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Block Matrices With L-Block-banded Inverse:
Inversion Algorithms
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Abstract—Block-banded matrices generalize banded matrices.
We study the properties of positive definite full matrices whose
inverses are -block-banded. We show that, for such matrices,
the blocks in the -block band of completely determine ;
namely, all blocks of outside its -block band are computed
from the blocks in the -block band of . We derive fast inver-
sion algorithms for and its inverse that, when compared
to direct inversion, are faster by two orders of magnitude of
the linear dimension of the constituent blocks. We apply these
inversion algorithms to successfully develop fast approximations
to Kalman–Bucy filters in applications with high dimensional
states where the direct inversion of the covariance matrix is
computationally unfeasible.

Index Terms—Block-banded matrix, Cholesky decomposition,
covariance matrix, Gauss–Markov random process, Kalman–Bucy
filter, matrix inversion, sparse matrix.

I. INTRODUCTION

B LOCK-banded matrices and their inverses arise fre-
quently in signal processing applications, including

autoregressive or moving average image modeling, covariances
of Gauss–Markov random processes (GMrp) [1], [2], or with
finite difference numerical approximations to partial differen-
tial equations. For example, the point spread function (psf) in
image restoration problems has a block-banded structure [3].
Block-banded matrices are also used to model the correlation
of cyclostationary processes in periodic time series [4]. We
are motivated by signal processing problems with large di-
mensional states where a straightforward implementation of a
recursive estimation algorithm, such as the Kalman–Bucy filter
(KBf), is prohibitively expensive. In particular, the inversion
of the error covariance matrices in the KBf is computationally
intensive precluding the direct implementation of the KBf to
such problems.

Several approaches1 [3]–[10] have been proposed in the
literature for the inversion of (scalar, not block) banded ma-
trices. In banded matrices, the entries in the band diagonals are
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1This review is intended only to provide context to the work and should not
be treated as complete or exhaustive.

scalars. In contrast with banded matrices, there are much fewer
results published for block-banded matrices. Any block-banded
matrix is also banded; therefore, the methods in [3]–[10] could
in principle be applicable to block-banded matrices. Exten-
sion of inversion algorithms designed for banded matrices to
block-banded matrices generally fails to exploit the sparsity
patterns within each block and between blocks; therefore,
they are not optimal [11]. Further, algorithms that use the
block-banded structure of the matrix to be inverted are compu-
tationally more efficient than those that just manipulate scalars
because with block-banded matrices more computations are
associated with a given data movement than with scalar banded
matrices. An example of an inversion algorithm that uses the
inherent structure of the constituent blocks in a block-banded
matrix to its advantage is in [3]; this reference proposes a fast
algorithm for inverting block Toeplitz matrices with Toeplitz
blocks. References [12]–[17] describe alternative algorithms
for matrices with a similar Toeplitz structure.

This paper develops results for positive definite and sym-
metric -block-banded matrices and their inverses .
An example of is the covariance matrix of a Gauss–Markov
random field (GMrp); see [2] with its inverse referred to as the
information matrix. Unlike existing approaches, no additional
structure or constraint is assumed on ; in particular, the algo-
rithms in this paper do not require to be Toeplitz. Our inver-
sion algorithms generalize our earlier work presented in [18] for
tridiagonal block matrices to block matrices with an arbitrary
bandwidth . We show that the matrix , whose inverse is
an -block-banded matrix, is completely defined by the blocks
within its -block band. In other words, when the block matrix

has an -block-banded inverse, is highly structured. Any
block entry outside the -block diagonals of can be obtained
from the block entries within the -block diagonals of . The
paper proves this fact, which is at first sight surprising, and de-
rives the following algorithms for block matrices whose in-
verses are -block-banded:

1) Inversion of : An inversion algorithm for that uses
only the block entries in the -block band of . This is a
very efficient inversion algorithm for such ; it is faster
than direct inversion by two orders of magnitude of the
linear dimension of the blocks used.

2) Inversion of : A fast inversion algorithm for the
-block-banded matrix that is faster than its direct

inversion by up to one order of magnitude of the linear
dimension of its constituent blocks.

Compared with the scalar banded representations, the block-
banded implementations of Algorithms 1 and 2 provide com-
putational savings of up to three orders of magnitude of the
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dimension of the constituent blocks used to represent and
its inverse . The inversion algorithms are then used to de-
velop alternative, computationally efficient approximations of
the KBf. These near-optimal implementations are obtained by
imposing an -block-banded structure on the inverse of the error
covariance matrix (information matrix) and correspond to mod-
eling the error field as a reduced-order Gauss–Markov random
process (GMrp). Controlled simulations show that our KBf im-
plementations lead to results that are virtually indistinguishable
from the results for the conventional KBf.

