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Abstract—In our paper titled “Algebraic Signal Processing
Theory: Foundation and 1-D Time” appearing in this issue of
the IEEE TRANSACTIONS ON SIGNAL PROCESSING, we presented
the algebraic signal processing theory, an axiomatic and general
framework for linear signal processing. The basic concept in this
theory is the signal model defined as the triple � ��, where

is a chosen algebra of filters, an associated -module of
signals, and � is a generalization of the -transform. Each signal
model has its own associated set of basic SP concepts, including fil-
tering, spectrum, and Fourier transform. Examples include infinite
and finite discrete time where these notions take their well-known
forms. In this paper, we use the algebraic theory to develop infinite
and finite space signal models. These models are based on a sym-
metric space shift operator, which is distinct from the standard time
shift. We present the space signal processing concepts of filtering or
convolution, “ -transform,” spectrum, and Fourier transform. For
finite length space signals, we obtain 16 variants of space models,
which have the 16 discrete cosine and sine transforms (DCTs/DSTs)
as Fourier transforms. Using this novel derivation, we provide
missing signal processing concepts associated with the DCTs/DSTs,
establish them as precise analogs to the DFT, get deep insight
into their origin, and enable the easy derivation of many of their
properties including their fast algorithms.

Index Terms—Algebra, boundary condition, Chebyshev poly-
nomials, convolution, discrete cosine transform (DCT), discrete
sine transform (DST), Fourier transform, module, representation
theory, shift, signal extension, signal model.

I. INTRODUCTION

S TANDARD linear signal processing (SP) considers signals
indexed by time (discrete or continuous) and time-invariant

systems or filters. Associated with SP is the time shift operator,
abstractly defined (in discrete form) as

(1)

The formulas for linear convolution and the discrete-time
Fourier transform for infinite-length signals or for circular
convolution and the discrete Fourier transform (DFT) for finite-
length signals can be derived from this definition of the shift.

In this paper we show that an alternative linear SP framework
can be derived from a different definition of the shift operator.
This shift operates undirected or symmetrically in contrast to
the directed operation of the time shift in (1). For this reason,
we call it the space shift; it is abstractly defined as

(2)
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Accordingly, we derive for infinite- and finite-length signals
the appropriate space SP notions including filtering or convolu-
tion, “ -transforms,” spectrum, Fourier transforms, frequency
response, and others. In the finite case, we explain the need
for boundary conditions and identify 16 “natural” choices that
have the 16 discrete cosine and sine transforms (DCTs/DSTs)
as Fourier transforms. This establishes the DCTs/DSTs as
exact analogs of the DFT, a satisfying alternative to the original
derivation of the DCTs and DSTs as approximations to the
Karhunen–Loève transform of a stationary process [2], [3].
The complete set of DCTs/DSTs was defined in [4] without
derivation or motivation. In this paper, we jointly refer to the
DCTs and DST as discrete trigonometric transforms (DTTs)
even though this class is actually larger (e.g., it contains the
real DFT and discrete Hartley transform).

We note that in other areas such as dynamic systems, it is
common to consider different notions of shift [5].

We develop space SP as an instantiation of the algebraic
signal processing theory (ASP), a general and axiomatic theory
of (linear) SP presented in [1] and [6]. The central object in ASP
is the signal model, defined as a triple , where is
the filter space (an algebra), the signal space (an -module),
and generalizes the concept of -transform. Many signal
models are in principle possible, each with its own SP notions,
including filtering, spectrum, or Fourier transform. ASP estab-
lishes that for finite signals and shift-invariant models, and
are polynomial algebras , i.e., spaces of polynomials
with multiplication modulo a fixed polynomial. For example,
for the finite time model, which has the DFT as Fourier trans-
form, both take the form .

In [1], we explained how to derive signal models from a def-
inition of the shift. Application to the time shift (1) yielded the
well-known infinite and finite time signal models. In this paper,
we derive signal models from the space shift (2). We identify and
define the -transform as the appropriate “ -transform” and, for
finite space signals, show that the 16 DTTs are the appropriate
space Fourier transforms. As expected, the finite space signals
models underlying the DTTs are again built from polynomial al-
gebras. One application of the ASP interpretation of the DTTs
is the easy derivation of many of their properties and and their
fast algorithms [7]–[9].

The DCT, type 3, was related to a polynomial algebra in [10];
all DTTs of types 1–4 were related to polynomial algebras in
[11]; see also [12]. In all cases, no connection to signal pro-
cessing was established.

Organization: We start with a brief overview of ASP in
Section II. The focus will be on finite shift-invariant signal
models that are built from polynomial algebras. In Sections III
and IV, we derive the infinite and finite space models. The
finite case is worked out in greater detail since it provides the
underpinning of the frequently used DTTs including many of
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their properties. An important variant of the DTTs, and their
underlying signal models, is derived in Section V. Finally, we
offer conclusions in Section VII.

II. ALGEBRAIC SIGNAL PROCESSING THEORY

We introduce the necessary background on the ASP and show
infinite and finite time signal processing as examples. For a com-
plete and detailed introduction we refer the reader to [1], [6]. For
brevity we will denote linear signal processing by SP.

A. Signal Model

Algebra (Filter Space): An algebra is a vector space that
is also a ring, i.e., it permits multiplication of elements and the
distributivity law holds. Examples include the sets , of com-
plex or real numbers and the set of polynomials with complex
coefficients . In SP, the set of filters is commonly assumed
to be an algebra, with the multiplication being the concatenation
of filters. We denote elements of algebras with , the common
symbol for filters in SP.

Module (Signal Space): Given an algebra , an -module
is a vector space that permits an operation “ ” of on :

for (3)

Further, several properties such as the distributivity law have to
hold [13]. In SP, the signal space is commonly assumed to be
an -module, where is the associated space of filters. The
operation denotes filtering; (3) ensures that filtering a signal

with a filter yields again a signal.
A special case of a module is given by (equality

as sets, not as algebraic structures) with the operation in (3)
being the ordinary multiplication in . This module is called
the regular module.

