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Algebraic Signal Processing Theory:
Foundation and 1-D Time
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Abstract—This paper introduces a general and axiomatic ap-
proach to linear signal processing (SP) that we refer to as the al-
gebraic signal processing theory (ASP). Basic to ASP is the linear
signal model defined as a triple � �� where familiar con-
cepts like the filter space and the signal space are cast as an algebra

and a module , respectively. The mapping � generalizes the
concept of a -transform to bijective linear mappings from a vector
space of signal samples into the module . Common concepts
like filtering, spectrum, or Fourier transform have their equiva-
lent counterparts in ASP. Once these concepts and their properties
are defined and understood in the context of ASP, they remain true
and apply to specific instantiations of the ASP signal model. For ex-
ample, to develop signal processing theories for infinite and finite
discrete time signals, for infinite or finite discrete space signals, or
for multidimensional signals, we need only to instantiate the signal
model to one that makes sense for that specific class of signals. Fil-
tering, spectrum, Fourier transform, and other notions follow then
from the corresponding ASP concepts. Similarly, common assump-
tions in SP translate into requirements on the ASP signal model.
For example, shift-invariance is equivalent to being commuta-
tive. For finite (duration) signals shift invariance then restricts to
polynomial algebras. We explain how to design signal models from
the specification of a special filter, the shift. The paper illustrates
the general ASP theory with the standard time shift, presenting a
unique signal model for infinite time and several signal models for
finite time. The latter models illustrate the role played by boundary
conditions and recover the discrete Fourier transform (DFT) and
its variants as associated Fourier transforms. Finally, ASP provides
a systematic methodology to derive fast algorithms for linear trans-
forms. This topic and the application of ASP to space dependent
signals and to multidimensional signals are pursued in companion
papers.

Index Terms—Algebra, boundary condition, convolution, filter,
Fourier transform, irreducible, module, polynomial transform,
representation theory, shift, shift-invariant, signal extension,
signal model, spectrum, -transform.

I. INTRODUCTION

L INEAR signal processing (SP) is built around signals, fil-
ters, -transform, spectrum, Fourier transform, as well as

other concepts; it is a well-developed theory for continuous and
discrete time. In linear signal processing, signals are modeled
as elements of vector spaces over some base field (usually or

Manuscript received December 3, 2005; revised January 20, 2008. The asso-
ciate editor coordinating the review of this manuscript and approving it for pub-
lication was Dr. Andrew C. Singer. This work was supported by NSF through
awards 9988296, 0310941, and 0634967.

The authors are with the Department of Electrical and Computer Engi-
neering, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
pueschel@ece.cmu.edu; website: http://www.ece.cmu.edu/~pueschel; e-mail:
moura@ece.cmu.edu; website: www.ece.cmu.edu/~moura).

Digital Object Identifier 10.1109/TSP.2008.925261

) and filters operate as linear mappings on the vector spaces
of signals. This paper presents an algebraic signal processing
theory (ASP) for linear signal processing. ASP starts with three
basic objects: 1) an algebra1 of filters, 2) an -module
of signals, and 3) a bijective linear mapping from a coordi-
nate vector space into that generalizes the -transform.
These objects form the triple , which we refer to as
the signal model. In principle, many signal models
are possible; knowing which models arise in common SP ap-
plications, or which models should be associated with a given
linear transform, or how to develop signal models which reflect
desired properties are relevant questions. We address these ques-
tions by fixing, i.e., choosing, a shift operator that generates the
algebra of filters, and by showing that standard properties
in SP translate into corresponding requirements for the signal
model. For example, shift-invariance forces the algebra to be
commutative. If the signals are finite—and for now assuming
one dimensional (1-D) signals—this requires to be a poly-
nomial algebra , which is the space of polynomials
modulo the fixed polynomial . Hence, polynomial algebras
are a key structure in ASP.

We present the ASP equivalents of filtering, spectrum,
Fourier transform, frequency response, and other common
signal processing concepts. Once defined and their properties
derived in the framework of ASP, it is simple to identify these
concepts for concrete examples of ASP signal models. We
consider explicitly infinite (duration) and finite (duration) dis-
crete time signals. For the corresponding infinite discrete time
signal model, the Fourier transform is the discrete time Fourier
transform (DTFT). For finite discrete time signals, we can have
several signal models; for example, assuming shift-invariance,
a common signal model sets
for which the corresponding Fourier transform is the discrete
Fourier transform (DFT). For other finite discrete time models,
the Fourier transform becomes the real DFT (RDFT) or the
discrete Hartley transform (DHT). In [1], we consider shift-in-
variant signals indexed by 1-D lattices; we call them 1-D space
signals. In their signal models, the polynomial in is
a Chebychev polynomial and their Fourier transforms are the
16 variants of the discrete trigonometric transforms (DTTs),
e.g., the discrete cosine transform (DCT) and the discrete sine
transform (DST). The ASP framework can be applied to signals
in higher dimensions. References [2] and [3] instantiate ASP
for 2-D signals indexed by the quincunx and hexagonal lattices.
The Fourier transforms for these models are novel nonseparable
2-D linear transforms.