The paper is organized as follows. In Section II, we define
the notation used to represent block-banded matrices and derive
three important properties for -block-banded matrices. These
properties express the block entries of an -block-banded ma-
trix in terms of the block entries of its inverse, and vice versa.
Section III applies the results derived in Section II to derive in-
version algorithms for an -block-banded matrix and its in-
verse . We also consider special block-banded matrices that
have additional zero block diagonals within the first -block di-
agonals. To illustrate the application of the inversion algorithms,
we apply them in Section IV to inverting large covariance ma-
trices in the context of an approximation algorithm to a large
state space KBf problem. These simulations show an almost per-
fect agreement between the approximate filter and the exact KBf
estimate. Finally, Section V summarizes the paper.

II. BANDED MATRIX RESULTS

A. Notation

Consider a positive-definite symmetric matrix represented
by its constituent blocks , , .
The matrix is assumed to have an -block-banded inverse

, , , with the following structure:

(1)

where the square blocks and the zero square blocks are
of order . A diagonal block matrix is a 0-block-banded matrix

. A tridiagonal block matrix has exactly one nonzero
block diagonal above and below the main diagonal and is there-
fore a 1-block-banded matrix and similarly for higher
values of . Unless otherwise specified, we use calligraphic
fonts to denote matrices (e.g., or ) with dimensions

. Their constituent blocks are denoted by capital letters (e.g.,
or ) with the subscript representing their location

inside the full matrix in terms of the number of block rows
and block columns . The blocks (or ) are of dimen-
sions , implying that there are block rows and block
columns in matrix (or ).

To be concise, we borrow the MATLAB2 notation to refer to
an ordered combination of blocks . A principal submatrix of

2MATLAB is a registered trademark of Mathworks.

spanning block rows and columns through
is given by

. . .
(2)

The Cholesky factorization of results in the
Cholesky factor that is an upper triangular matrix. To indi-
cate that the matrix is the upper triangular Cholesky factor of

, we work often with the notation chol .
Lemma 1.1 shows that the Cholesky factor of the -block-

banded matrix has exactly nonzero block diagonals above
the main diagonal.

Lemma 1.1: A positive definite and symmetric matrix
is -block-banded if and only if (iff) the constituent blocks

in its upper triangular Cholesky factor are

for (3)

The proof of Lemma 1.1 is included in the Appendix.
The inverse of the Cholesky factor is an upper trian-

gular matrix

. . .
. . .

(4)

where the lower diagonal entries in are zero blocks . More
importantly, the main diagonal entries in are block inverses
of the corresponding blocks in . These features are used next
to derive three important theorems for -block-banded matrices
where we show how to obtain the following:

a) block entry of the Cholesky factor from a selected
number of blocks of without inverting the full
matrix ;

b) block entries of recursively from the blocks
of without inverting the complete Cholesky

factor ; and
c) block entries , outside the first diago-

nals of from the blocks within the first -diagonals of
.

Since we operate at a block level, the three theorems offer con-
siderable computational savings over direct computations of
from and vice versa. The proofs are included in the Appendix.

B. Theorems

Theorem 1: The Cholesky blocks ’s3 on
block row of the Cholesky factor of an -block-banded ma-

3A comma in the subscript helps in differentiating between P and
P that in our earlier notation is written as P . We will use comma in
the subscript only for cases where confusion may arise.
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trix are determined from the principal submatrix
of by

. . .
...

...

(5)

. . .
...

...

(6)
...

(7)

Theorem 1 shows how the blocks of the Cholesky
factor are determined from the blocks of the -banded

. Equations (5) and (6) show that the Cholesky blocks
on block row of ,

only involve the blocks in the principal subma-
trix that are in the neighborhood
of these Cholesky blocks . For block rows

, the dimensions of the required principal submatrix
of is further reduced to , as shown by (6).
In other words, all block rows of the Cholesky factor can
be determined independently of each other by selecting the
appropriate principal submatrix of and then applying (5). For
block row , the required principal submatrix of spans block
rows (and block columns) through .

An alternative to (5) can be obtained by right multiplying both
sides in (5) by and rearranging terms to get

...
. . .

...

(8)
where is the identity block of order . Equation (8) is solved
for . The blocks are ob-
tained by Cholesky factorization of the first term . This
factorization to be well defined requires that the resulting first
term in (8) be positive definite. This is easily verified.
Since block is a principal submatrix
of , its inverse is positive definite. The top left entry corre-
sponding to on the right-hand side of (8) is obtained by
selecting the first principal submatrix of the inverse of

, which is then positive definite as desired.

We now proceed with Theorem 2, which expresses the blocks
of in terms of the Cholesky blocks .

Theorem 2: The upper triangular blocks in ,
with being -block-banded, are obtained recursively from
the Cholesky blocks of the Cholesky factor

chol by

(9)

(10)

(11)

for the last row.
Theorem 2 states that the blocks on block row
and within the first -block diagonals in can be evalu-

ated from the corresponding Cholesky blocks in
and the -banded blocks in the lower block rows of , i.e.,

, with .
To illustrate the recursive nature of the computations, con-

sider computing the diagonal block of a matrix that,
for example, has a 2-block-banded inverse. This re-
quires computing the following blocks:

in the reverse zig-zag order specified as follows:

where the number indicates the order in which the blocks
are computed. The block is calculated first, followed by

, and so on with the remaining entries until is
reached.