Spectrum, Frequency Response, Fourier Transform: For
every given and , there is an associated notion of spec-
trum, frequency response, and Fourier transform (if they exist).
See [1] for details.

Signal Model: In applications, signals do not arise as
elements of modules, but, in the discrete case consid-
ered here, as infinite or finite sequences of numbers, e.g.,

or .
The purpose of the signal model, introduced next, is to assign a
filter algebra and an -module to such sequences. This
way, filtering is automatically defined (the operation of on

), and we get access to the associated notion of spectrum
and Fourier transform. In the definition, we assume complex
signals, but other base fields can be chosen.

Definition 1 (Signal Model): Let be a vector
space. A signal model for is a triple , where is
an algebra, is an -module, and is a bijective (one-to-one
and onto) linear mapping

Example: Discrete Infinite Time: The abstract definition of
the signal model is best illustrated by an example. Namely, the

Fig. 1. Visualization of the infinite discrete time model (4) �� � � �.

signal model commonly adopted for infinite length discrete time
SP is given by (we set )

(4)

The symbols and represent the set of infinite-length
absolute summable and square summable (finite energy) se-
quences, respectively. As defined, is a signal model
for and is just the ordinary -transform. Note that
in ASP in (4) is primarily viewed as a formal series
and not as a function. The idea is that provides a basis for the
coordinates and gives convolution its desired form.

Shift and Shift-Invariance: In the algebraic theory, the shift
(or shifts) is the chosen generator (or generators) of the filter al-
gebra. This means that every filter can be expressed as a series
or polynomial in the shift (or shifts). A signal model
has the shift-invariance property if and only if is commu-
tative. For example, the infinite discrete time model in (4) is
shift-invariant, since the multiplication of Laurent series in is
commutative.

Visualization: Every (discrete) signal model implicitly fixes
a basis of via , such as for the
time model (4). The operation of the shift on this basis can be
represented by a graph, which is called the visualization of the
model (see [1] for a rigorous definition). The visualization of
(4) is shown in Fig. 1. Intuitively, it is the structure imposed by
the model on the signal values , which are associated with the
nodes of the graph.

B. Finite Shift-Invariant Signal Models

We identify possible signal models for finite-length 1-D se-
quences . In this case, ,

. If we require shift-invariance (i.e., is com-
mutative) and assume one shift, then must be a polynomial
algebra in one variable:

(5)

Here, is an arbitrary but fixed polynomial, and addition and
multiplication in is defined modulo . The shift in is .

In the following, we discuss signal models built from polyno-
mial algebras and show the finite time model as an example. See
[1] for more details. A good reference on polynomial algebras
is [14].

Signal Model: We focus on a specific class of finite shift-
invariant 1-D signal models, namely, chosen as in (5),

the regular -module, and we assume that is separable, i.e.,

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 16, 2010 at 18:27 from IEEE Xplore.  Restrictions apply. 



3588 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 8, AUGUST 2008

has pairwise distinct zeros . If we choose a
basis of polynomials in , then

(6)

defines a signal model for . Filtering in this model is
the multiplication for , .

Signal Extension: Finite signals often arise because only a
finite number of signal samples are available. How a finite signal
continues beyond its domain is its signal extension.

Definition 2 (Signal Extension): Let and let
. A (linear) signal extension of is a series of

linear combinations

for (7)

If each summand contains at most one term, the signal extension
is called monomial.

If we assume that the basis polynomials from in (6) are
part of an infinite sequence , then (6) implicitly defines a
signal extension for . It is given by reducing modulo
and expressing the result in . Replacing

by yields the signal extension in (7).
Spectrum, Fourier Transform, and Frequency Response: For

the signal model (6), the spectral decomposition of , i.e., the
Fourier transform, is given by the Chinese remainder theorem as

(8)

is the spectrum of . Further, is linear1; hence, if we
choose [which is fixed by in (6)] as basis of and
as basis in each spectral component , is repre-
sented by the polynomial transform matrix

(9)

An arbitrary choice of bases , , in the spectral com-
ponents yields a scaled polynomial transform

(10)

Any (scaled or not) polynomial transform is a Fourier transform
for the signal model (6) and denoted with .

For a filter , is the frequency
response of . Filtering (mod ) is equivalent to the point-
wise multiplication in the
spectral domain.

Filtering and Diagonalization Properties: For every filter
, filtering is a linear mapping on ; thus, with respect to

the basis of fixed by the model (6), is
represented by an matrix . The mapping

is called the representation of afforded by with basis . In
particular, is called the shift matrix. Filtering becomes
in coordinates the matrix-vector product .

1More precisely an �-module homomorphism.

Fig. 2. Visualization of the finite discrete time model (12).

The matrices are precisely those diagonalized by any
Fourier transform for the model. Specifically,

(11)

Visualization: The graph with adjacency matrix (the
shift matrix) is the visualization of the model (6).

Example: Discrete Finite Time: As an example we consider
the commonly adopted signal model for discrete finite time,
given by

(12)

We call the finite -transform. Note that the chosen basis (via
) is . Filtering in this model is polynomial

multiplication modulo , which is equivalent
to the circular convolution of and . The signal extension is
obtained by reducing and is hence
periodic and thus monomial.

The (polynomial) Fourier transform for the model (12) is
readily computed via (9) as the DFT

DFT

For a filter the matrix is a circulant matrix, which
confirms the well-known property

DFT DFT

The shift matrix is the circular shift:

. . .

Thus, the visualization of the discrete finite time model is given
by the directed circle in Fig. 2 that also captures the periodic
signal extension. In words, applying a DFT to a signal
associates the values with the nodes of this graph, which is
equivalent to imposing a periodic signal extension.