1The term algebra here is used to describe a specific algebraic structure that
is introduced later, and not the mathematical discipline.
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Besides representing a unifying framework for existing or
new signal processing theories in 1-D or higher dimensions,
ASP also provides the means to concisely derive fast algorithms
for Fourier transforms in its many instantiations. For example, in
[4]–[7], we derive from a few basic ASP principles many dozens
fast algorithms including many new ones, such as general-radix
Cooley–Tukey type algorithms for various DCTs and DSTs. We
also apply the theory in [8] to derive fast algorithms for novel
2-D transforms.

A longer version of this paper is available at [9]. Early work
on the algebraic approach to linear transforms appeared in [4].

Related Work: To date, algebra has not been a mainstream
tool in signal processing. However, we can identify two impor-
tant algebraic research directions in signal processing: the alge-
braic derivation of fast Fourier transform algorithms (FFT) and
Fourier analysis on groups.

The rediscovery of the (standard) FFT by Cooley–Tukey [10],
[11] spawned research on the derivation and optimization of
DFT algorithms. Key in this work was recognizing the well-
known connection between the DFT and the cyclic group, or
equivalently the polynomial algebra , and to use
algebra in the algorithm derivation (e.g., [12] and [13]). A sim-
ilar approach underlies Winograd’s seminal work on the mul-
tiplicative complexity of the DFT, which produced a new class
of DFT algorithms [14], [15]. The first book on FFTs by Nuss-
baumer makes heavy use of the algebraic interpretation of the
DFT [16].

Fourier analysis on groups is classic in mathematics, going
back to the nineteenth century [17]. In signal processing,
general commutative and finite groups were considered in
[18] (including fast algorithms) and are essentially associated
with DFTs (of arbitrary dimension). The first proposition of
noncommutative groups in SP is due to Karpovsky [19] but it
has not found many applications. Notable exceptions include
Fourier analysis on the symmetric group to study ranked data
[20], on the 2-sphere [21], and on wreath product groups for
multiresolution analysis [22]. Each of these examples is in ASP
terms a specific choice of a signal model.

In all this work, groups and group algebras are the algebraic
objects of choice. Since shift-invariance requires commutative
algebras, as we assert, we need to go beyond group algebras
to capture other linear transforms, like the DTTs, within one
algebraic framework.

Algebra has played a more significant role in other areas like
for example system theory and coding. Algebraic system theory
was started in the seminal work of Kalman (see [23, ch. 10]) and
further developed by others, including [24]–[26]. Polynomial
algebras play a crucial role but are used differently than in ASP,
namely, to study realization, controllability, and observability
in linear systems. Similarly, algebraic coding theory is standard
[27] and makes heavy use of polynomial algebras. One reason is
that finite fields are polynomial algebras over prime-size fields,
but polynomial algebras also provide the structure for certain
linear codes (e.g., cyclic codes).

Organization: We start by identifying the algebraic struc-
ture and basic assumptions underlying SP in Section II and in-
troduce the concept of signal model on which ASP is built.
Section III captures and derives basic SP concepts from a given

signal model. In Section IV, we specialize ASP to finite, shift-in-
variant SP which means signal models built from polynomial al-
gebras. Section V constructs infinite and finite 1-D time models
from basic assumptions and gives detailed insight into possible
choices and the need for boundary conditions. We conclude with
Section VI.

II. FOUNDATION: SIGNAL MODEL

As stated in the introduction, by SP we mean linear signal
processing. In this section, we first explain why SP naturally
falls into the framework of algebra and then define the signal
model. Once a signal model is given, spectrum, Fourier trans-
form, and other SP concepts are automatically defined as we
will show in Section III.

A. The Algebraic Structure in Signal Processing

Algebra studies algebraic structures. An algebraic structure is
a set (or a collection of sets) with operations (such as addition
and multiplication) that satisfy certain properties such as the dis-
tributive law. Examples of algebraic structures include groups,
rings, fields, and vector spaces. Each one of these spawns its
own structure theory. For example, linear algebra is the theory
of vector spaces. Hence, to investigate the algebraic structure in
SP, we start by identifying the crucial sets and their available
operations.

Sets: The basic sets used in SP are the set of signals and
the set of filters .

Operations: The set of signals is usually assumed to be a
vector space: signals can be added and multiplied by a scalar
(from the base field), to yield a new signal. Formally

signal signal signal

signal signal

The structure of a vector space gives access to dimension, basis,
linear mapping, subspace, and other related notions.