Next, we present Theorem 3, which expresses the block en-
tries outside the first diagonals in in terms of its blocks
within the first -diagonals.

Theorem 3: Let be -block-banded and . Then

. . .
... (12)

This theorem shows that the blocks , out-
side the -band of are determined from the blocks ,

within its -band. In other words, the matrix is com-
pletely specified by its first -block diagonals. Any blocks out-
side the -block diagonals can be evaluated recursively from
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blocks within the -block diagonals. In the paper, we refer to
the blocks in the -block band of as the significant blocks.
The blocks outside the -block band are referred to as the non-
significant blocks. By Theorem 3, the nonsignificant blocks are
determined from the significant blocks of .

To illustrate the recursive order by which the nonsignificant
blocks are evaluated from the significant blocks, consider an
example where we compute block in , which we assume
has a 3-block-banded inverse . First, write

as given by Theorem 3 as

Then, note that all blocks on the right-hand side of the equation
are significant blocks, i.e., these lie in the 3-block band of ,
except , which is a nonsignificant block. Therefore, we need
to compute first. By application of Theorem 3 again, we can
see that block can be computed directly from the significant
blocks, i.e., from blocks that are all within the 3-block band of

, so that no additional nonsignificant blocks of are needed.
As a general rule, to compute the block entries outside the

-block band of , we should first compute the blocks on the
th diagonal from the significant blocks, followed by the
block diagonal entries, and so on, until all blocks outside

the band have been computed.
We now restate, as Corollaries 1.1–3.1, Theorems 1–3 for ma-

trices with tridiagonal matrix inverses, i.e., for . These
corollaries are the results in [18].

Corollary 1.1: The Cholesky blocks of a tridi-
agonal block-banded matrix can be com-
puted directly from the main diagonal blocks and the first
upper diagonal blocks of using the following
expressions:

chol (13)

chol

for (14)

Corollary 2.1: The main and the first upper block diagonal
entries of with a tridiagonal block-
banded inverse can be evaluated from the Cholesky factors

of from the following expressions:

(15)

for (16)

Corollary 3.1: Given the main and the first upper block diag-
onal entries of with a tridiagonal block-
banded inverse , any nonsignificant upper triangular block

entry of can be computed from its significant blocks from
the following expression:

(17)

In Corollary 3.1, the following notation is used:

(18)

We note that in (17), the block is expressed in terms of
blocks on the main diagonal and on the first upper diagonal

. Thus, any nonsignificant block in is computed
directly from the significant blocks without the
need for a recursion.

III. INVERSION ALGORITHMS

In this section, we apply Theorems 1 and 2 to derive compu-
tationally efficient algorithms to invert the full symmetric pos-
itive definite matrix with an -block-banded inverse and
to solve the converse problem of inverting the symmetric posi-
tive definite -block-banded matrix to obtain its full inverse

. We also include results from simulations that illustrate the
computational savings provided by Algorithms 1 and 2 over di-
rect inversion of the matrices. In this section, the matrix is

, i.e., with blocks of order . We only count
the multiplication operations assuming that inversion or multi-
plication of generic matrices requires floating-point
operations (flops).

A. Inversion of Matrices With Block-Banded Inverses

Algorithm 1— : This algorithm computes the
-block-banded inverse from blocks of using Steps 1

and 2. Since is symmetric ( ) (similarly for ),
we only compute the upper triangular blocks of (or ).

Step 1: Starting with , the Cholesky’s blocks
are calculated recursively using Theorem 1.

The blocks on row , for example, are calculated using (8),
which computes the terms
for . The main diagonal Cholesky blocks

are obtained by solving for the Cholesky factors of
. The off-diagonal Cholesky blocks ,

are evaluated by multiplying the corresponding entity
calculated in (8) by the inverse of .

Step 2: The upper triangular block entries ( , ) in
the information matrix are determined from the following
expression:

for

for

(19)

obtained by expanding in terms of the constituent
blocks of .
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Alternative Implementation: A second implementation of
Algorithm 1 that avoids Cholesky factorization is obtained by
expressing (19) as

(20)

and solving (8) for the Cholesky products , for
and , instead of the individual Cholesky

blocks. Throughout the manuscript, we use this implementation
whenever we refer to Algorithm 1.

Computations: In (8), the principal matrix
is of order . Multiplying its inverse with as in

(8) is equivalent to selecting its first column. Thus, only
out of block entries of the inverse of
are needed, reducing by a factor of the computations
to inverting the principal submatrix. The number of flops to
calculate the Cholesky product terms on row
of is therefore or . The total number of
flops to compute the Cholesky product terms for rows
in is then

Number of flops in Step 1 (21)

In Step 2 of Algorithm 1, the number of summation terms in
(20) to compute is (except for the first few initial rows,

). Each term involves two block multiplications,4 i.e.,
flops are needed to compute . There are roughly

nonzero blocks in the upper half of the -block-
banded inverse resulting in the following flop count:

Number of flops in Step 2
(22)

The total number of flops to compute using Algorithm 1 is
therefore given by

Number of flops in Algorithm 1 (23)

or , which is an improvement of over the
direct inversion of .

