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Time Reversal Imaging by Adaptive
Interference Canceling

José M. F. Moura, Fellow, IEEE, and Yuanwei Jin, Member, IEEE

Abstract—We develop the time reversal adaptive interference
canceler (TRAIC) time reversal beamformer (TRBF), a new algo-
rithm to detect and locate targets in rich scattering environments.
It utilizes time reversal in two stages: 1) Anti-focusing: TRAIC
time reverses and then reshapes the clutter backscatter to mitigate
the clutter response; 2) Focusing: TRBF time reverses the residual
backscatter to focus the radar image on the target. Laboratory
experiments with electromagnetic radar data in a highly cluttered
environment confirm the superiority of TRAIC-TRBF over con-
ventional direct subtraction (DS) beamform imaging.

Index Terms—Adaptive interference cancelation, super-resolu-
tion, time reversal, waveform shaping, wideband radar imaging.

I. INTRODUCTION

LOCATING and imaging targets buried in high clutter
poses considerable challenges. Detection and imaging

algorithms suffer significant performance loss because the
channel Green’s function is very different from the direct
path model that these algorithms usually assume. Knowing
the Green’s function improves significantly the performance.
In matched field processing (MFP), e.g., [1], the Green’s
function is obtained by integrating the wave equation. But
MFP is prohibitively expensive in most applications and is
highly sensitive to accurate knowledge of the environmental
conditions. This paper explores how time reversal (TR) can
be used in localizing targets in highly cluttered environments.
References [2]–[6] have shown the power of time reversal to
focus with super-resolution on a source in a highly dispersive
medium by time reversing and retransmitting the time dis-
persed signal received at an array of sensors. References [7]
and [8] demonstrate super-resolution focusing in underwater
acoustics and [9] demonstrates focusing in the electromagnetic
domain. The more inhomogeneous the media is, the higher the
focusing resolution that is achieved. Intuitively, time reversal
is equivalent to generating a virtual aperture that is larger than
its actual physical size, yielding a much higher resolution.
Recent work on time reversal imaging went beyond focusing
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and includes Lehman and Devaney [10], Devaney [11], Prada
and Thomas [12], Borcea et al. [13], [14], and others [15]–[17].
In these works, the multiple signal classification (MUSIC)
algorithm is combined with time reversal for locating well
resolved targets, where the MUSIC spectrum is constructed
by eigendecomposing the so called time reversal matrix. This
approach is applicable only when the number of scatterers in
the imaged area is smaller than the number of antennas since
the generalized MUSIC spectrum requires that the number of
scatterers be smaller than the number of antennas.

In [18], we studied detection with time reversal. We demon-
strated for the electromagnetic (EM) domain that time reversal
provides significant gains when detecting targets burried in
clutter using a single sensor. In this paper, we consider local-
ization of targets in high clutter for radar (electromagnetic)
data, which we also refer to as imaging. We present a new high
resolution time-reversal imaging algorithm, the time reversal
adaptive interference canceler (TRAIC) followed by time
reversal beamforming (TRBF). Unlike time reversal MUSIC
based algorithms, TRAIC-TRBF only requires the number
of antennas to be larger than the number of potential targets,
regardless of the number of scatterers in the illuminated region.
The TRAIC algorithm reshapes the time reversed backscatter
from the clutter to minimize the energy returns from the clutter
at the array. In contrast with focusing, the goal of TRAIC
is anti-focusing, i.e., nulling the EM energy received at the
transmit/receive radar backscattered by the clutter. TRAIC
probes the cluttered environment with the reshaped time re-
versed waveform to enhance the backscatter from the target.
In the second stage, TRBF time reverses the backscatter from
the target and resends it into the medium to focus on the target.
TRBF generates a narrow beam, which provides high resolution
in localization and imaging.

Physical and Mathematical Time Reversal: We describe time
reversal in the paper as if the signals were physically time re-
versed and retransmitted. In practice, in many situations, there
is no need to actually physically retransmit the time reversed
signals; in this case, the time reversal steps in TRAIC-TRBF
become algorithmic steps, with no physical retransmission of
the signals; we refer to it as mathematical time reversal.

Notation: We use lower case boldface letters to denote vec-
tors and upper case boldface letters to denote matrices. In addi-
tion, we adopt the following conventions throughout the paper,

for conjugate; for transpose; for Hermitian
transpose; for the diagonal matrix whose diagonal is the
vector for the vector (matrix) Frobenius norm; for
the identity matrix of order for the determinant of
matrix ; and the inner product notation .
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II. DATA MODEL

We present in this section the data model that we adopt.
Section II-A discusses a stepped frequency synthesis of the
transmitted signals, Section II-B shows the array configuration,
and Section II-C discusses the multistatic response matrix and
the time reversal matrix.

A. Stepped Frequency Synthesis

The illuminating signal , has Fourier transform
. The signal has duration and band-

width . Time reversal of a real valued signal is simply phase
conjugation in the frequency domain, i.e., the Fourier transform
of is (see Oppenheim and Willsky [19]). In prac-
tice, for realizable signals with finite duration , the realizable
version of the time reversed signal follows by delaying by the
time reversed signal, which introduces a phase shift in the fre-
quency domain. We ignore this phase shift in the sequel.