In SP, signals are processed by linear systems,2 commonly
called filters. In block diagram form

signal filter signal (1)

By writing the filter operation formally as multiplication we
can write (1) as

filter signal signal

Multiplication of a signal in by a filter in can take different
forms depending on the representation of signals and filters, e.g.,
convolution (in the time domain), standard multiplication (in the

-transform domain), or any other adequate form, as long as
certain properties are satisfied, e.g., the distributive law:

filter signal signal filter signal filter signal

2We only consider single-input single-output linear (SISO) systems in this
paper. Extensions to multiple-input multiple-output (MIMO) systems are under
research.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 16, 2010 at 18:20 from IEEE Xplore.  Restrictions apply. 



3574 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 8, AUGUST 2008

Next, we determine the algebraic structure of the filter space .
Filters can be added, multiplied, and multiplied by a scalar
from the base field; formally

filter filter filter parallel connection

filter filter amplification

filter filter filter series connection

The first two make a vector space. In addition, multiplication
in is defined, which is not the case in . Note that multi-
plication of two filters and multiplication of a filter (element of

) and a signal (element of ), though written using the same
symbol , are algebraically different.

Algebraic Description: Sets with the above operations are
well-known in algebra. The filter space is an algebra (i.e., a
vector space that is also a ring, i.e., with multiplication of its
elements defined). It operates on the signal vector space ,
making the signal space an -module. The operation of
on is filtering.

set of filters/linear systems algebra
set of signals -module

The exact definitions of algebra and module are given in
Appendix I. The theory of algebras and associated modules
is known as the representation theory of algebras. For an
introduction to representation theory, we refer to [28]–[30].

Example: Infinite Discrete Time: In infinite discrete time SP,
the algebra commonly used consists of filters whose -domain
representation has absolute summable coefficient sequences3

(2)
We use boldface symbols like to denote coordinate represen-
tations, i.e., sequences of scalars from the base field (such as ).
The corresponding element of an algebra (or module below) is
written unbolded like .

The associated module is commonly assumed to be the space
of finite energy signals, in the -domain given by

(3)
We provide a proof that in (3) is indeed an -module (i.e.,

closed under filtering) in [9].
Note that in ASP we consider and as spaces of se-

ries and not immediately as spaces of complex functions. This
means that the difference between, e.g., and is that the latter
makes a basis explicit for which the former is the coordinate
vector.

B. Signal Model

ASP provides an axiomatic approach to SP. It does so by
identifying the fundamental objects that are needed to develop
an SP theory.

3Replacing � with � in (2) destroys the algebra structure: the concatenation
or multiplication of two � filters is in general not an � filter.

Clearly, we need filter and signal space, i.e., an algebra and an
associated module as explained above. However, in SP applica-
tions, signals are usually identified as elements of a vector space

and not as elements of modules. For example, in the discrete
case, which is the focus of this paper, signals are infinite or finite
sequences of numbers from the base field (which we assume
to be complex for now) over some index range : . For
finite , ; for , we
usually consider or .

To define filtering, we need to assign to a module with
associated algebra (i.e., filter space). This is done through a bi-
jective linear mapping : . For example, in infinite
discrete time SP, is the well-known -transform

(4)

where is defined in (3).
As we will show later, the three objects , , and are

indeed sufficient to develop a theory of SP, e.g., to define spec-
trum, Fourier transform, and other concepts. Hence, we collect
these objects in a triple called a signal model.

Definition 1 (Linear Signal Model): Let be a vector
space of complex valued signals over a discrete index domain

. A discrete linear signal model, or just signal model, for
is a triple , where is an algebra of filters, is an

-module of signals with , and

(5)

is a bijective linear mapping. If , are clear from the con-
text, we sometimes refer to as the signal model. Further, we
transfer properties from to the signal model. For example,
we say the signal model is finite, if is finite-dimensional.

Example: Infinite Discrete Time Model: Continuing the pre-
vious example, the signal model usually adopted for infinite dis-
crete time SP is

(6)

with from (2), from (3), and from (4).
Remarks on the Signal Model: If is of dimension with

basis4 and , then

(7)

defines a signal model for . Conversely, if is any
signal model for with canonical basis ( th element in is
1; all other elements are 0), then the list of all is a
basis of (since is bijective) and thus has the form in (7).
In other words, the signal model implicitly chooses a basis in

and is dependent on this basis.
Definition 1 makes it possible to apply different signal models

to the same vector of numbers. For example, application of
a DFT or a DCT to compute the spectrum of a finite-length

4In this paper � will always denote a basis and � always basis elements, i.e.,
elements (or signals) in�, which should not be confused with scalars such as
� , � .
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vector implicitly adopts different signal models for this vector
(Section V-B and [1]).

We remark that Definition 1 of the signal model and the al-
gebraic theory extend to the case of continuous (index) signals.
However, in this paper, we will not pursue this extension and
limit ourselves to discrete (index) signals.