As an aside, it may be noted that Step 1 of Algorithm 1 com-
putes the Cholesky factors of an -block-banded matrix and can
be used for Cholesky factorization of .

B. Inversion of -Block-Banded Matrices

Algorithm 2— : This algorithm calculates from
its -block-banded inverse from the following two steps.

4Equation (20) also inverts once for each block row i the matrix (U U ).
Such an inversion 1 � i � N=I times requires NI flops, which is a factor of
L less than our result in (21) not affecting the order of the number of compu-
tations.

Step 1: Calculate the Cholesky blocks from . These
can be evaluated recursively using the following expressions:

chol (24)

(25)

The boundary condition (b.c.) for the first row is

chol and

(26)

Equations (24)–(26) are derived by rearranging terms in (19).
Step 2: Starting with , the block entries , ,

, and in are determined recursively from the
Cholesky blocks using Theorems 2 and 3.

Alternative Implementation: To compute from (24) de-
mands that the matrix

(27)

be positive definite. Numerical errors with badly conditioned
matrices may cause the factorization of this matrix to fail. The
Cholesky factorization can be avoided by noting that Theorem
2 requires only terms and , which in turn
use . We can avoid the Cholesky factorization of
matrix (27) by replacing Step 1 as follows:

Step 1: Calculate the product terms

(28)

(29)

(30)

for , , and with boundary
condition , and

. We will use implemen-
tation (28)–(30) in conjunction with Step 2 for the inversion of

-block-banded matrices.
Computations: Since the term is obtained directly

by iteration of the previous rows, (28) in Step 1 of Algorithm
2 only involves additions and does not require multiplications.
Equation (29) requires one matrix multiplication.5 The
number of terms on each block row of is ; therefore, the

5As we explained in footnote 4, (29) inverts matrixU U for each block
row i. For (1 � i � N=I), this requires NI flops that do not affect the order
of the number of computations.
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number of flops for computing all such terms on block row is
. Equation (30) computes and involves two

matrix multiplications. There are such terms in row , re-
quiring a total of flops. The number of flops required in
Step 1 of Algorithm 2 is therefore given by

Number of flops in Step 1
(31)

Step 2 of Algorithm 2 uses Theorem 2 to compute blocks .
Each block typically requires multiplications of
blocks. There are such blocks in , giving the fol-
lowing expression for the number of flops:

Number of flops in Step 2 (32)

Adding the results from (31) and (32) gives

Number of flops in Algorithm 2 (33)

or flops, which is an improvement of approxi-
mately a factor of over direct inversion of matrix .

C. Simulations

In Figs. 1 and 2, we plot the results of Monte Carlo sim-
ulations that quantify the savings in floating-point operations
(flops) resulting from Algorithms 1 and 2 over the direct in-
version of the matrices. The plots are normalized by the total
number of flops required in the direct inversion; therefore, the
region below the ordinate in these figures corresponds to
the number of computations smaller than the number of com-
putations required by the direct inversion of the matrices. This
region represents computational savings of our algorithms over
direct inversion. In each case, the dimension of the constituent
blocks in (or of in ) is kept constant at ,
whereas the parameter denoting the number of blocks
on the main diagonal in (or ) is varied from 1 to 50. The
maximum dimensions of matrices and in the simulation is
(250 250). Except for the few initial cases where the overhead
involved in indexing and identifying constituent blocks exceeds
the savings provided by Algorithm 2, both algorithms exhibit
considerable savings over direct inversion. For Algorithm 1, the
computations can be reduced by a factor of 10–100, whereas for
Algorithm 2, the savings can be by a factor of 10. Higher sav-
ings will result with larger matrices.

D. Choice of Block Dimensions

In this subsection, we compare different implementations of
Algorithms 1 and 2 obtained by varying the size of the blocks

in the matrix . For example, consider the following repre-
sentation for with scalar dimensions of :

. . .
(34)

Fig. 1. Number of flops required to invert a full matrixP withL-block-banded
inverse using Algorithm 1 for L = 2, 4, 8 and 16. The plots are normalized by
the number of flops required to invert P directly.

Fig. 2. Number of flops required to invert an L-block-banded (IJ � IJ)
matrix A using Algorithm 2 for L = 2, 4, 8 and 16. The plots are normalized
by the number of flops required to invert A directly.

where the superscript in denotes the size of the blocks
used in the representation. The matrix is expressed in
terms of blocks for ( , ).
For , will reduce to , which is the same as
our representation used earlier. Similar representations are
used for : the block-banded inverse of . Further, assume that
the block bandwidth for expressed in terms of
block sizes is . Representation for the same matrix uses
blocks of dimensions and has a block bandwidth of

. By following the procedure of Sections III-A
and B, it can be shown that the flops required to compute i) the

-block-banded matrix from using Algorithm 1
and ii) from using Algorithm 2 are given by

Alg. 1: Total number of flops (35)

Alg. 2: Total number of flops

(36)