Real time synthesis in the time domain of the signal at
the radar frequencies of interest requires expensive instrumen-
tation. In Section IV, these cost considerations lead us, instead,
to synthesizing by a stepped frequency approach the transmitted
signals, e.g., Wehner [20] and Mahafza [21]. In this paper, we
transmit a series of bursts of narrow band pulses where each
burst is a sequence of pulses stepped (shifted) in frequency
from pulse to pulse by a fixed frequency step size . The
monochromatic signals sample uniformly the wideband signal
spectrum of bandwidth at the frequencies

(1)

where we choose

(2)

(3)

which leads to

(4)

The signal in the time domain is

(5)

To avoid overlapping the time domain replicas of duration ,
the frequency sampling should be dense enough, i.e., upper
bounded as

B. Array Configuration

We adopt the multistatic configuration shown in the upper
figure of Fig. 1. The scene is in the -plane and the region of
interest is partitioned into a finite number of pixels in range and
cross range. The imaging radar in Fig. 1 has a pair of antenna

Fig. 1. Top: Multistatic array configuration for time reversal imaging. Antenna
arraysA andB are placed along the y axis. The x axis denotes the range direc-
tion; the y axis denotes the cross range direction. Bottom: Experimental setup
used in Section IV for time reversal measurements. Two horn antennas, mounted
on two rails, move to synthesize a uniform linear array. The scatterers (�) are a
mixture of copper and solid dielectric pipes. The targets (4) are copper rods.
The scattering and targets are mounted on a wood platform.

arrays and located along the y axis:
with antennas and with antennas.
The bottom figure of Fig. 1 shows the experimental setup used in
Section IV. Two horn antennas are mounted on rails and move to
synthesize uniform linear arrays. The scatterers and the targets
are mounted on a platform.

C. Multistatic Response Matrix and Time Reversal Matrix

We introduce in this section two matrices that play an impor-
tant role in time reversal techniques: the multistatic response
matrix and the time reversal matrix.

Multistatic Response Matrix : With respect to Fig. 1,
let denote the frequency response of the prop-
agation channel between the th transmit antenna and the

th receive antenna at the discrete angular frequency . We
organize the total of channel responses into the mul-
tistatic response matrix at frequency (e.g., Lehman
and Devaney [10], [22], and Chambers and Berryman [23]).
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We now determine the structure of this matrix in terms of the
Green’s functions characterizing the propagation between the
antennas and the scattering centers or targets. We consider first
the single target case in a highly cluttered environment. The case
of multiple targets follows by superposition of all the target re-
flections, neglecting secondary scattering between targets.

Single Target: Let , and denote the locations of
the target, of the th antenna of array , and of the th an-
tenna of array , respectively. The th entry of
is

(6)

(7)

where is the complex reflectivity of the point target
at location , and is the Green’s function of the
background medium between locations and at frequency .
In signal frequency terms, the Green’s function is the channel
response at location to an impulse at location . Often, the
Green’s function satisfies the reciprocity relation

(8)

We assume that the medium is reciprocal and that (8) holds. An
example of a Green’s function is the “background” or free space
Green’s function [24], [25]

(9)

where is the zeroth-order Hankel function of the second
kind, is the wavenumber of a propagating wave
with angular frequency , and is the medium propagation
velocity. In the near field, the free space Green’s function can
be approximated as

for

(10)

In the far field, the Green’s function is simply a delay

(11)

The “direct path” Green’s function holds under the Born
approximation, or weak scattering condition, and in general
does not hold when multiple scattering is nonnegligible. For a
discussion on the Born approximation and the multiple scat-
tering Foldy-Lax approximation in the context of time reversal
imaging, readers can refer to [15]–[17], and [26].

We first consider the receiving array to be at points
. Stacking the Green’s functions

from the target to each of the array elements
, into an -dimensional vector, define the

receive array response vector at array for a target at as

(12)

In the far field, and for a linear equi-spaced array,
reduces to the -dimensional conventional steering vector

(13)

where is the azimuth angle, is the interelement spacing, and
is the wavelength at frequency .

Similar to (12), the -dimensional transmit array response
vector is

(14)

Applying (12) and (14) to (7) yields a revealing subspace repre-
sentation of the response matrix

(15)

Multiple Targets: In general, if there are well resolved tar-
gets, and neglecting in this discussion the secondary scattering
among targets, the target response matrix is the superposition of
the individual target responses given by (15), i.e.

(16)

(17)

where is the diagonal matrix of target reflectances
, and the matrix and the

matrix collect the array response vectors in (12) and
(14) for the array and the array , respectively

(18)

Time Reversal Matrix : The time reversal matrix, e.g.,
[5] and [4], is

Clutter and Target Multistatic Response Matrices: In this
paper, we distinguish between the following three multistatic
response matrices: the clutter channel multistatic response ma-
trix when only scatterers are present; the clutter plus
target channel multistatic response matrix when both
scatterers plus target are present; and the target channel multi-
static response matrix

(19)

As an abuse of terminology, we will simply refer to these ma-
trices as the scatterers or clutter channel response, the clutter
plus target channel response, and the target channel response,
respectively.

The structure of and follows (7), i.e.,

(20)

(21)
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where and are the clutter
and target responses between antennas and , respectively.