III. ALGEBRA AND SIGNAL PROCESSING

We claimed that, given a signal model for a vector space ,
the major ingredients for SP on are automatically defined.
This section confirms this claim. We show that signals, filters,
convolution, spectrum, Fourier transform, frequency response,
shift, shift-invariance have their abstract analogue in ASP and
can be derived from the signal model. Understanding and ex-
ploiting the benefits of this connection between SP concepts and
their algebraic equivalents helps us to develop new SP frame-
works, or signal models, different from standard time SP.

In this section we assume a given signal model for
a vector space with

(8)

As remarked before, this implies that the form a basis for
. This basis is automatically fixed by the model. Further, we

assume that the base field is , i.e., both and are -vector
spaces. Other base fields are of course possible.

As a running example, we use the infinite discrete time model
in (6).

A. Basic Algebraic Versus SP Concepts

Algebra (Filter Space): The filters are given by the elements
. Serial and parallel connection of filters are defined

through the properties of (see Appendix I).
As seen before, in infinite discrete time, is given by (2).
Module (Signal Space): The signals are the elements .

Filtering is automatically defined as the operation of on
and is ensured by the axioms defining the module.

The basis elements of fixed by the model via (8) are
the impulses. The impulse response of a filter for this impulse
is .

In infinite discrete time, is given by (3). The impulses are
the .

Regular Module (Filter Space = Signal Space): An important
module associated with an algebra is the regular module which
is itself: with the operation of on being the
multiplication available in . We call a signal model with

a regular signal model. Note that even if as sets,
the algebraic structures of and (i.e., which operations are
allowed) are different.

The infinite discrete time model in (6) is not regular.
Representations (Filters as Matrices): As a consequence of

the module axioms (Appendix I), a fixed filter can mul-
tiply every signal and defines a linear mapping on
given by

(9)

Thus, with respect to the basis fixed via (8), every
is expressed by a matrix (possibly, countably infinite if
is countably infinite). As usual with linear mappings, is

obtained by applying to each base vector ; the coordinate
vector of the result is the th column of .

By constructing for every filter , we obtain a map-
ping from the filter algebra to the algebra of ma-
trices :

(10)

The mapping is a homomorphism of algebras, i.e., a map-
ping that preserves the algebra structure (see Definition 8 in
Appendix I). In particular, and

. The homomorphism is called the (ma-
trix) representation of afforded by the -module with
basis and is fixed by the chosen signal model.

Through the representation, abstract filtering (multiplication
of by ) becomes in coordinates a matrix-vector
multiplication:

(11)

This coordinatization of filtering also shows the fundamental
difference between signals and filters; namely, in coordinates,
signals become vectors, and filters (as linear operators on sig-
nals) become matrices.

In the infinite discrete time model, as is well-known, the
are infinite Toeplitz matrices.

Irreducible Submodule (Spectral Component): If is an
-module, then a subvector space is an -submodule

of if is itself an -module, i.e., closed or invariant under
the operation of . Most subvector spaces fail to be -submod-
ules; intuitively, the smaller the vector space is, the harder
it is to remain invariant under .

A submodule is irreducible if it contains no proper
submodules, i.e., no submodules besides the trivial submodules
{0} and itself.

In particular, every one-dimensional submodule has to
be irreducible and is an eigenspace simultaneously for all filters

; i.e., for all with a suitable .
We call each irreducible module a spectral component of and
each element in it a pure frequency and write instead of to
emphasize it.

We write the collection of all irreducible submodules as ,
, where is a suitable index domain.

In the infinite discrete time model, there is an irreducible sub-
module of dimension one for every , spanned
by

Indeed, for arbitrary

(12)

which confirms that is an -module.5

5To be precise,� is an �-module but not a submodule of� since � ��
� � �—a problem with infinite index domains. Besides that the theory remains
intact.
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Fig. 1. Visualization of the concept Fourier transform, which decomposes the
�-module� into a direct sum of irreducible (minimal)�-invariant subspaces,
i.e., �-submodules. The latter are called the spectrum of�.

Irreducible Representations (Frequency Response): We
choose in each irreducible module, or spectral component
of a basis . Then affords a representation of
called irreducible representation:

where . The matrix is the frequency
response of at frequency . The collection of all ,

, is the frequency response of .
In infinite discrete time, (12) shows that

as expected.
Module Decomposition (Spectrum, Fourier Transform): It

may be possible to decompose the module into a direct sum
of its irreducible modules. The mapping

(13)

is then the Fourier transform for the signal model and is invert-
ible.6 The existence of such a decomposition, and hence of the
Fourier transform, is not guaranteed; it depends on and .
See Fig. 1 for a visualization of the Fourier transform.

With respect to the fixed basis of and chosen bases
, we obtain the coordinate form of as

(14)

In infinite discrete time, for , i.e., ,
, , i.e., all modules are of dimen-

sion 1, and the tuple is a (scalar) function
, . This is in general not the case; different

may be associated with modules of different dimensions. An
example is the real discrete Fourier transform (RDFT) discussed
in Section V-C.