To illustrate the effect of the dimensions of the constituent
blocks used in (or ) on the computational complexity
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TABLE I
NUMBER OF FLOPS FOR ALGORITHMS 1 AND 2 EXPRESSED AS A FUNCTION OF THE BLOCK SIZE (kI � kI). FLOPS FOR ALGORITHM 1 ARE

EXPRESSED AS A MULTIPLE OF NI AND FOR ALGORITHM 2 AS A MULTIPLE OF N I

of our algorithms, we consider an example where is
assumed to be 1-block-banded with . Different
implementations of Algorithms 1 and 2 can be derived by
varying factor in dimensions of the constituent blocks
in . As shown in the top row of Table I, several values
of are considered. As dimensions of the block size are
reduced, the block bandwidth of the matrix changes
as well. The values of the block bandwidth corresponding to
dimensions are shown in row 2 of Table I. In row 3, we list,
as a multiple of , the flops required to invert using
different implementations of Algorithm 1 for the respective
values of and shown in rows 1 and 2. Similarly, in row 4,
we tabulate the number of flops required to invert using
different implementations of Algorithm 2. The number of flops
for Algorithm 2 is expressed as a multiple of .

Table I illustrates the computational gain obtained in Algo-
rithms 1 and 2 with blocks of larger dimensions. The increase in
the number of computations in the two algorithms using smaller
blocks can be mainly attributed to additional zero blocks that
are included in the outermost block diagonals of when the
size of the constituent blocks in is reduced. Because
the inversion algorithms do not recognize these blocks as zero
blocks to simplify the computations, their inclusion increases
the overall number of flops used by the two algorithms. If the
dimensions of the constituent blocks used in inverting
with a -block-banded inverse are reduced from to , it
follows from (35) that the number of flops in Algorithm 1 is in-
creased by . Similarly, if the dimensions of
the constituent blocks used in inverting a -block-banded
matrix are reduced to , it follows from (36) that the
number of flops in Algorithm 2 increases by . Assuming

to be a power of 2, the above discussion can be extended until
is expressed in terms of scalars, i.e., is a scalar entry.

Using such scalar implementations, it can be shown that the
number of flops in Algorithms 1 and 2 are increased by

Algorithm 1: Increase in number of flops

and Algorithm 2: Increase in number of flops

which is roughly an increase by a factor of over the block-
banded implementation based on blocks.

E. Sparse Block-Banded Matrices

An interesting application of the inversion algorithms is to
invert a matrix that is not only -block-banded but is also

constrained in having all odd numbered block diagonals within
the first -block diagonals both above and below the main block
diagonal consisting of blocks, i.e.,

(37)

By appropriate permutation of the block diagonals, the -block-
banded matrix can be reduced to a lower order block-banded
matrix with bandwidth . Alternatively, Lemma 1 and Theo-
rems 1–3 can be applied directly with the following results.

1) The structure of the upper triangle Cholesky block is
similar to , with the block entries , ,
given by

for (38)

and for (39)

In other words, the blocks on all odd numbered
diagonals in are .

2) In evaluating the nonzero Cholesky blocks (or of
the inverse ), the only blocks required from
are the blocks corresponding to the nonzero block diago-
nals in (or ). Theorem 1 reduces to

. . .
...

...

(40)
for . Recall that the blocks of required
to compute are referred to as the significant blocks. In
our example, the significant blocks are

for (41)

3) The blocks on all odd-numbered diagonals in the full ma-
trix , which is the inverse of a sparse L-block banded ma-
trix with zero blocks on the odd-numbered diagonals,



ASIF AND MOURA: BLOCK MATRICES WITH -BLOCK-BANDED INVERSE: INVERSION ALGORITHMS 637

are themselves zero blocks. This is verified from Theorem
2, which reduces to

(42)

for . The off-diagonal significant entries are
expressed as

for

for
(43)

for and with boundary conditions

(44)

and (45)

4) Theorem 3 simplifies to the following. For
and

. . .

...
(46)

Result 4 illustrates that only the even-numbered signifi-
cant blocks in are used in calculating its nonsignificant
blocks.

IV. APPLICATION TO KALMAN–BUCY FILTERING

For typical image-based applications in computer vision and
the physical sciences, the visual fields of interest are often spec-
ified by spatial local interactions. In other cases, these fields
are modeled by finite difference equations obtained from dis-
cretizing partial differential equations. Consequently, the state
matrices and in the state equation (with forcing term )

(47)

are block-banded and sparse, i.e., for .
A similar structure exists for with block bandwidth

. The dimension of the state vector is on the order of the
number of pixels in the field, which is typically to ele-
ments. Due to this large dimensionality, it is usually only prac-
tical to observe a fraction of the field. The observations in the
observation model with noise

(48)

and are, therefore, fairly sparse. This is typically the case with
remote sensing platforms on board orbiting satellites.