III. TRAIC-TRBF: MATHEMATICAL DESCRIPTION

In this section, we describe a time reversal based algorithm to
image targets in rich scattering scenes—the time reversal adap-
tive interference canceler time reversal beamformer (TRAIC-
TRBF); see also preliminary work in [27]. We start by clarifying
the terminology. In many radar applications, and in this paper,
imaging means constructing a reflectivity map of a region of in-
terest (ROI), sampled by a finite number of grid cells, or pixels.

To image a target in high density clutter, we could attempt to
locate the clutters and then use these data in the Green’s function
of the channel to model the secondary scattering from the clutter
to the target and determine the position of the target—mim-
icking in a sense matched field processing. This approach suf-
fers from the burden of having to locate accurately the clutter
positions. For example, narrowband MUSIC requires that the
number of sensors in the array be larger than the number of
clutters. In heavy clutter, this is not the case and techniques like
these have limited applicability. With TRAIC-TRBF, we adopt
a different strategy. We avoid all together the step of locating
the clutters. Instead, we time reverse the clutter returns and re-
shape this time reversed waveform so that, after retransmission,
we minimize (null or cancel) the clutters’ backscatter received
at the array. This strategy mitigates the clutter response and re-
inforces the return from the target. The clutter mitigation stage
is followed by a second stage of time reversal that focuses the
retransmitted signal on the target, with little backscatter to the
array from the scatterers. In other words, we first time reverse
and reshape to anti-focus on the clutter, and then we time re-
verse the returns to focus on the target. Because the backscatter
from the clutter is reduced by TRAIC-TRBF, we do not need
a sophisticated propagation model and a simple direct path is
usually sufficient to locate the target.

We now present formally the time reversal adaptive inter-
ference canceler time reversal beamforming (TRAIC-TRBF)
algorithm. It is designed to image (locate) targets in highly
dense cluttering environments. As aforementioned, it performs
two tasks, clutter mitigation and target focusing, through a
series of transmission and processing steps. There are a total
of five steps: clutter channel probing; time reversal waveform
reshaping for clutter cancellation; target channel monitoring;
time-reversal target focusing; and, finally, image formation by
beamforming and triangulation. The first three steps consti-
tute TRAIC, while the two last steps are the TRBF. The first
two steps of TRAIC learn the clutter channel and construct a
whitening filter for clutter mitigation. This allows us to subtract
out the clutter component in each of the three subsequent steps.
Step 3 monitors the target channel, step 4 time reverses the
returns from the reshaped target waveform to focus on the
target, and step 5 uses beamforming and triangulation to form
the image. TRAIC-TRBF uses time reversal twice—first, to
adaptively anti-focus, null or cancel, the clutter; second, to
focus on the target.

Section III-A details TRAIC-TRBF. Section III-B derives the
weight vectors used to beamform the data in step 4. Section III-C
presents an alternative imager, the TRAIC-TR MUSIC, where

we combine TRAIC and TR with MUSIC. This algorithm is
compared to TRAIC-TRBF in Section IV.

A. TRAIC-TRBF

Time reversal is usually associated with focusing. To mitigate
the effect of clutter, we take here the opposite point of view:
We reshape the time reversed signal to achieve anti-focus, i.e.,
to null or to cancel, the backscatter from the clutter. Thus, the
goal becomes to reshape the time reversed clutter returns to syn-
thesize a waveform that, once retransmitted through the same
medium, minimizes the energy of the clutter returns. Here, we
detail the five steps of the time reversal adaptive interference
cancellation (TRAIC) time reversal beamformer (TRBF) algo-
rithm (TRAIC-TRBF). In the sequel, we recall that the symbols

, and represent the response
matrices of the clutter, the clutter plus target, and the target at
frequency , respectively.

Step 1: Clutter Channel Probing : This is the
training step in which there exist only scatterers. The goal of
this step is to estimate very reliably from the received data the
clutter channel frequency response . This stage assumes
that only clutter and no targets are present. This is realistic in
many applications where one can survey the area of interest be-
fore it becomes active. We first consider, without loss of gen-
erality, that the probing signal is transmitted from antenna
and received at the sensors of array ; by reversing the ar-
gument, we obtain similar results when the signal is first trans-
mitted from the sensors at and received by the sensors at .
Each antenna is individually excited and radiates monochro-
matic signals with frequencies , one fre-
quency at a time. The scattered returns from the signal trans-
mitted from antenna at frequency are received at antennas

, and collected in the -dimensional array
received signal vector . We assume that the probing

step can be repeated several times to average out possible mea-
surement noise, i.e., we assume that we have
noisy snapshots

(22)

where is the vector whose th entry is 1 and 0 elsewhere
and is additive noise. From these snapshots, we
can estimate accurately the clutter channel frequency response.
For example, for white Gauss noise, taking

, we get that the th column of is esti-
mated by

(23)

We repeat this process for all the antennas ,
which leads to estimates of the columns of . From this
clutter channel probing step, we conclude that

and so the clutter channel frequency response can be safely as-
sumed to be accurately determined by step 1.
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Step 2: Waveform Reshaping for Clutter Cancellation: The
signals received by array scattered by the clutter in step 1
are widely spread in time. Intuitively, if we time reverse these
signals and retransmit them from , they will focus on the clut-
ters—this is the common goal of time reversal. To image in a
highly cluttered environment, we propose an alternative goal
for time reversal. Rather than focusing, we reshape the time re-
versed signals so that they avoid the clutters, once retransmitted
from . We refer to this as clutter nulling or clutter cancella-
tion. This is the goal of step 2, and we explain it now.