The Fourier transform is an -module homomorphism (see
Definition 9 in Appendix I), which means that

for , . In words, this means that filtering
in the signal space is equivalent to parallel filtering in the
spectrum (as visualized in Fig. 1):

for all (15)

6The spectral components � of � should not be confused with the coordinates
� of �.

also yields a general convolution theorem

(16)

B. Shift-Invariance

Section III-A illustrated that once a signal model is given,
basic SP concepts are available. From a practical point of view,
this means that we can construct a large number of distinct SP
frameworks with different notions of filtering, spectrum, and
Fourier transform. In this section, we narrow down the choices
by imposing shift-invariance on a signal model. For finite (-di-
mensional) signal models, this will identify polynomial algebras
as key structures in SP.

Shifts (Generators of Filter Algebra): The shift operator is
a special filter, and thus is an element7 . Further, it is
common to require that every filter be expressed as a
polynomial or series in the shift operator . In algebraic terms,
this means that the shift operator generates8 the algebra .

The same holds if multiple shifts are available:

shift(s) chosen generator(s) of

In the infinite discrete time model, the shift is .
Shift-Invariant Signal Models: A key concept in SP is

shift-invariance. In ASP this property takes a very simple form.
Namely, if is a shift and a filter, then is shift-invariant, if
for all signals , , which is equivalent to

for all (17)

Since the shifts generate , is necessarily commutative in
this case.9 Conversely, if is a commutative algebra then (17)
holds:

shift-invariant signal model is commutative

In 1-D SP only one shift is available, in -D SP shifts are
needed. We focus on the case of one shift and identify pos-
sible commutative algebras. The discussion for more shifts is
analogous.

Commutative algebras of infinite dimension are spaces of se-
ries in such as in (2). Finite-dimensional commutative al-
gebras generated by are exactly the polynomial algebras

a polynomial of degree

is the set of all polynomials of degree less than with
addition and multiplication modulo . As a vector space,
has dimension .

7We write � instead of � to emphasize the abstract nature of the discussion.
Later, this will enable us to introduce without additional effort other shifts as
well.

8This is not entirely correct, as, in a strict sense, one element � can only gen-
erate polynomials in � (and � if � is invertible), not infinite series. However,
by completing the space with respect to some norm the notion of generating can
be expanded. We gloss over this detail to focus on the algebraic nature of the
discussion.

9The requirement of “� generating�” is indeed necessary as there are linear
shift-invariant systems that cannot be expressed as convolutions, i.e., as series
in �; see [31].
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TABLE I
CORRESPONDENCE BETWEEN DISCRETE SIGNAL PROCESSING CONCEPTS AND ALGEBRAIC CONCEPTS

Fig. 2. Visualization of the infinite discrete time model (6).

Thus, imposing only shift-invariance, we have identified one
of the key players in ASP, namely polynomial algebras. Indeed,
as we will see, they provide the underlying structure for finite
time SP and the DFT (Section IV) and for finite space SP and
the DCTs/DSTs [1].

Further, by allowing more than one shift and hence polyno-
mial algebras in several variables, ASP enables the derivation
of 2-D (and higher-dimensional) SP frameworks including non-
separable ones [2], [3].

Finally, we note that noncommutative algebras are allowed in
ASP but necessarily yield shift-variant SP. For example, this is
the case for Fourier analysis on noncommutative finite groups
[32], which, in ASP terms, considers regular signal models with

, the group algebra for a finite group . Note
that the set of polynomial algebras and the set of group alge-
bras are different and intersect only for the case of commutative
groups. A more detailed discussion is in [9].

Visualization of a Signal Model: A given signal model can be
visualized by a graph, which provides an intuitive understanding
of the model.

Definition 2 (Visualization of Signal Model): Assume that a
signal model is given as in (8). Denote the chosen
shift operators, i.e., generators, of by . Further, as-
sume that is the representation of afforded by with basis
. Then each is an infinite or finite matrix (which we call

shift matrix) and can be viewed as the adjacency matrix of a
weighted graph . Each of these graphs has the same vertices
corresponding to . Thus, we can join these graphs by adding
the adjacency matrices of the to obtain a graph . We call
this graph the visualization of the signal model .

Intuitively, the graph provides the topology imposed by the
signal model. For example the infinite discrete time model has
the visualization shown in Fig. 2. The vertices are the base ele-
ments ; the edges show the shift operation.

C. Summary

We summarize the correspondence between algebraic con-
cepts and signal processing concepts in Table I. The signal pro-
cessing concepts are given in the first column and their algebraic

counterparts in the second column. With respect to the basis
fixed by the signal model we obtain the corresponding coordi-
nate versions in the third column. In coordinates, the algebraic
objects, operations, and mappings become vectors and matrices
and thus allow for actual computation. This is the form used
in signal processing. However, the coordinate version hides the
underlying algebraic structure, which often cannot be easily re-
covered if it is not known beforehand.

