998.

[24] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with
least-mean-square deviation,” J. Parallel Distrib. Comput., vol. 67, pp.
33-46, 2007.

[25] S. Kar and J. Moura, Distributed Consensus Algorithms in Sensor Net-
works: Quantized Data, Nov. 2007 [Online]. Available: http://arxiv.
org/abs/0712.1609, submitted for publication

[26] T.C. Aysal, M. Coates, and M. Rabbat, “Distributed average consensus
using probabilistic quantization,” in Proc. IEEE/SP 14th Wkshp. Sta-
tistical Signal Process., Madison, W1, Aug. 2007, pp. 640-644.

[27] S. Kar and J. M. F. Moura, ‘“Distributed average consensus in sensor
networks with random link failures and communication channel noise,”
in Proc. 41st Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA,
Nov. 2007, pp. 676-680.

[28] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE/ACM Trans. Netw., vol. 14, no. SI, pp. 2508-2530,
2006.

[29] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algo-
rithms and theory,” IEEE Trans. Autom. Control, vol. 51, pp. 401-420,
2006.

[9

[

369

[30] H. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and
switching networks,” IEEE Trans. Autom. Control, vol. 52, pp.
863-868, 2007.

[31] Y. Kim and M. Mesbahi, “On maximizing the second smallest eigen-
value of a state-dependent graph Laplacian,” IEEE Trans. Autom. Con-
trol, vol. 51, pp. 116-120, Jan. 2006.

[32] M. Nevel’son and R. Has’minskii, Stochastic Approximation and Re-
cursive Estimation. Providence, RI: Amer. Math. Soc., 1973.

[33] D. Williams, Probability With Martingales. Cambridge, U.K.: Cam-
bridge Univ. Press, 1991.

[34] H. Kushner and G. Yin, Stochastic Approximation and Recursive Al-
gorithms and Applications. New York: Springer, 2003.

[35] S.Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip al-
gorithms,” IEEE Trans. Inf. Theory, vol. 52, pp. 2508-2530, Jun. 2006.

[36] D. Mosk-Aoyama and D. Shah, “Computing separable functions via
gossip,” in PODC "06: Proc. 25th Ann. ACM Symp. Principles of Dis-
trib. Comput., New York, 2006, pp. 113-122.

[37] F. R. K. Chung and L. Lu, Complex Graphs and Networks.
MA: Amer. Math. Soc., 2006.

Boston,

Soummya Kar received the Bachelor of Technology
(B.Tech.) degree from the Indian Institute of Tech-
nology, Kharagpur, in May, 2005.

He joined the Department of Electrical and
Computer Engineering, Carnegie-Mellon University,
Pittsburgh, PA, in 2005, where he is currently
a third-year Ph.D. degree student. His research
interests include distributed computations in sensor
networks, stochastic approximations, stochastic
networks, and stochastic filtering in the context of
sensor networks.

José M. F. Moura (S’71-M’75-SM’90-F’94)
received the electrical engineering degree from the
Instituto Superior Téecnico (IST), Lisbon, Portugal,
and the M.Sc., E.E., and D.Sc. degrees in electrical
engineering and computer science from the Massa-
chusetts Institute of Technology (MIT), Cambridge.

He is a Professor of Electrical and Computer
Engineering and, by courtesy, of BioMedical En-
gineering, at Carnegie Mellon University (CMU),
Pittsburgh, PA. He was on the faculty of IST and has
held visiting faculty appointments at MIT and was a
research scholar with the University of Southern California, Los Angeles. He is
a founding codirector of the Center for Sensed Critical Infrastructures Research
(CenSCIR) and of the Information and Communications Technologies Institute,
a joint venture between CMU and Portugal that manages a large education
and research program between CMU and Portugal (www.icti.cmu.edu). His
research interests include statistical and algebraic signal processing, image,
bioimaging and video processing, and digital communications. He has pub-
lished more than 300 technical journal and conference papers, is the coeditor
of two books, holds seven patents on image and video processing, and digital
communications with the U.S. Patent Office, and has given numerous invited
seminars at U.S. and European Universities and industrial and government
Laboratories.

Dr. Moura is the President (2008-2009) of the IEEE Signal Processing
Society (SPS). He was Editor-in-Chief for the IEEE TRANSACTIONS IN SIGNAL
PROCESSING, interim Editor-in-Chief for the IEEE SIGNAL PROCESSING
LETTERS, and was on the Editorial Board of several journals, including the
IEEE PROCEEDINGS, the IEEE Signal Processing Magazine, and the ACM
TRANSACTIONS ON SENSOR NETWORKS. He was Vice-President for Publica-
tions for the IEEE Sensors Council. He chaired the IEEE TAB Transactions
Committee, served on the IEEE TAB Periodicals Review Committee, and is
currently Vice-Chair of the IEEE Publication Services and Products Board.
He was on the steering and technical committees of several Conferences and
on the IEEE Press Board. He is a Fellow of the American Association for
the Advancement of Science (AAAS), and a corresponding member of the
Academy of Sciences of Portugal (Section of Sciences). He was awarded the
2003 IEEE Signal Processing Society Meritorious Service Award and in 2000,
the IEEE Millennium Medal. In 2007, he received the CMU’s College of
Engineering Outstanding Research Award. He is affiliated with several IEEE
societies, Sigma Xi, AMS, IMS, and SIAM.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 16, 2010 at 17:51 from IEEE Xplore. Restrictions apply.