We first time reverse the backscattered signals at array .
Apart a time delay, this corresponds to phase conjugation in
the frequency domain. Then, we reshape and energy normalize
the time reversed backscatter. This is achieved by a reshaping
filter, which at frequency is represented by the matrix

. The reshaped signal vector transmitted from array is

(24)

The clutter backscatter received at antenna array is

(25)

(26)

Stacking the vector signals received by all the antennas of
array given by (26), we get

... (27)

Stacking these vectors for all the frequencies into
the single vector yields

... (28)

We design the reshaping filters by
minimizing the total energy of the vector (given by its squared
norm or Frobenius norm)

(29)

Given the additive nature of this cost function, we minimize
each of its terms, which leads to

(30)

We solve this design problem subject to the following
constraints:

1) Unit norm: . This avoids the trivial
solution and avoids biasing it towards any of
the frequencies .

2) Symmetry: , i.e.,
is Hermitian and positive definite (or semidefinite if

is rank deficient.) The time reversal matrix
becomes now the time reversal anti-

focusing matrix

To preserve the Hermitian positive definiteness (or
semidefiniteness if is rank deficient) of the time
reversal antifocusing matrix, we choose our solution

to be symmetric and positive definite.
3) Constant volume: is constant. Geomet-

rically, for a matrix is the volume of the
-dimensional parallelepiped whose generating edges

are given by the rows (or columns) of the ma-
trix . This volume is the largest when the generating
edges are orthogonal, and, in this case, the volume is
the product of the lengths of the edges, [28], [29]. By
Hadamard’s inequality, [29], ,
where . We consider this as an al-
ternative constraint to constraining . We will
see that this condition facilitates the derivation of the
reshaping filter.

Condition (1) constrains the reshaping to have finite, nonzero,
normalized energy. Condition (3) is more subtle, it is like an
entropy based design. While the goal is to avoid the clutters,
because we do not know where they are, we still want to il-
luminate uniformly as much as possible the space where the
target may possibly be, and that is precisely what an entropy de-
sign accomplishes—maximum uncertainty, like with a uniform
distribution.

The following two results determine the reshaping filter
: Result 1 is for , while Result 2 is for .

Result 1: Assume and , is full rank. Let

(31)

be the singular value decomposition (SVD) of , where

(32)

(33)

The optimal reshaping filter (30) under conditions (1) through
(3) above is

(34)

(35)

where is

(36)

(37)
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Proof: From the SVD (31) of it follows
successively:

(38)

(39)

(40)

(41)

Since is Hermitian and positive definite, this implies that

(42)

(43)

Hence, is minimized by , which
yields

(44)

Next, we determine the values of . Recall the inequality be-
tween the arithmetic and geometric means

(45)

whenever , with equality holding when
and is a constant. Using now condition

(3), we derive that for (41) and using (45)

(46)

(47)

(48)

The equality holds when

(49)

(50)

By condition (1), we have

(51)

This leads to the solution

(52)

If we allow an arbitrary unitary transform matrix in the above
equation, we then find that this solution can be further written
in a compact and revealing form as

(53)

Result 2: Assume that or that is rank defi-
cient, i.e., . Let

be the singular value decomposition of , where

(54)

(55)

Then, under conditions (1) through (3)

(56)

(57)

where denotes pseudoinverse, and

(58)

(59)

Proof: From

(60)

(61)

(62)

(63)

Notice that is Hermitian and positive semidefinite. Mini-
mizing the left-hand side (LHS) of (63) and using condition (3)
and (45) yields

(64)
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Therefore, the shaping filter takes the form:

(65)

(66)

which is (59) in Result 2.
We now interpret the solutions (35) or (57) in the next Result.

First, recall the projection operator on the column space of ma-
trix

Result 3: The reshaped signal and the clutter returns
, given by (24) and (26), respectively,

when the reshaping filter is given by Result 2, see (57),
are

(67)

(68)

In particular, if and is full rank, see Result 1
and (35), we have

(69)

(70)

Proof: By direct substitution of (57) in (24) and (26), (67)
and (68) follow.

When and is full rank, (69) follows directly
from (67). Also, we have that

(71)

which leads to (70).
Result 3 shows that the reshaped time reversed signal de-

signed for clutter mitigation unscrambles the clutter channel re-
sponse: note that, in the first step, we transmit from a single
antenna from array , say antenna 1, and receive the clutter re-
turns at all antennas at array . We then time reverse the signal
received at each antenna in array and retransmit simultane-
ously from all these antennas at array . If the clutter is very
rich, these signals should focus at antenna 1 at array , from
which it was transmitted initially. The filter forces this
to happen—the signal refocus at antenna 1 of array and is zero
at every other antenna at . The clutter response can then be sub-
tracted out in succeeding processing steps. Intuitively, the filters

, after the clutter response is subtracted out, reduce
the imaged area to an open field, i.e., with no clutter, so that
subsequent processing can assume that only target is present.
We can then image the area using a simple Green’s function,
without requiring knowledge of the position of the scatterers.