IV. FINITE, SHIFT-INVARIANT, 1-D SIGNAL MODELS

In Section III-B, we have learned that, for finite shift-invariant
signal models , is a polynomial algebra. In partic-
ular, in the case of finite 1-D (one shift) signal models, these al-
gebras are necessarily of the form . With this motiva-
tion, we investigate what it means to do signal processing using
these algebras. We do this by specializing the general theory
from Section III.

The mathematics of polynomial algebras is well-known (e.g.,
[33]). The purpose of this section is to connect it to SP using the
general ASP framework.

We focus on regular models, i.e., . As
running example, we will use what we call the finite discrete
time model. The motivation for this notion will become clear as
we proceed.

Polynomial Algebras in One Variable: Let be a poly-
nomial of degree . Then,

, called the set of residue classes modulo
, is an algebra with respect to the addition of polynomials,

and the polynomial multiplication modulo . We call a
polynomial algebra (in one variable). can be generated by
one element, usually chosen to be .

As an example, consider , i.e.,
. In , multiplying, for example, and yields

. The last equality is read as “ is con-
gruent 1 modulo .” Thus, we do not use “mod” as an
operator but to denote equality of two polynomials modulo a
third polynomial.

A. Signal Model

General Case: We consider with
, and choose a basis of .

This defines a signal model for ; namely, for
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, we can define the bijective linear map-
ping as

(18)

in (18) is the equivalent of the -transform for this model.
Filtering in this model is the multiplication
for and . The shift in this model is .
The basis elements are the unit impulses in , i.e., is a
canonical base vector. The impulse response of a filter
for the impulse is .

Example: Our running example will be the finite discrete
time model defined as

(19)

We call the finite -transform. It fixes the basis
in .

B. Filtering

General Case: As said above, filtering in the signal model
defined in (18) is the multiplication of polynomials (filter and
signal ) modulo . In coordinates, filtering becomes the matrix-
vector multiplication

(20)

where . The th column of is exactly the co-
ordinate vector of the impulse response . The representation
of associated with the signal model is .

We call the filter matrices; is the shift matrix.
Example: In our example, the filter matrix for a generic filter

is readily computed as

. . .
...

...
. . .

. . .
. . .

(21)

Hence, the filter matrices in this model are precisely the circu-
lant matrices. Filtering in coordinates, , is exactly circular
convolution.

C. Visualization

General Case: The visualization of the signal model
with in (18) is the graph with vertices that has

the shift matrix as adjacency matrix (see Definition 2). In
the general case the graph has no apparent structure.

Example: In our example (19), the shift matrix is a spe-
cial case of (21), namely the cyclic shift

. . .
. . .

(22)

This yields the visualization as a circle shown in Fig. 3.

Fig. 3. Visualization of the finite discrete time model in (19).

D. Spectrum and Fourier Transform

General Case: We assume that has pairwise distinct
zeros:

for

and set .
The Fourier transform, or spectral decomposition, of the reg-

ular module is given by the Chinese remainder
theorem (CRT; stated in Theorem 10 in Appendix I).

In coordinate-free form, the Fourier transform is given by the
mapping

(23)

Each is of dimension 1. So the elements
of are polynomials of degree 0, i.e., scalars .
Further, each is an -module, since for and

,

i.e., the result is again in . Since is of dimension 1, it is
irreducible.

The scalars in (23) are the spectral components of .
The mapping in (23) simultaneously projects a signal (i.e., poly-
nomial) into the modules . This
projection is precisely the evaluation

The set of the one-dimensional irreducible modules
, , is the spectrum of the signal space

. Each is an eigenspace simultaneously for all filters (or
linear systems) in . The spectrum of a signal is the
vector .

The pure frequencies associated with are those
elements of that are mapped to a canonical base vector:

. This implies for and for
. This is an interpolation problem, and the solution is well

known and given by the Lagrange polynomial [33]

(24)

With this we see that enables us to express a signal
as a linear combination of pure frequencies, namely

.
Example: In our example, has pairwise distinct

zeros with . Thus, spectrum and Fourier
transform of the model (19) are given by

(25)
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The pure frequency is given by

(26)

This expression can be simplified as explained later.

E. Frequency Response

General Case: Filtering in the regular module
becomes parallel filtering in the frequency domain,

i.e., on the irreducible -modules . Namely, let be
any filter and let be a spectral component of the
signal . Then filtering by yields

This shows that affords the irreducible representation

(27)

The collection of the , namely, is
the frequency response of the filter . This means that the th
spectral component of a signal is obtained in
the same way as the frequency response at , namely by
evaluating polynomials. This is a special property of polynomial
algebras.