C. Derivation of Signal Models

In [1], we presented a procedure to derive infinite and finite
signal models from an abstract definition of the shift operation.
We used this procedure to derive the infinite and finite time
models (4) and (12) from the standard time shift

(13)

displayed in Fig. 3 (top). Here the denote abstract time marks,
is the shift operator, and is the shift operation.
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Fig. 3. Time shift (top) and space shift (bottom).

The procedure consists of three steps. First, the shift is de-
fined in the abstract form shown in (13) and a -fold shift is
introduced through . This implies that .
Second, the shift operation is extended to linear combinations

of the time marks and to linear combinations of -fold
shifts . Third, the model is realized by setting ,
replacing with ordinary multiplication, and solving

(14)

for . Normalizing yields as unique solu-
tion. In the infinite case, convergence requirements lead to the
model in (4). In the finite case, as was shown in [1], a boundary
condition is needed to ensure that becomes a module. This
boundary condition determines the entire signal extension, and
requiring a monomial signal extension (the simplest possible;
see Definition 2) leads to , .
For this yields the finite time model (12).

In the following sections, we derive signal models for discrete
infinite and finite space. These models are built using the same
procedure but starting from a different definition of the shift.

III. INFINITE 1-D SPACE MODELS

Standard SP considers time-invariant systems, which implies
the standard definition of the shift in (13). In this section and the
next, we will use ASP to derive an SP framework for space SP
as we refer to it. It is built from a different, symmetric definition
of the shift. We have two motivations for this definition. The
first is our goal to define the shift for signals for which there is
no intrinsic sense of direction. These signals contrast with time
signals, for which past, present, and future are inherent from the
direction of time. The second reason is, as we will show, that
our space shift definition leads to signal models that have the 16
DTTs as Fourier transforms. Thus, within ASP, time and space
SP, the DFT and the DTTs become instantiations of one general
framework. There will be many other benefits of this theoretical
exercise as discussed later.

A. Constructing the Signal Model

We follow the same steps as in the time model derivation in
[1].

Definition of the Shift: We consider discrete complex sig-
nals indexed by ; i.e., we consider the vector space

. We define now space marks and an appropriate
space shift operator and its operation on the space marks.
As mentioned above, should operate symmetrically. We adopt
the definition

(15)

visualized in Fig. 3 (bottom).

We proceed by extending the operator domain from to
-fold shift operators . A natural definition of the -fold

space shift is

(16)

since and are those space marks at distance from .
Here, we have the first interesting difference with respect to

the time model derivation, since clearly . Furthermore,
(16) implies ; hence, it is sufficient to consider only
shift operators with . Thus, the natural representation
of a filter will be . The following lemma shows that
the are given by the Chebyshev polynomials of the first kind

in the variable . The Chebyshev polynomials will play a
central role in the definition of space models. For this reason,
we provide the necessary background on four types of Cheby-
shev polynomials , , , and in Appendix I, which we
encourage the reader to briefly review at this point.

Lemma 3: The -fold space shift operator is given by
.

Proof: Induction on . By definition , and
. Also by definition,

, for . From
the induction hypothesis, , , and
thus, using the recurrence of the Chebyshev polynomials [(43)
in Appendix I], , as desired.

Linear Extension: To construct a linear signal model, we ex-
tend by linearity the operation of to the entire set

, namely as , which can
be evaluated. Similarly, we linearly extend the operator domain
to using
Lemma 3.

Realization: We determine a “realization” of the model in-
troduced in the previous section. We set in (15) , ,
and determine polynomials that replace the space marks
in (15), i.e., that satisfy

(17)

Since (17) is equivalent to (43) (in Appendix I), the solution is
given by a sequence of Chebyshev polynomials.

We immediately notice differences with respect to the corre-
sponding derivation in the time case. These differences are in-
trinsic to the space model.

• Equation (17) is a three-term recurrence for the space
marks, whereas (14) is a two-term recurrence for the time
marks.

• Only the , , are linearly independent; the ,
, are polynomials in and can thus be expressed

as linear combinations of . In other words, the
realization of the space model introduces a starting point
in space, given by . Fixing determines the left
boundary condition and the left signal extension.

• As a consequence, even after normalizing , the
sequence of Chebyshev polynomials is not uniquely
determined. The degree of freedom is given by the choice
of as a polynomial of degree 1.
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TABLE I
REALIZATION OF THE ABSTRACT SPACE MODEL

• Again, we note that in the time model, a -fold shift oper-
ator is given by :

in contrast to the space model, where, by Lemma 3, the
-fold shift operator is given by , independent of

[see Lemma 14(iv) in Appendix I]:

(18)

As a result of this discussion, we obtain the spaces
and , i.e., the signal

model that we obtain later will be only for right-sided sequences.
Table I shows the correspondence between abstract and real-

ized concepts.
To ensure convergence, we would like to require as before

and . However, to prove convergence, we
have first to choose proper boundary conditions, i.e., we have to
choose the proper Chebyshev polynomials . We analyze the
boundary conditions in the next paragraph. This discussion has
no counterpart in the derivation of the infinite time model in [1].

Left Boundary Condition and Left Signal Extension: The de-
gree of freedom for choosing a Chebyshev sequence , nor-
malized by , is given by the choice of , or, equiva-
lently, by the choice of , since the entire sequence is then
obtained by applying the Chebyshev recursion (43) in both di-
rections [see Lemma 14(i) in Appendix I]. Fixing either or

is equivalent to choosing a left boundary condition for the
signal . For example, setting implies

, and thus , which imposes on the signal
the left boundary condition . Using Table VII, the

corresponding sequence is .
To determine the left boundary condition in the general case,

we set and , (to satisfy ).
Then, by applying (43) backwards, we get

(19)

Since is of degree at most 1, every polynomial , ,
obtained by the recursion (43), is of degree at most , and thus
a linear combination of the polynomials ,

(20)

This equation defines the left signal extension associated with
the sequence . On the other hand, by comparing the degrees

of freedom, it is obvious that not every signal extension can be
obtained by choosing a suitable boundary condition. Thus

left boundary condition left signal extension

For a generic left boundary condition, the left signal extension
(20) has no simple structure; in particular, it is not monomial
(see Definition 2). We determine now those left boundary con-
ditions that yield a monomial left signal extension in (20). The
answer is provided in the following lemma.