Implementation of optimal filters such as the KBf to esti-
mate the field (the estimated field is denoted by ) in such
cases requires storage and manipulation of to

matrices, which is computationally not practical. To obtain
a practical implementation, we approximate the non-Markov
error process at each time iteration in the KBf
by a Gauss–Markov random process (GMrp) of order . This
is equivalent to approximating the error covariance matrix

, where is the expectation operator, by a matrix
whose inverse is -block-banded. We note that it is the inverse
of the covariance that is block-banded—the covariance itself is
still a full matrix. In the context of image compression, first-
order GMrp approximations have been used to model noncausal
images. In [2] and [22], for example, an uncorrelated error field
is generated recursively by subtracting a GMrp based prediction
of the intensity of each pixel in the image from its actual value.

-block-banded Approximation: The approximated matrix
is obtained directly from in a single step by retaining the

significant blocks of in , i.e.,

(49)

The nonsignificant blocks in , if required, are obtained by
applying Theorem 3 and using the significant blocks of in
(49). In [6], it is shown that the GMrp approximations optimize
the Kullback-Leibler mean information distance criterion under
certain constraints.

The resulting implementations of the KBf obtained by ap-
proximating the error field with a GMrp are referred to as the
local KBf [18] and [19], where we introduced the local KBf for
a first-order GMrp. This corresponds to approximating the in-
verse of the error covariance matrix (information matrix) with
a 1-block-banded matrix. In this section, we derive several im-
plementations of the local KBf using different values of of
the GMrp approximation and explore the tradeoff between the
approximation error versus the block bandwidth in our ap-
proximation. We carry this study using the frame-reconstruction
problem studied in [20], where a sequence of (100 100) im-
ages of the moving tip of a quadratic cone are synthesized. The
surface translates across the image frame with a constant
velocity whose components along the two frame axes are both
0.2 pixels/frame, i.e.,

(50)

where is the forcing term. Since the spatial coordi-
nates take only integer values in the discrete dynamical
model on which the filters are based, we use a finite difference
model obtained by discretizing (50) with the leap-frog method
[21]. The dynamical equation in (50) is a simplified case of the
thin-plate model with the spatial coherence constraint that is
suitable for surface interpolation. We assume that data is avail-
able on a few spatial points on adjacent rows of the field , and a
different row is observed at each iteration. The initial conditions
used in the local KBf are and . The
forcing term and the observation noise are both assumed
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Fig. 3. Comparison of MSEs (normalized with the actual field’s energy) of
the optimal KBf versus the local KBfs with L = 1 to 4. The plots for (L > 1)
overlap the plot for the optimal KBf.

independent identically distributed (iid) random variables with
Gaussian distribution of zero mean and unit variance or a signal
to noise ratio (SNR) of 10 dB. Our discrete state and observa-
tion models are different from [20].

Fig. 3 shows the evolution over time of the mean square error
(MSE) for the estimated fields obtained from the optimal KBf
and the local KBfs. In each case, the MSE are normalized with
the energy present in the field. The solid line in Fig. 3 corre-
sponds to the MSE for the exact KBf, whereas the dotted line
is the MSE obtained for the local KBf using a 1-block-banded
approximation. The MSE plots for higher order block-
banded approximations are so close to the exact KBf that they
are indistinguishable in the plot from the MSE of the optimal
KBf. It is clear from the plots that the local KBf follows closely
the optimal KBf, showing that the reduced-order GMrp approx-
imation is a fairly good approximation to the problem.

To quantify the approximation to the error covariance matrix
, we plot in Fig. 4 the 2-norm difference between the error

covariance matrix of the optimal KBf and the local KBfs with
, 2, and 4 block-banded approximations. The 2-norm dif-

ferences are normalized with the 2-norm magnitude of the error
covariance matrix of the optimal KBf. The plots show that after a
small transient, the difference between the error covariance ma-
trices of the optimal KBf and the local KBfs is small, with the
approximation improving as the value of is increased. An in-
teresting feature for is the sharp bump in the plots around
the iterations 6 to 10. The bump reduces and subsequently dis-
appears for higher values of .

Discussion: The experiments included in this section were
performed to make two points. First, we apply the inversion al-
gorithms to derive practical implementations of the KBf. For
applications with large dimensional fields, the inversion of the
error covariance matrix is computationally intensive precluding
the direct implementation of the KBf to such problems. By ap-
proximating the error field with a reduced order GMrp, we im-
pose a block-banded structure on the inverse of the covariance
matrix (information matrix). Algorithms 1 and 2 invert the ap-
proximated error covariance matrix with a much lower compu-
tational cost, allowing the local KBf to be successfully imple-

Fig. 4. Comparison of 2-norm differences between error covariance matrices
of the optimal KBf versus the local KBfs with L = 1 to 4.

mented. Second, we illustrate that the estimates from the local
KBf are in almost perfect agreement with the direct KBf, indi-
cating that the local KBf is a fairly good approximation of the
direct KBf. In our simulations, a relatively small value of the
block bandwidth is sufficient for an effective approximation
of the covariance matrix. Intuitively, this can be explained by the
effect of the strength of the state process and noise on the struc-
ture of the error covariance matrix in the KBf. When the process
noise is low, the covariance matrix approaches the structure
imposed by the state matrix . Since is block-banded, it makes
sense to update the -block diagonals of the error covariance
matrix. On the other hand, when the process noise is high, the
prediction is close to providing no information about the un-
known state. Thus, the structural constraints on the inverse of
the covariance matrix have little effect. As far as the measure-
ments are concerned, only a few adjacent rows of the field are
observed during each time iteration. In the error covariance ma-
trix obtained from the filtering step of the KBf, blocks corre-
sponding to these observed rows are more significantly affected
than the others. These blocks lie close to the main block diag-
onal of the error covariance matrix, which the local KBf updates
in any case. As such, little difference is observed between the
exact and local KBfs.