Example: In our example (19), the frequency response of
is the collection , .

F. Fourier Transform as Matrix

General Case: The Fourier transform in (23) is a linear
mapping, which is expressed by a matrix after bases
are chosen. We will call this matrix also a Fourier trans-
form for . To compute this matrix, we choose the basis

in , fixed by the signal model (18), and
the basis (the list containing the polynomial )
for each summand . The columns of are
precisely the coordinate vectors of , . Since

, we get

(28)

We call a polynomial transform. It is uniquely determined
by the signal model.

This definition coincides with the notion of a polynomial
transform in [34] and [35] and is related but different from the
use in [36]. In [37], polynomial transforms are called polyno-
mial Vandermonde matrices.

Note that can have entries equal to zero, but, as an iso-
morphism (as stated by the CRT), it is necessarily invertible.

Let be a signal. Then, in
coordinates, in (23) becomes a matrix-vector product:

(29)

The matrix form of in (23) is not uniquely determined.
The degree of freedom is in the choice of bases in the irreducible
modules . If we choose generic bases

, , in , , then the Fourier
transform becomes the scaled polynomial transform

Once is chosen, the coordinate vectors of the pure fre-
quencies in (24) are the , i.e., the columns of .

Example: In our example, the (polynomial) Fourier trans-
form associated with (25) is computed as

DFT (30)

i.e., it is precisely the discrete Fourier transform, which supports
that we call (19) finite discrete time model and in (19) finite

-transform. It also follows that the th column of DFT is the
coordinate vector of in (26).

G. Diagonalization Properties and Convolution Theorems

General Case: The diagonalization property of any Fourier
transform of the regular module is a conse-
quence of the CRT.

Theorem 3 (Diagonalization Properties): Let be a Fourier
transform for the regular signal model in (18). Then

(31)

if and only if for a filter . In this case,
, , is the frequency response of .

In particular, diagonalizes the shift matrix , and the
shift operator has the frequency response .

Proof: Let . Then is diagonal, since
it is the coordinate representation of the filter in the frequency
domain, which is the diagonal matrix with the frequency re-
sponse on the diagonal.

Conversely, the set of diagonal matrices
is an -dimensional vector space. Since is invertible, the set
of matrices diagonalized by is also -dimensional. Since
is of dimension , and is injective, the set of all matrices
is a vector space of dimension and thus the set of all matrices
diagonalized by .

We also note that, using Theorem 3, we get immediately
the characteristic polynomial, trace, and determinant for
every matrix , since it is similar to the diagonal matrix

. In particular, the characteristic
polynomial of is .

Theorem 3 is the convolution theorem for the signal model
under consideration. Namely, it states that filtering in
the signal domain becomes pointwise multiplication by the fre-
quency response in the spectral domain.

Example: For our example (19), Theorem 3 yields the well-
known fact that the DFT diagonalizes the circulant matrices.

V. 1-D TIME MODELS

We presented two signal models as examples of the general
algebraic theory: the infinite time model in (6) and the finite
time model in (19). The former bore no surprises, but the latter
is, as formulated, nonstandard in SP and ASP produced a first
small benefit: the proper notion of a finite -transform. To de-
velop new SP frameworks, not directly related to standard time
SP, we present in this section a methodology to derive signal
models from basic principles, namely, from the shift operator.
This will further shed light on why, for example, the time models
look exactly as in (6) and, in particular, as in (19). In the process,
we get a deeper appreciation of the difference between the filter
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Fig. 4. Time shift � � � .

and signal spaces (a difference that follows from the axioms
of ASP). We also understand the necessity for boundary con-
ditions, the impact of different choices, and how they relate to
the problem of signal extension. We use this methodology to de-
rive 1-D and 2-D space signal models in [1] and [3].

For notational convenience, we set as before10 .
The construction of the infinite and finite time models follows
three basic steps: definition of the shift, linear extension, and
realization.

A. Constructing the Infinite Time Model

Definition of the Shift: Following Kalman [23], when consid-
ering discrete time, we need two ingredients: time marks and
a shift operator .

The time marks are symbolic independent variables ,
; is associated to “time .” However, time marks alone cap-

ture neither the equidistance of the time points nor the directed
nature of time. This problem is resolved by the shift operator
and the shift operation defined as

(32)

Fig. 4 shows a graphical representation of the time shift.
Next, we extend the operator domain from the shift operator
to -fold shift operators , defined by

Clearly, .
At this point of the construction, working only with and
, there is no notion of linearity.
Linear Extension: To obtain a linear signal model, we con-

sider two extensions: 1) we extend linearly the operation of
the shift operator from the set of the to the set of all formal
sums ; and 2) we extend linearly
the set of -fold shift operators to the set of all formal sums

. The first set will become the module of signals, while
the second set will become the algebra of filters. Convergence
of the filter operation is handled as part of the next step.