Lemma 4 (Monomial Left Signal Extension): Let
be a sequence of Chebyshev polynomials

with and . Then the left signal extension
associated with is monomial, i.e., every , , is a
multiple of a , , if and only if (see
Appendix I), i.e., , which implies the
corresponding left boundary conditions .

Proof: If , then the assertion holds as
shown in the “symmetry” column of Table VII. It remains to
show the converse. We start with the generic left boundary con-
dition in (19). Because the signal extension associated with
is monomial, one of the two summands in (19) has to vanish.

Case 1: is a multiple of , i.e., constant. It follows
, , , . Now, either

is constant, i.e., , which implies , or is a
multiple of , which implies , or .

Case 2: is a multiple of . It follows , ,
, , , and

. Since has to be a multiple of , we get
and thus . This completes the proof.

The four boundary conditions in Lemma 4 are the discrete
versions of the so-called Dirichlet boundary condition (“zero
value”) and von Neumann boundary condition (“zero slope”)
[15], [16]. In each case, the symmetry point is either a “whole”
sample point, or a “half” sample point, i.e., is located between
two sample points. In the literature, these four signal extensions
are sometimes called: whole point symmetry (WS), whole point
antisymmetry (WA), half point symmetry (HS), and half point
antisymmetry (HA) [17].

For these four choices of boundary conditions, filtering, i.e.,
the multiplication converges pro-
vided , (see [6] for more details).

Resulting Infinite Space Models: We define four infi-
nite space models for . Namely, for

(21)

We call the -transform but will replace by either , ,
, or , when appropriate, and accordingly refer to the -, -,
-, or -transform.
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Fig. 4. Visualization of the four infinite space models for � � ��� �� ����.
The common edge scaling factor 1/2 is omitted.

B. Properties

Each of these models has its associated notion of filtering,
spectrum, frequency response, and Fourier transform as ex-
plained in [1]. We omit the details here since our focus are the
finite space models that we will show to underly the DTTs.

The visualizations of the models are shown in Fig. 4 with a
common scaling factors of 1/2 omitted. The graphs are undi-
rected, since they are space models. Namely, the space shift
(Fig. 3 bottom) yields between each two space marks an edge
in both directions. The behavior at the left edge is determined
by the left boundary condition. Namely,
produces a directed edge to the (nonexistent) . In the first
case, , , and hence this edge is rerouted to .
In the second case, , ; hence, the edge vanishes.

IV. FINITE 1-D SPACE MODELS AND DTTS

In this section, we derive finite versions of the space models
in (21). As in the finite time model (12), these space models will
have polynomial algebras as filter and signal spaces. This is not
surprising as ASP explains that only those choices support shift-
invariance (Section II-A). We derive the finite space models in
the same way as we derived the finite time model in [1], namely
by requiring a monomial signal extension. However, in contrast
with the time case, this signal extension will not be periodic
but symmetric or antisymmetric with 16 choices. This is due to
the different basis required after realizing the shift operation:
supports the time shift, supports the space shift.

By applying the general theory from Section II-B, we will
see that the Fourier transforms for the finite space models are
precisely the 16 DTTs. There are various benefits to knowing
these models. First, as application of the general theory in
Section II-B, we obtain the appropriate notions of “ -trans-
form,” filtering or convolution, convolution theorems, spectrum
and frequency response associated with the DTTs and can de-
rive and explain many of their properties. Second, we establish
that the DTTs are, in a rigorous sense, associated with the space
shift, Fig. 3 (bottom), in the same way as the DFT is associated
with the time shift. Third, knowing those signal models is the
key to deriving and understanding the DTTs’ fast algorithms
[7], [9].

A. Constructing the Signal Model

Shift, Linear Extension, Realization: We consider a finite
number of space marks and adopt the space shift
operator in Fig. 3 (bottom) and its realization by setting ,

and hence (a generic sequence of Chebyshev polyno-
mials),2 as derived in Section III-A. These definitions will need
to be complemented by appropriate boundary conditions, as we
discuss next.

Let be a finite sampled signal
and a sequence of Chebyshev polynomials. A straightforward
realization seems to lead to signals that are polynomials of the
form . The set of these is the vector space
of polynomials of degree less than (with basis polynomials

). However, this space is not closed under multiplication by
the shift operator , and thus it is not a module, which means
filtering is not well-defined. In particular, the problem is that

(22)

since . Note that, in contrast to the time case [1],
the left boundary does not impose any problems, since

Namely, the choice of already implies a left boundary condi-
tion via (19). So the remaining task is to determine the proper
right boundary conditions.

Right Boundary Condition and Signal Extension: To solve
the problem in (22), we introduce an equation

or (23)

This imposes the same equation on the corresponding signal
samples associated with , namely

which is the right boundary condition. As a consequence of (23),
using the -fold space shift operator (see Lemma 3), we get
the series of equations for

which determine the entire right signal extension. It is obtained
by reducing modulo .

Algebraically, the right boundary condition replaces the
vector space (with basis ) by

(also with basis ), viewed as a regular
module, i.e., the algebra is . The natural basis in is
given by , regardless of the choice of .

For a general choice of left boundary condition (given by the
choice of ) and right boundary condition (given by the choice
of ), the corresponding signal extension has a complicated
structure. As before, we identify those boundary conditions that
lead to a monomial signal extension. Lemma 4 gives already
the proper left boundary conditions and shows that they are ob-
tained by choosing . For the right boundary
conditions, there are again four choices, which yields a total
number of 16 possibilities—corresponding to the 16 types of
DTTs as we will see below.