Step 3: Target Channel Monitoring. : In this
step, the environment is probed with the signal (67). Targets may

be present or absent. The “signal plus clutter components” in the
received signal (if a target is present) are

(72)

(73)

(74)

where in (74) we assumed that and is full rank.
We subtract out the known component due to the clutter.
The resulting data matrix is

(75)

(76)

Step 4: Time Reversal Target Focusing. : The re-
turns from step 3, received at the antennas in arrays , after
the whitened clutter has been subtracted out, are either noise or
target response plus noise. The target response may be smeared
out by the complex environment, e.g., multiple scattering from
clutter to target. The goal of step 4 is to obtain focused returns
from the target by time reversing the returns from step 3, re-
transmitting them into the environment, and collecting back the
returns at array . The “signal plus clutter components” of the
received signal at are (again, assuming a target is present)

(77)

(78)

(79)

(80)

where the target component is given by

(81)

(82)

Grouping , into an matrix
, yields the clutter focused target response matrix measured

at array

(83)

(84)

Note that collects the returns resulting from the two
steps, target channel monitoring (step 3) and time reversal target
focusing (step 4), when we start from array in step 3.

Similarly, if we repeat steps 3 and 4 but starting initially from
the antennas in array , we obtain the clutter target response
matrix measured at array given by the matrix

(85)

Step 5: Image Formation: This final step forms the image by
scanning the area of interest with two focused beams, one at
array and the other at array . The beam at is when we
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start at and end at ; similarly, the beam at is when we
start at and end at .

Start with the returns and . Let
, and de-

note the receive and transmit beams for arrays and ,
respectively, at frequency . Their structures are presented
in the next Section III-B. The complex output of the beam-
formers and are

(86)

(87)

We now combine the outputs of these two beamformers by tri-
angulation, i.e., we multiply the outputs of the two beamformers
at each frequency to form the final image as the spatial dis-
tribution of the total energy at each pixel

(88)

Equation (88) implements the energy detector.1

B. Weight Vectors

We design the imaging weight vectors introduced in
Section III-A by maximizing given in (88) subject to unit
norm constraints on the weight vectors as explained here. Using
the subspace revealing representation (15) for the response ma-
trices, and from (84), (85), and (88), we obtain

(89)

(90)

In (90), we indicate explicitly the target reflectivity .
Given the additivity of in (90), the weight vectors, which
are frequency dependent, can be calculated frequency by fre-
quency. For a unit target impulse response at , the op-
timal weights are obtained by the following optimization:

(91)

1The energy detector is a generalized likelihood ratio test for this problem,
see [18]. The matched filter is not applicable since the target channel response
is assumed to be unknown.

subject to the constraints

(92)

The solution is promptly found as an application of Schwartz
inequality and is in the following Result.

Result 4: The optimal weights (91) under the unit norm con-
straint (92) are

(93)

(94)

(95)

(96)

Proof: As aforenoted, from the additivity of , we can
perform the optimization term by term. Also, given that each
term in the sum in (90) is a product of several non negative
factors, optimizing each term is equivalent to optimizing each
of its factors. It follows then that we optimize each transmit and
receive weight vector for each array and independently of
each other. We consider explicitly the optimization with respect
to . The optimization is

(97)

By Schwartz inequality, (93) follows. Similarly, we obtain
(94)–(96).

C. TRAIC-TR MUSIC

The TRAIC-TRBF forms the images by beamforming the re-
turns from step 4 at arrays and , and then by triangulation
of the two resulting beams. In Section IV, we will compare the
TRAIC-TRBF imager with other alternative imagers. One of
these combines TRAIC-TR with a wideband version of the sub-
space based location estimation algorithm Multiple Signal Clas-
sification (MUSIC). We describe this algorithm now. The moti-
vation to consider TRAIC-TR with MUSIC is the following: in a
highly cluttered environment, where there are a large number of
scatterers, MUSIC is not directly applicable. Since, intuitively,
TRAIC clears the field of view by minimizing and subtracting
out the clutter, it should be possible to use MUSIC after TRAIC
to localize targets as long as the number of targets is smaller
than the number of array elements. Because we are using wide-
band signals, we compute the MUSIC spectrum by combining
the spectrum at all frequencies through simple multiplication of
the spectrum at each frequency. We detail the method.
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We perform singular value decomposition of the matrices
in (84) and in (85) to obtain

(98)

(99)

where the matrix and the matrix
are the left null subspaces of matrices and
, respectively; and is the effective rank of

or , i.e., the number of the dominant singular values
of or . For example, we may define the
number of dominant singular values for matrix as the
minimum number of singular values whose sum exceeds

where is close to unity (e.g., ). The MUSIC
spectrum is computed as follows:

(100)

where the factor is for normalization purposes. The
MUSIC spectra, at pixel and frequency and

, are given by

(101)

(102)

IV. EXPERIMENTAL RESULTS

This section studies the performance of the TRAIC-TRBF
imager, comparing it to TRAIC-TR MUSIC and to a con-
ventional imager obtained by direct subtraction (DS), as will
be explained in Section IV-B. We first measure real elec-
tromagnetic (EM) backscatter from clutters placed in the
imaging area with no target, and then the EM backscatter
when there are clutters and target(s). From these measure-
ments, we extract the clutter channel and the clutter plus target
channel frequency responses and

, respectively. From these we
compute . The data in steps 2
through 5 in Section III-A are then computer generated using
these and channel responses. In other words,
TRAIC-TRBF is achieved as an algorithm, with no actual
retransmission of the reshaped signals. We refer to this as
mathematical time reversal rather than physical time reversal,
which is when we actually retransmit the time reversed signals.