V. SUMMARY

The paper derives inversion algorithms for -block-banded
matrices and for matrices whose inverse are -block-banded.
The algorithms illustrate that the inverse of an -block-banded
matrix is completely specified by the first -block entries ad-
jacent to the main diagonal and any outside entry can be deter-
mined from these significant blocks. Any block entry outside the

-block diagonals can therefore be obtained recursively from
the block entries within the -block diagonals. Compared to di-
rect inversion of a matrix, the algorithms provide computational
savings of up to two orders of magnitude of the dimension of the
constituent blocks used. Finally, we apply our inversion algo-
rithms to approximate covariance matrices in signal processing
applications like in certain problems of the Kalman–Bucy fil-
tering (KBf), where the state is large, but a block-banded struc-
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ture occurs due to the nature of the state equations and the spar-
sity of the block measurements. In these problems, direct inver-
sion of the covariance matrix is computationally intensive due
to the large dimensions of the state fields. The block-banded ap-
proximation to the inverse of the error covariance matrix makes
the KBf implementation practical, reducing the computational
complexity of the KBf by at least two orders of the linear di-
mensions of the estimated field. Our simulations show that the
resulting KBf implementations are practically feasible and lead
to results that are virtually indistinguishable from the results of
the conventional KBf.

APPENDIX

In the Appendix, we provide proofs for Lemma 1.1 and The-
orems 1–3.

Lemma 1.1: Proved by induction on , the block bandwidth
of .

Case : For , is a block diagonal ma-
trix. Lemma 1.1 implies that is block diagonal iff its Cholesky
factor is also block diagonal. This case is verified by ex-
panding in terms of the constituent blocks

and . We verify the if and only if statements
separately.

If statement: Assume that is a block diagonal matrix, i.e.,
for . By expanding , it is straightfor-

ward to derive

and for

is therefore a block diagonal matrix if its Cholesky factor
is block diagonal.

only if statement: To prove to be block diagonal for case
, we use a nested induction on block row . Expanding

the expression gives

(51)

for and .
For block row , (51) reduces to for

. The first block on block row is
given by . The block is a principal submatrix
of a positive definite matrix ; hence, . Since is a
Cholesky factor of , hence, . The remaining upper
triangular blocks in the first block row of are
given by . Since and is invertible, the
off-diagonal entries , on block row are,
therefore, zero blocks.

By induction, assume that all upper triangular off-diagonal
entries on row in are zero blocks, i.e., for

.
For , expression (51)6

(52)

6There is a small variation in the number of terms at the boundary. The proofs
for the b.c. follow along similar lines and are not explicitly included here.

for . From the previous induction steps, we
know that in (52) are all zero blocks for

. Equation (52) reduces to

for (53)

For , the block , implying that its
Cholesky factor . For , (53)
reduces to , implying that the off-diagonal
entries in are zero blocks. This completes the proof of Lemma
1.1 for the diagonal case .

Case : By induction, we assume that the
matrix is block-banded iff its Cholesky factors is
upper triangular with only its first diagonals consisting of
nonzero blocks.

Case : We prove the if and only if statements
separately.

If statement: The Cholesky block is upper triangular with
only its main and upper -block diagonals being nonzeros. Ex-
panding gives

(54)

for and . We prove the if statement for a
block-banded matrix by a nested induction on block row .

For , (54) reduces to . Since the
Cholesky blocks are zero blocks for ,
therefore, must also be for on block
row .

By induction, we assume for and
.

For block row , (54) reduces to

(55)

for .
With block row and for , note that

the Cholesky blocks in (55) lie outside the
-block diagonals and are, therefore, . Substituting the value

of the Cholesky blocks in (55), proves that , for
. Matrix is therefore -block-banded.

Only if statement: Given that matrix is -block-banded, we
show that its Cholesky factor is upper triangular with only the
main and upper -block diagonals being nonzeros. We prove by
induction on the block row .

For block row , (51) reduces to

for (56)

For the first entry , , which proves that the
Cholesky factor and, hence, is invertible. Substituting

for in (56), it is trivial to show that
the corresponding entries and , in are
also .

By induction, assume for block row and
). Substituting block row in

(51) gives (52). It is straightforward to show that the Cholesky
blocks outside the -bands for
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are by noting that blocks in (52) are for
.

Theorem 1: Theorem 1 is proved by induction.
Case : For , Theorem 1 reduces to Corol-

lary 1.1, proved in [18].
Case : By the induction step, Theorem 1 is valid

for a -block-banded matrix, i.e.,

. . .
...