2We note that another realization is possible by setting � not equal to �.
However, the derived space models have two-dimensional spectral components,
which is undesirable. See [6] for details.
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TABLE II
THE 16 POLYNOMIALS � ASSOCIATED WITH THE 16 FINITE SPACE MODELS.

� HAS TO BE REPLACED BY � , � , � , � TO OBTAIN ROWS

1,2,3,4, RESPECTIVELY

Lemma 5 (Monomial Right Signal Extension): For a mono-
mial left signal extension, let . The only four
right boundary conditions that yield a monomial signal exten-
sion for are , , and

, which implies .
These 16 ’s are shown in Table II.

Proof: Necessarily, the boundary condition has the form
, . By multiplying by on both sides, we

obtain . We determine under
which conditions the three summands on the right reduce to at
most one summand.

Case 1: : Then either , or and
.

Case 2: : Then and
thus .

It remains to show that these four boundary conditions yield
a monomial signal extension, which is done by induction. We
omit the details.

The identities in Table II are obtained using Table VII in
Appendix I and well-known trigonometric identities.

It is interesting to note that the right boundary conditions in
Lemma 5 are the reflections of the left boundary conditions in
Lemma 4.

Resulting Finite Space Models: We define 16 finite space
models for . Namely, for
and

(24)

We call each a finite -transform, and replace with
or if specified. Note that but the natural basis in
always consists of the -fold space shifts , independently of

.
Example: We choose the left boundary condition ,

i.e., , which is afforded by the base polynomials
. As right boundary condition, we choose ,

i.e., , which implies

TABLE III
EIGHT TYPES OF DCTS AND DSTS (UNSCALED) OF SIZE �. THE ENTRY AT

ROW � AND COLUMN 	 IS GIVEN FOR � � �, 	 
 �

using Table II. We obtain the associated signal model (the 2 in
can be dropped)

(25)

We will see later that the DCT, type 2, is a Fourier transform for
this model.

Next, we apply the general theory from Section II-B to all 16
finite space models.

B. Spectrum and Fourier Transform: DTTs

We show that the 16 DTTs are Fourier transforms for the 16
finite space models (24). In doing so, we settle the question why
there are 16 DTTs to begin with, as the original derivation of the
full set of all 16 [4] does not provide an explanation.

The first and most important DTT is the DCT, type 2, intro-
duced in [2] and used in the JPEG image compression standard.
Table III gives the definitions of the nonorthogonal versions of
the 16 DTTs. We note that the DTTs of type 1, 4, 5, and 8 are
symmetric, and that the DTTs of type 2 and 3, 6 and 7, respec-
tively, are transposes of each other. We use Arabic instead of
Roman numbers to denote the type following [16].

To compute the Fourier transform (8) of the finite space
models (24) and its matrix form in (9) or (10), we have to
determine the zeros of the 16 polynomials in Table II, which
can be done using Table VII in Appendix I. Instead of giving
the details for all 16 cases, we consider the signal model (25)
as a representative example and then state the result for all 16
DTTs. Note that the discussion is an application of the general
theory in Section II-B.

Example: DCT, Type 2: The zeros of in (25)
are given by , (from Table VII in
Appendix I). Hence, the Fourier transform for is given by

(26)

is the spectrum of the signal and
is the frequency response of the filter .
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TABLE IV
OVERVIEW OF THE 16 DTTS AND THEIR ASSOCIATED SIGNAL MODELS. THE LEFT BOUNDARY CONDITION (ROWS)

DETERMINES A SCALING FUNCTION ����� � � �� AND THE BASIS � � ��� �� ��	� IN � � ���
���� AND HENCE 	.
THE RIGHT BOUNDARY CONDITION (COLUMNS) THEN DETERMINES ���� (GIVEN BELOW THE DTT) AND HENCE ALSO � ��

In matrix form, the unique polynomial Fourier transform (9)
for the signal model has entries

We can scale these to cancel the denominator and get the matrix

DCT- (27)

In words, the DCT- is a Fourier transform [namely a
scaled polynomial transform (10)] for the signal model (25).
The scaling diagonal in (27) shows the basis chosen on the
right-hand side of (26), namely in the th
spectral component , .

All DTTs: Similar computations for all 16 cases establishes
the 16 DTTs as Fourier transforms for the 16 finite -trans-
forms.

Theorem 6 (DTTs and Polynomial Algebras): The 16 DTTs
are the Fourier transforms for the 16 finite space models
(24). The correspondence is given in Table IV as follows. Let

be a finite space model with with
basis . The choice of (rows of Table IV)
determines the left boundary condition and a scaling function

. The choice of right boundary condition (columns 2–5 in
Table IV) then determines the polynomial , given at the inter-
section of row and column. The corresponding DTT is given
above . More specifically, assume are
the zeros of . All have the form , (see
Table VII in the Appendix I), and is ordered by increasing

. Then

DTT (28)

i.e., DTT is a scaled polynomial transform and thus a Fourier
transform for the associated signal model (see Section II-B).
Equation (28) implies that the chosen basis in the spectral com-
ponent is , .

The DCT, type 3, was implicitly recognized as a polynomial
transform in [10]. The DCTs and DSTs of types 1–4 where rec-
ognized as (scaled) polynomial transforms in [11]. In both cases

no connection to signal processing was established. The orig-
inal derivation of the DCT, type 2, in [2] mentions Chebyshev
polynomials but does not make use of this fact nor connects to
algebra.

Polynomial DTTs: Theorem 6 shows that each DTT is a
Fourier transform for a finite space model but in general not
the corresponding polynomial transform. Thus, we now asso-
ciate to each DTT its polynomial transform obtained by
omitting the scaling factors in (28).