We start by describing the experimental setup and physical
measurements in Section IV-A. Section IV-B presents a con-

ventional imaging method using DS beamforming (DSBF).
Section IV-C compares the performance of four imagers for dif-
ferent clutter/target configurations: TRAIC-TRBF, TRAIC-TR
MUSIC, DSBF, and DS MUSIC. Finally, Section IV-C analyzes
the results to confirm that time reversal and TRAIC-TRBF im-
prove imaging in high clutter environments.

A. Physical Measurements

In this subsection, we describe successively the scattering en-
vironment, the experimental setup, and finally the sequence of
actual measurements at discrete frequencies

to get the clutter and the clutter plus target channel frequency
response matrices and , from which we get

.
Scattering Environment: The scattering environment is illus-

trated in Fig. 1. It contains a number of scattering rods placed in
a wood platform. The rods are a mixture of the following four
types of scatterers:

1) 1.27 cm diameter (0.5 ) copper pipe;
2) solid dielectric pipe with outer diameter of 3.2 cm, with

dielectric constant 3.7;
3) dielectric rod with copper-patches to cause frequency de-

pendent radar cross section; and
4) extended object, 25 10 cm aluminum box.

The targets are 1.3-cm diameter copper rods.
Experimental Setup: We conducted a series of electromag-

netic measurements in the 4–6 GHz frequency range, [30], uni-
formly sampled by frequencies. The corresponding
total waveform time length is then

This signal is generated by an Agilent 89610A vector signal
analyzer. Both, the in-phase (I channel) and quadrature phase
(Q channel) streams of the received signals are captured. Two
horn antennas, both with operational bands 4–6 GHz, are used
as transmit and receive antennas. Each horn antenna is mounted
on a rail and moves physically to computer controlled positions
to synthesize two uniform linear arrays. In our experiments, the
baseline of these arrays is limited by two factors:

1) the physical dimensions of the horn antennas set a min-
imum inter-element spacing of 10.16 cm; and

2) the size of the absorbing wall limits the maximum length
of the transmit or receive array.

This limited the two arrays to antennas. The
device noise level is set below dB relative to the received
signal.

Measurements: A sequence of measurements were carried
out:

1) Calibration. The equipment, I-Q modulators, network an-
alyzer, and horn antennas were carefully calibrated by an
initial set of measurements.

2) Clutter channel response. With the scatterers placed in
their controlled positions, we measure with the I-Q mod-
ulators the response of the channel to the 201 monochro-
matic signals at frequencies . The data
is organized into the clutter channel frequency response
matrices .
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3) Clutter plus target channel response. With the scatterers
and target placed in their locations, we measure the total
clutter plus target channel frequency response matrices

.

B. Conventional Imaging: DS

In conventional imaging, DS is commonly used to eliminate
the contributions of the background and focus on objects of in-
terest. Since from the measurements, we have both the clutter
only and the clutter plus target channel fre-
quency responses, by DS

(103)

In practice, noise and other distortions make to be dif-
ferent from the target channel response. Using the subspace re-
vealing representation (15), the target response matrix
is modeled as

(104)

DSBF: The DSBF correlates the target response matrix
with normalized weight vectors

(105)

(106)

at each frequency , which yields the DSBF image

(107)

DS MUSIC: We can also apply MUSIC to the DS approach.
By singular value decomposition

(108)

where and define the null subspaces of matrix
with being its estimated rank. The DS-MUSIC spec-

trum is given by

(109)

where is for normalization, and

(110)

(111)

C. Test Results

We now contrast the performance of the four imaging
algorithms.

1)
2) DSBF
3) MUSIC
4) DS MUSIC.
We actually perform mathematical time reversal, rather than

physical time reversal. In physical time reversal, the data in steps
3 and 4 described in Section III-A are actually physically gener-
ated, transmitted, and measured. However, this is not necessary
to image the target, and we can simply perform mathematical
time reversal where the data in these steps is generated numer-
ically using the channel responses and for

.
We performed a battery of 11 tests with different number and

configuration of clutters and targets. We report here the results
for case 8 (17 scatterers and single target) and case 6 (6 scatterers
and two targets.) Lack of space prevents detailed discussion of
the other cases. Table I summarizes relevant resolution results
for all 11 cases.