...

(57)
where the Cholesky blocks in on row of the
Cholesky factor are obtained by left multiplying the inverse
of the principal submatrix
of with the -block column vector with only one

nonzero block entry at the top. The dimensions
of the principal submatrix and the block
column vector containing as its first block entry depend
on the block bandwidth or the number of nonzero Cholesky
blocks on row of the Cholesky factor . Below, we prove
Theorem 1 for a block-banded matrix.

Case : From Lemma 1.1, a block-
banded matrix has the Cholesky factor that is upper trian-
gular and is block-banded. Row of the Cholesky factor

now has nonzero entries . By induc-
tion from the previous case, these Cholesky blocks can be calcu-
lated by left multiplying the inverse of the
principal submatrix of with the

-block column vector with one nonzero block
entry at the top as in

. . .
...

...
(58)

To prove this result, we express the equality

in the form (59)

replace and as , and substitute from
(4). We prove by induction on the block row , .

For block row , we equate the block elements
in (59). This gives , which results in the first
b.c. for Theorem 1.

By induction, assume that Theorem 1 is valid for the block
row .

To prove Theorem 1 for the block row , equate the
block elements on both

sides of (59) as

Block Expression

(60)

(61)
...

(62)

which expressed in the matrix-vector notation proves Theorem
1 for block row .

Theorem 2: Theorem 2 is proved by induction.
Case : For , Theorem 2 reduces to Corol-

lary 2.1 proved in [18].
Case : By the induction step, Theorem 2 is valid

for a -block-banded matrix. By rearranging terms, Theorem 2
for is expressed as

... (63)

... (64)

where the dimensions of the block row vector
are . The dimensions of the block column vector

are . In evaluating , the procedure for
selecting the constituent blocks in the block row vector of and
the block column vector of is straightforward. For

, we select the blocks on block row spanning columns
through . Similarly, for , the

blocks on block column spanning rows to are
selected. The number of spanned block rows (or block columns)
depends on the block bandwidth .

Case : By induction, from the case,
the dimensions of the block column vectors or block row vectors
in (63) and (64) would increase by one block. The block
row vector derived from in (63) now spans block columns
through along block row of and is given by

. The block column vector involving in
(63) is now given by and spans block rows

through of block column . Below, we verify
Theorem 2 for the case by a nested induction on
block row , .

For block row , Theorem 2 becomes
, which is proven directly by rearranging terms of

the first b.c. in Theorem 1.
Assume Theorem 2 is valid for block row .
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TABLE II
CASE (L = k): SUBMATRICES NEEDED TO CALCULATE THE NONSIGNIFICANT ENTRYP IN A k BLOCK BANDED MATRIX

Entry Dimensions

Block row vector

Principal submatrix

Block column vector

TABLE III
CASE (L = k + 1): SUBMATRICES NEEDED TO CALCULATE THE NONSIGNIFICANT ENTRYP IN A k + 1 BLOCK BANDED MATRIX

Entry Dimensions

Block row vector

Principal submatrix

Block column vector

For block row , Theorem 2 can be proven by right
multiplying (60)–(62) with and solving for for

. To prove (9), right multiplying (60) by gives

(65)

which proves Theorem 2 for block . Equation (10) is verified
individually for block row with
by right multiplying (61) and (62) on both sides by and
solving for .

Theorem 3: Theorem 3 is proved through induction.
Case : For , Theorem 3 reduces to Corol-

lary 3.1 proved in [18].
Case : By induction, assume Theorem 3 is valid

for

. . .
...

(66)
for and . To calculate the
nonsignificant entries , the submatrices of are shown in
Table II. The number of blocks selected in each case depends
on block bandwidth .

Case : By induction from the previous case,
the submatrices required to compute the nonsignificant entry

of with an block-banded inverse are appended
with the additional blocks shown in Table III, i.e., the block row
vector is appended with an additional
block . The principal submatrix of is appended with
an additional row consisting of blocks from row
spanning block columns through of and
an additional column from column spanning block
rows through of . Similarly, the block
column vector has an additional block

.

We prove Theorem 3 for a block-banded matrix by a
nested induction on the block row , .

For block row , the only nonsignificant entry
on the block row in are . Theorem 3
for is verified by equating the block
on both sides of the expression

(67)

which can be expressed in the form

...

(68)

where . To express the Cholesky product terms
in terms of , put in (61) and (62) and left multiply
with . By rearranging terms, the resulting expression is

. . . (69)

Substituting the value of the Cholesky product terms from (69)
in (68) proves Theorem 3 for block row .

By induction, assume that Theorem 3 is valid for block row
.

The proof for block row is similar to the proof for
block row . The nonsignificant blocks on row are

. Equating the for
block entries on both sides of the equation, gives

(70)
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Solving (70) for and then taking the transpose of (70) gives

...

(71)
To express the Cholesky product terms in terms of , we left
multiply (61) and (62) with , and rearrange terms. The re-
sulting expression is

. . . (72)

Substituting the Cholesky product terms from (72) in (71)
proves Theorem 3 for block row .
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