Definition 7 (Polynomial DTTs): Let DTT be given. We call
the unique polynomial transform associated with DTT by
(28) the “polynomial DTT” and denote it with DTT . Thus, (28)
can be rewritten as

DTT DTT

We have DTT DTT if and only if DTT appears in the first row
of Table IV, i.e., if DTT DCT- DCT- DCT- DCT- .

The polynomial DTTs will play an important role in the
derivation of fast DTT algorithms [7]. Also, in some cases
the polynomial DTTs have a lower complexity than the actual
DTT. This makes them a candidate for applications in which
the DTT is followed by scaling (such as JPEG compression).

Remarks and Observations: For each DTT, we have three
relevant versions. First, the polynomial version DTT, which is
the unique polynomial transform for its associated signal model
(see Definition 7 above). Second, the unscaled or natural ver-
sion, which has pure cosines (or sines) as entries (see Table III).
Third, the orthogonal version, which arises from the other two
by suitable scaling of rows and columns, i.e., by slightly ad-
justing the signal model (explained below in Section IV-E).

The 16 DTTs can be divided into four groups of four each
with respect to the polynomial in the associated module

(see Table IV). For example, the “ -group” comprises
all DTTs of types 3 and 4, which have the same module

. The modules within the other groups differ
slightly, e.g., in the -group that comprises the DTTs on the
main diagonal in Table IV. The difference between the DTTs
within the same group is the choice of basis, which is one
of . As a consequence, these transforms can be
converted into each other using a sparse base change (explained
in Section IV-F).
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Fig. 5. Visualizations of the finite space models associated with the DCTs of
type 1–4 (from top to bottom) and size �. A common edge scaling factor of 1/2
has been omitted.

TABLE V
THE VALUES � � � � � � � FROM (30) FOR THE FOUR RESPECTIVE CHOICES

OF LEFT AND RIGHT BOUNDARY CONDITION

C. Visualization

The right boundary conditions for the 16 finite space models
(24) are precisely the mirrored left boundary conditions that oc-
curred already in Fig. 4. This makes it easy to obtain the visual-
izations for (24). For example, Fig. 5 shows the cases associated
with the DCTs of type 1–4.

More formally, consider the model (25) as example. To ob-
tain the visualization, we have to compute the shift matrix .
From , , ,
and

, it follows that

(29)

This is precisely the adjacency matrix of the second graph in
Fig. 5 associated with the DCT of type 2. In words, applying
the DCT-2 to a signal implicitly imposes the structure of this
graph on that signal.

For an arbitrary finite space model (24), takes the form

(30)

with the shown in Table V.

D. Filtering and Diagonalization Properties

Consider a finite space model (24) with
and -basis (fixed by ) and associated DTT .

Let be the representation associated with the model.

Filtering in this model is the multiplication of (ex-
pressed in the -basis) with (expressed in ) modulo
to yield again a signal expressed in . In coordinates,
is equivalent to .

The diagonalization properties of the 16 DTTs are a special
case of (11) and can be stated in a unified way. For any filter

,

DTT DTT (31)

where the are the zeros of . This unifies and explains the
result from [18]. Conversely, the are all the matrices diag-
onalized by DTT. The matrices have in all cases structure:
each can be written as the sum of a Toeplitz and a Hankel
matrix, up to potential scaling factors. More details are in [6].

As one example, for in (29), we get

DCT- DCT-

More generally, the DTTs diagonalize their associated in
(30) via (31), which was also observed in [16] (where

was considered instead of ). This also
implies that the have pairwise distinct eigenvalues.

Equation (31) also provides the convolution theorems associ-
ated with the finite space models.

E. Orthogonal DTTs

It is well known that the DTTs, as defined in Table III, are
“almost orthogonal,” which means that after a suitable scaling of
rows and columns they become orthogonal. Using ASP, i.e., the
knowledge of the DTTs’ underlying signal models (24), these
scaling factors can be derived as explained in [6] and omitted
here due to space limitations.

Another argument (following [16]) for the “almost orthogo-
nality” of the DTTs is that they diagonalize the matrices in (30),
which are almost symmetric and have pairwise distinct eigen-
values as mentioned above. For example, DCT-2 diagonalizes
the symmetric in (29) and hence can be made orthogonal
by a suitable scaling DCT- , where is diagonal.

F. Relationships Between DTTs

Some DTTs can be translated into each other using sparse ma-
trices. These relationships can be understood and derived once
their underlying signal models are known. We explained this in
[9] (without using the notion of signal model) and briefly restate
the result for completeness. The origin of these relationships is
similarity in the signal model, i.e., that two DTTs belong to the
same group of four (e.g., -group).

Duality: We observed before that the right boundary condi-
tions for the DTTs are precisely the mirrored versions of the
left boundary conditions, a fact that meets our intuition since
the DTTs are based on symmetric space models. However, the
construction of for a given DTT (see
Theorem 6) deals differently with the left boundary condition
(which determines the choice of the base sequence ) and the
right boundary condition (which determines ); thus, we obtain
different DTTs for a given pair of boundary conditions and for
its mirrored counterpart. We call such a pair dual. Dual DTTs
occur at mirrored positions in Table IV, i.e., at positions ,
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, , , respectively. The DTTs on the main diag-
onal are self-dual.

Theorem 8 (Duality Relationship) [9]: Let DTT and DTT
be a pair of dual DTTs. Then

DTT DTT

where is an identity matrix with the columns in reversed
order. As an important consequence of Theorem 8, dual DTTs
have the same arithmetic complexity.

Relationships in Groups of DTTs: Dual DTTs necessarily
have the same associated . However, in
Table IV, we also have DTTs that are not dual but have the same
or similar , namely those in the same group of four (e.g.,

-group). An example is given by the DCTs of type 3 and 4
with .

Further inspection shows that, in each group, all possible left
andrightboundaryconditionsarepresent.TheDTTsinonegroup
have (almost) thesamemodule,butwithdifferentbases. Thus,we
can translate DTTs in the same group into each other using a base
change. Further, because of Table II, the resulting base change
matrices are sparse, i.e., require only operations.