We show for cases 8 and 6, the images at the output of
the beamformers, see Figs. 2 through 5. These figures show the
scattering configuration. For example, with respect to Fig. 2, the
17 numbers on each plate indicate the position of the scatterers.
The correct position of the target is at the cross , while the peak
of the image is at the circle . The closer the circle to the
cross is, the better the localization accuracy is. The cross-range
and range are in the vertical and horizontal directions, respec-
tively, with the physical dimensions as indicated in cm along
each axis. To calibrate these distances, we recall that, at the
center frequency, 5 GHz, the wavelength in free space is 6 cm.
The color bar on the side shows the dB scale starting from 0 dB
at the top (dark blue in color printing.) For each image, the total
range of the color bar shows the dynamic range of the imager.
For visual comparison purpose, the images in Figs. 2 and 4 are
properly scaled to the same range in dB. The sharper high con-
trast images provide better details, and thus better resolution.

17 Scatterers and 1 Target: The templates in Fig. 2, from
top to bottom, show the TRAIC TRBF, DSBF, TRAIC-TR
MUSIC, and DS MUSIC images. Fig. 3 shows the projections
along the cross-range (left template) and range (right template)
of the 3D for the TRAIC-TRBF (heavy trace with x) and
the DSBF (lighter trace).

There are a number of important remarks from Figs. 2 and
3 that demonstrate the higher cross-range and range resolution
provided by TRAIC-TRBF over all the other alternative algo-
rithms. The first is the dynamic range that is about 35 dB for
TRAIC-TRBF, 10 dB larger than for DSBF, and about 20 dB
larger than for the MUSIC based algorithms. The higher res-
olution of TRAIC-TRBF is also apparent from Fig. 2, where
the lobe around the target is narrower in both (cross-range and
range) directions. Both points are also well made with Fig. 3: the
higher resolution is apparent from much narrower main lobes
and the dynamic range is a result of smaller sidelobes. Further-
more, in this case, the number of antennas is smaller
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TABLE I
RANGE RESOLUTION (x) AND CROSS-RANGE RESOLUTION (y) FOR TRAIC + TRBF AND DSBF

than the number of scatterers . The resulting images using
TRAIC demonstrate that TRAIC successfully mitigates the clut-
ters’ response and focuses on the intended target.

6 Scatterers and 2 Targets: Fig. 4 depicts the images formed
by the same four algorithms now using case 6 with a total of
6 scatterers and 2 targets. The uppermost figure shows that the
TRAIC-TRBF mitigates the clutter (scatterers 9, 15, 27, 23, 36
are placed in deep nulls) and focuses on both targets. The dy-
namic range is about 45 dB, compared with about 30-dB dy-
namic range for the DSBF, 11 dB for TRAIC-TR MUSIC and
22 dB for DS MUSIC. Both, the DSBF and the DS MUSIC,
miss the target at range 290 cm. Fig. 5 shows the projection
of the TRAIC-TRBF and DSBF images onto cross-range and
range. The uppermost image clearly shows two high peaks for
TRAIC TR beamforming. We observe a dB null between
the two peaks. For the DSBF, the second peak misses the target
completely.

Resolution: We consider the two-dimensional point spread
function (PSF) of the imager, which is its output when the targets
are pointwise. The PSF is

(112)

where is the actual source location and is the pixel location
on which the transmit and receive beams focus. Define

, and

(113)

Second-order Taylor’s series expansion about of the PSF leads
to

(114)

The diagonal elements of the inverse , i.e.,
and , evaluated at the peak of the beamformed im-
ages are a measure of how narrow or wide the main lobe is.
In other words, these values provide a quadratic description
of the main lobe of (112). The analytical expression (113) is
hard to obtain due to its complexity. We resort to numerical
means by finite difference replacement of the second deriva-
tives and the mixed
derivative as approximations, defined as
follows: [31]

(115)

(116)

(117)

where . Equation (117) uses a nine point nu-
merical approximation to the cross second-order derivative. Be-
cause cm, the grid size is sufficiently small to ensure
the smoothness of the numerical solution. Table I shows these
quantities for all 11 cases studied. They show that, except for
one of the targets in case 7, the main lobe of the TRAIC-TRBF



244 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

Fig. 2. Time Reversal imaging with 17 scatterers and 1 target. Numbers indi-
cate locations of the scatterers,� and � indicate the exact location of the target
and the peak value of the image, respectively. Uppermost—TRAIC+TRBF.
Middle—DSBF. Lower—TRAIC+TR MUSIC. Lowest—DS MUSIC. All im-
ages are plotted within the same range (0 � �34 dB).

Fig. 3. The projection onto cross range and range for the images in Fig. 2.
Top—Cross range; Bottom—Range. TRAIC shows a narrower main lobe,
deeper null, and lower sidelobes relative to DS imaging.

image is consistently narrower than the main lobe of the DSBF
along both the range and cross range directions.

Discussion: The proposed TRAIC TR BF algorithm images
a target scene using mathematical time reversal twice. The first
time reversal step nulls the clutter; the second time reversal step
focuses on the target. The target data matrix defined in (19), in
dense scattering, contains both the direct reflection between the
target and the receive array, and the secondary reflections be-
tween the scatterers, the target, and the receive array. The clutter
nulling step suppresses the clutter reflections, not the secondary
scattering between the target, the scatterers, and the receiver.
The target focusing step back propagates the wave field and fo-
cuses on the target. After the target focusing step, the measure-
ments contain the energy focused wavefield; then, we apply a
beamformer weight vector to locate the target.

Because the focused wavefield contains direct and secondary
scattering, ideally, the weight vector, i.e., the field Green’s func-
tion, should combine the direct reflection from the target to the
receiver, and the secondary scattering due to the presence of
the surrounding scatterers. In our algorithm, we use only the
direct path Green’s function, which, in a sense, is equivalent
to the Born approximation [16]. This avoids having to locate
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Fig. 4. Time Reversal imaging with 6 scatterers and 2 targets. Numbers
indicate locations of the scatterers, � and � indicate the exact location of the
target and the peak value of the image, respectively. Uppermost—TRAIC+TR
beamforming. Middle—DSBF. Lower—TRAIC+TR MUSIC. Lowest—DS
MUSIC. All images are plotted within the same range (range 0 � �45 dB).

Fig. 5. The projection onto cross range and range for the formed image
in Fig. 4. Top—Cross range projection. Bottom—Range projection.
TRAIC+TRBF yields two lobes corresponding to two target locations.

the scatterers, which is challenging in high scattering environ-
ments. But, high scattering environment is exactly where time
reversal makes a difference, and so, our method of nulling the
scatterers before focusing on the targets, avoids having to re-
solve the scatterers, still providing good target imaging perfor-
mance. This simplification, however, may explain why, in the
experiment with 17 scatterers and 1 target, reported in Fig. 2,
some local maxima are close to the global maxima.

The effect of multiple scattering on time reversal imaging has
been studied in [15]–[17], where the Foldy-Lax model [32] is
employed. For example, [16] and [17] show that, despite the
presence of nonnegligible multiple scattering, the time reversal
imaging with MUSIC works well in predicting the scatterers’
locations. However, MUSIC is limited by the condition that
the number of antennas is larger than the number of scatterers,
which is common in heavy scattering environments. Another
example of using the Foldy-Lax model is the maximum likeli-
hood estimation of point scatterers reported in [15], where the
locations of the scatterers and their reflectivity coefficients are
estimated iteratively through the maximum likelihood approach.
That is, starting from an initial estimate of the target location and



246 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

updating the estimates iteratively by optimizing a chosen non-
linear cost function, the algorithm in [15] generates an image
of all the scatterers. However, all the examples shown in [15]
use a number of antennas that is significantly larger than the
number of scatterers plus targets, for example, 40 antennas or 8
antennas and 3 scattering objects (scatterers plus targets). Other
than MUSIC, [26] implements a high-dimensional signal sub-
space localization method. In contrast, our proposed algorithm
does not attempt to estimate the locations of the clutters (i.e., the
unwanted scatterers) explicitly; rather, it suppresses the clutter
and then focuses on the targets. This strategy avoids the problem
of directly estimating the parameters of the clutter, which may
be an impossible task when the number of clutters is very large.
For example, we show results when using 10 antennas and 17
scatterers.

In terms of the computational complexity, our proposed
TRAIC TR BF algorithm is comparable to the conventional
DS BF algorithm. For simplicity, we assume that the number of
antennas in array A and B are the same , and that we
do not consider the unit normalization constraint in the weight
vectors (93)–(96) (105)–(106) for the moment. Using the Big-O
notation, we can show that the DS BF algorithm has the compu-
tational complexity ,
where is the size of the weight vectors and the data matrices,

is the number of frequencies, and are the number
of pixels in range and cross range, respectively; similarly, the
TRAIC TR BF algorithm has the computational complexity

, where the factor results from in-
verting the matrices , and is a small constant. In our ex-
periments, we choose ,
so the numbers are dominant with respect to .
Thus, the computational complexity of the TRAIC TR BF is
still comparable to that of the DS BF for a large , and
smaller . This conclusion still holds when the computation of
the unit normalization constraint is taken into account in that
the number of operations of carrying out the unit normalization
for both algorithms is on the order of .

Another important question is the effect of measurement
noise. In this paper, we rely on experimental data for algorithm
verification. The noise power in the collected experimental
data is low relative to the signal and clutter power. The device
noise is measured experimentally to be below dB relative
to the received signal. The analysis of the noise effect on the
time reversal imaging algorithm proposed here will be reported
elsewhere. Interested readers can refer to [33] where the impact
of noise on time reversal detection is analyzed.

V. CONCLUSION

In this paper, we present a new high resolution radar imaging
system to detect and locate targets using time reversal in rich
scattering environments, where the number of scatterers is
significantly larger than the number of antennas. The proposed
imaging system performs two major tasks by time reversal:
clutter mitigation and target focusing. Clutter mitigation is
accomplished by TRAIC through waveform reshaping to null
out the clutters. After clutter is suppressed and subtracted out,

a second time reversal for target focusing is performed. A final
image is then obtained by beamforming. A series of exper-
imental tests in electromagnetic domain have demonstrated
the good performance of the proposed imaging algorithm
over conventional approaches. In future research, we intend
to pursue performance analysis studies of the TRAIC time
reversal beamformer and find ways of handling explicitly the
secondary scattering between scatterers and targets, while
avoiding resolving the individual scatterers. We are also cur-
rently extending our imaging algorithm to synthetic aperture
monostatic and bistatic radar, see [34] for some preliminary
results.
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