Example: DCT, Type 3 and 4: We consider DCT- and
DCT- , which are both in the -group, i.e., the associated
module is .The difference is in thechoiceofbasis:

DCT-

DCT-

Using from Table II and , the
corresponding base change matrix for is given by

(32)

We denote the zeros of by . As a
consequence of the above, we get the following diagram:

(33)

which implies the equation DCT- DCT- . Note that
we have in the bottom row of (33) since both DCT-
DCT- and DCT- are polynomial transforms and thus use the
same basis in the spectrum. Introducing the scaling
diagonal of the DCT-4
(see Table IV), we get

DCT- DCT- (34)

If desired, this equation can now be further manipulated through
transposition or inversion. As an example, one can obtain

DCT- DCT- (35)

where is with the 2 replaced by 1 in the first entry and
without the scaling factor 1/2.

Other Cases: Using this procedure on all DTTs shows that
all DTTs of types 1–4 and all DTTs of type 5–8 can be converted
into each other using operations, respectively [9].

V. FINITE SKEW -TRANSFORM AND SKEW DTTS

In this section, we introduce a new class of transforms that
is closely related to the DTTs. We call these transforms skew
DTTs. More specifically, the skew DTTs correspond to and gen-
eralize the DTTs in the -group, i.e., those with associated

, which are the DTTs of type 3 and 4.
The first skew DCT (type 3) was introduced in [19].

We introduce the skew DTTs for the following reasons. First,
they are interesting from a signal processing point of view. As
the DTTs, they are associated with a finite space model, their
associated boundary conditions are simple, and their signal ex-
tension is sparse even though not monomial.

Second, they are necessary building blocks in the general-
radix Cooley–Tukey type DTT algorithms derived in [7].

A. Constructing the Signal Model

In the finite space models (24), we chose the right boundary
condition to ensure a monomial signal extension via Lemma 5.
Now we relax this requirement and consider a more general
boundary condition for the four signal models in (24) for which

. Namely we generalize to
, , . For ,

, which is the previous case. Hence, the Fourier trans-
forms will generalize the DTTs in the -group and depend on .

The right boundary conditions associated with
depend on the basis and can be read

off from Table IV:

(36)

In the general case , these boundary conditions lead to
no monomial signal extensions, since this property uniquely de-
fines the signal models for the 16 DTTs. However, it is intriguing
that the signal extension is “two-monomial,” which means that
the sum in (7) has at most two summands.

Lemma 9: The module with -, -, -,
or -basis has a two-monomial signal extension.

Proof: The proof and the exact form of the signal extension
can be found in [6].

Resulting Finite Space Model: We define four skew finite
space models parameterized by , , for .
Namely, for ,

(37)

As in (24), the natural basis of is the -basis:
, independent of . For , the skew

models reduce to their nonskew counterpart in (24).
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B. Spectrum and Fourier Transform: Skew DTTs

To compute the spectrum and a Fourier transform for the four
models (37), we first need to determine the zeros of
and fix a proper ordering.

Lemma 10: Let , . We have the factorization

(38)

which determines the zeros of . We order the zeros
as , such that , and

for . The list is given by the concatenation

for even , and by

for odd . In the particular case of or , we
thus have as in Table VII.

Proof: The zeros of are proved using the closed
form of in Table VII. The ordering of is shown by inspec-
tion. We omit the details.

In words, the list arises from the list
in (38) by interleaving the first half of

with the reversed second half of .
Lemma 10 yields the Fourier transform for the models (37).

We omit the form (8) and give directly the matrix forms .
Definition 11 (Skew DTTs): Let , ,

and with basis , where
is one of . Let denote the list

of zeros of in the order specified in Lemma 10. We denote the
associated polynomial transforms for by DCT- ,
DST- , DCT- , DST- , for , re-
spectively. Further, we define for each of these four DTT the
associated scaled polynomial transforms

DTT DTT

where is the scaling function associated with the (ordinary)
DTT (see Table IV). We call these transforms skew DTTs. If

, then DTT DTT and DTT DTT
in all four cases. In the case of the DCT- DCT- ,
we will omit the bar for the skew versions. Specifically

DCT-

DCT-

As an example, we consider the DCT- . Using Lemma
10, the zeros of are given by

. We get

DCT-

C. Filtering and Diagonalization Property

Filtering in the models (37) is multiplication of polynomials
, modulo . In coordinates, it

becomes the matrix-vector multiplication , where is the
representation associated by the respective model. Convolution
theorems are special cases of (11).

As an example, we compute the shift matrix from (30)
and (36). Specifically, it is obtained from (30) by adding in the
upper right corner for DCT- , and

for the other skew transforms. Hence,

(39)

The values for the coincide with the non-skew cases given in
Table V. As a consequence, in the four cases

DTT DTT

where is the list of zeros of from Lemma 10.

D. Translation Into Non-Skew DTTs

Each of the skew DTTs can be translated into its non-skew
counterpart using a sparse x-shaped matrix.

Lemma 12: Let DTT be a skew DTT. Then

DTT DTT

and

DTT DTT

Here, depends on the DTT and takes the following
forms, indicated by . In all four cases,
if the lines intersect, the numbers are added at the intersecting
position.

...
. . . . .

.

... . .
. . . .

. . . . .
. ...

. .
. . . .

...
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with and .

. . . . .
.

. .
. . . .

with and
. For DST- , the sines in are

multiplied by 1.
Proof: Follows by direct computation, using the definitions

of the matrices and
.

Note that the 2 2 blocks in the translation matrices are
not rotations. The identities in Lemma 12 enable the inversion
of the skew DTTs through the inversion of the ordinary DTTs.

E. Relationships Between Skew DTTs

All skew DTT share the same associated module, but dif-
ferent bases. Thus, they can be translated into each other by a
base change similar to the ordinary DTTs in Section IV-F. As
in that section, we consider the skew DCTs, type 3 and 4, as an
example. The base change matrix we computed in (32) did
not depend on the right boundary condition. Thus, the diagram
(33) generalizes for arbitrary to

(40)

which implies DCT- DCT- . The first dif-
ference occurs when we extend (40) to the non-polynomial
DCT- , since the scaling diagonal depends on . Let

denote the zeros of and
the scaling function of DCT-4 and let

. Then

DCT- DCT- (41)

which generalizes (34).
In Section IV-F, we continued by inverting this equation to

derive the different relationship (35). To do this, we introduce
the proper “inverse” skew DTTs, which will also be needed in
the DTT algorithms derived in [7]. The definition is motivated
by and a generalization of the equations

DCT- DCT-

DST- DST-

DTT DTT DTT

for DTT DCT- DST- .
Definition 13 (Inverse Skew DTTs): We define the inverse

skew DTTs by

iDCT- DCT-

iDCT- DCT-

iDST- DST-

iDST- DST-

TABLE VI
OVERVIEW OF THE FINITE SPACE MODELS AND ASSOCIATED FOURIER

TRANSFORMS DISCUSSED IN THIS PAPER

Thus, for , we have iDCT- DCT- ,
iDST- DST- , iDCT- DCT- ,
iDCT- DCT- .

Note that Definition 13 does not provide direct knowledge
about the matrix entries of the iDTTs. These, however, can be
computed using Lemma 12. For example

iDCT- DCT-

iDCT- DCT- (42)

and similarly for DST-3 and DST-4. Note that has
in all four cases the same x-shaped pattern as . Namely,
the four inverses are derived from

For example

...
. . . . .

.

... . .
. . . .

Using Definition 13, we can now invert (34) to get a general-
ization of (35)

iDCT- iDCT-

where is the same as in (35).
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TABLE VII
FOUR SERIES OF CHEBYSHEV POLYNOMIALS. IN THE TRIGONOMETRIC CLOSED FORM ��� � � � AND IN THE POWER FORM ��� � ��� � �

VI. OVERVIEW OF FINITE SPACE MODELS

In Table VI, we list all the finite space signal models, and their
associated Fourier transforms, that we introduced in this paper.
The table is divided according to , which is a finite -, -, -,
or -transform.

In each row, we list in the first two columns the signal model,
in the third column the associated unique polynomial Fourier
transform, and in the fourth column possibly other relevant
Fourier transforms for the model.

Except for the skew DTTs, each of the listed transforms has
an orthogonal counterpart, which is obtained by proper scaling
of rows or columns.

Table VI, together with Table II in [1] for finite 1-D time
models classifies practically all existing 1-D trigonometric
transforms, i.e., those transforms that can be expressed using
cosines and sines. For each of these transforms, ASP hence
provides the associated signal model and with it all basic SP
concepts, many of which have not been defined or found before.

VII. CONCLUSION

This paper shows that a theory of linear signal processing
can be developed from a new concept of shift that is different
from the standard time shift, namely from the space shift as we
call it. Using the algebraic signal processing theory, we derived
from this shift appropriate signal models for space signal pro-
cessing, i.e., filter algebras, signal modules, and “ -transforms.”
In the finite case this approach derived from basic principles the
16 DTTs as Fourier transforms. This interpretation is arguably
more satisfying than the original one as asymptotic approxima-
tions of the Karhunen–Loève transform (KLT) of a first-order
causal Gauss–Markov random process. For a closer investiga-
tion of the relationship between KLTs and DTTs and between
KLTs and general Fourier transforms in ASP see [6], [20].

By identifying the signal models underlying the DTTs,
we also identified their associated notions of “ -transform,”
filtering or convolution, and explained in one framework many
of the known properties of the DTTs. In [7], [9] we use the
knowledge of these signal models to derive known and novel
fast DTT algorithms.

One may wonder which other shifts provide meaningful SP
frameworks and ASP is the proper platform to investigate this
question. We have done first steps in this direction with a gen-
eralization of the space shift (called GNN shift) in [6], and with
2-D space shifts for both the quincunx lattice [21] and the hexag-
onal lattice [22]. The latter two yield nonseparable 2-D signal
models.

APPENDIX I
CHEBYSHEV POLYNOMIALS

Chebyshev polynomials, and the more general class of
orthogonal polynomials, have many interesting properties
and play an important role in different areas of mathematics,
including statistics, approximation theory, and graph theory.
An excellent introduction to the theory of orthogonal poly-
nomials can be found in the books of Chihara, Szegö, and
Rivlin [23]–[25]. In this section we give the main properties of
Chebyshev polynomials that we will use in this paper.

We call every sequence of polynomials that
satisfies the three-term recurrence

(43)

a sequence of Chebyshev polynomials ( stands for Cheby-
shev). Using (43), the sequence is uniquely determined by
the initial polynomials . The most important—and com-
monly known—are the Chebyshev polynomials of the first kind,
denoted by and determined by and .
We provide a few examples:

For , can be written in closed form as

(44)

The closed form exhibits the symmetry property ,
, and can be used to derive the zeros of . We will

occasionally use another parameterization of , which we call
power form, given by

(45)

By substituting we obtain (44).
In this paper, we also consider the Chebyshev polynomials of

the second, third, and fourth kind, denoted by , re-
spectively, that arise from and different choices of .
Each of these sequences exhibits a symmetry property and pos-
sesses parameterized forms. These properties are summarized
in Table VII.

In addition, we will need the following properties that are
shared by all sequences of Chebyshev polynomials including

(see [23]).
Lemma 14: Let be a sequence of Chebyshev

polynomials. Then the following holds:
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i) the sequence is determined by any two successive poly-
nomials ;

ii) , , for ;
iii) ;
iv) .
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