Realization: To obtain the signal model, we first consider
the “realization” of the abstract model. We replace the abstract
objects and and the operation by objects we can compute
with. To this end, we choose a variable and set , and

, the ordinary multiplication of series. Then, (32) becomes

(33)

This two-term recurrence, when started with , has the
unique solution

(34)

10Note that the choice of � instead of � in the definition (4) is a convention,
not a mathematical necessity; choosing � leads to equivalent properties and an
equivalent theory for the �-transform. In fact, the choice of � in SP is in
contrast to the original mathematical work on Laurent series. The reason may
lie in the fact that the shift operator � causes a delay of the signal. However,
� advances what we call below the time marks.

TABLE II
REALIZATION OF THE ABSTRACT TIME MODEL

In other words, the realization is essentially (up to a common
scaling factor for all ) unique.

As a result, we obtain and
. Since the series are infinite, we have to ensure con-

vergence as part of the realization; namely, that filtering, the op-
eration of on , is well-defined. This is achieved, for ex-
ample, by requiring and , as explained in
Section III-A.

Table II shows the correspondence between the abstract and
the realized concepts. Note that signals and filters are concep-
tually different (as pointed out several times before) but look
the same (both are Laurent series in ) because the realization
maps both and to .

Resulting Signal Model: As a result of the above procedure,
we obtain the infinite discrete time model in (6).

B. Constructing the Finite Time Model

In real applications, usually only a finite subsequence
is available, not the entire (sampled) sequence

. Thus, for time SP, the question arises how to construct
a finite time model . Here ASP and in particular poly-
nomial algebras provide a very detailed insight into the possible
choices.

For our investigation we first need a formal notion of signal
extension.

Definition 4 (Signal Extension): Let be a signal
given on an index set . A (linear) signal extension of

is the sequence of linear combinations (only finitely many
summands are nonzero)

for

The signal extension is called monomial, if, for each , the sum
has only one summand.

In other words, in a monomial signal extension, every signal
value outside the signal scope is assumed to be a multiple of
a signal value inside the signal scope. For example, the periodic
signal extension is monomial.

Note that we consider only linear signal extensions (e.g.,
polynomial signal extensions are excluded). The reason is that
with nonlinear signal extensions it is not possible to maintain
filtering as a linear operation. Thus, we are outside linear SP,
and hence outside ASP as developed here.

Shift, Linear Extension, Realization: To construct a fi-
nite time signal model, we follow the exact same steps as
in Section V-A, but start from a finite set of time marks

.
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The construction seems to lead to the following definition of
a “finite” -transform, which maps to

Clearly, the set of the polynomials of de-
gree less than is a vector space with the natural basis

. The problem, however, arises from the
operation of the (realized) time shift : the set of polynomials
of degree less than is not closed under multiplication by .
More precisely, the root of the problem is

(35)

and, if is invertible,

(36)

Thus, the time shift as defined is not a valid operation on ,
which implies that we cannot define filtering in , or, alge-
braically, is not a module. Without filtering, there is also
no notion of spectrum or Fourier transform. To resolve this, we
need to take care of the problems raised by (35) and (36), which
we do now by introducing boundary conditions.

Boundary Conditions and Signal Extension: To remedy the
first problem (35), we have to make sure that can again be
expressed as a polynomial of degree . This is achieved by
introducing an equation

or (37)

This equation implicitly defines the right boundary condition
. Further, (37) determines the entire right

signal extension obtained by reducing , , modulo
:

(38)

Algebraically, the boundary condition replaces the vector space
by the vector space , which is of

the same dimension, but closed under multiplication by the time
shift operator and thus a module. The corresponding algebra

, generated by , is identical to . The remaining question
to consider is (36). There are two cases.

Case 1) . Then also , and thus (the shift
operator) is not invertible11 in and (36)
does not need to be considered: the signal has no left boundary,
since “the past” is not accessible without an invertible .

Case 2) . Then, from (37), we get

which is the left boundary condition. Similar to above, the left
signal extension can be determined by multiplying by and
reducing modulo . Thus, the signal extension in both
directions is determined by one (37), which provides the left and
the right boundary condition:

boundary condition right and left signal extension

11A polynomial ���� is invertible in �������� if and only if
��������� ����� � 	, since in this case there are polynomials ����, ���� such
that 	 � ��������
��������, which implies that ���� � ���� ��� ����.

By assuming the generic boundary condition , we
obtain a valid signal model. However, the corresponding signal
extension (38) has in general no simple structure. To obtain a
module that is reasonable for applications, we thus require the
following:

• the shift operator to be invertible;
• the signal extension to be monomial (see Definition 4).

These requirements lead to the signal model for the DFT in the
finite time case (explained below) and for the 16 DCTs and DSTs
in the finite space case [1].

We can now explicitly determine the polynomials
that satisfy the above two conditions.

Lemma 5: The boundary condition makes
an algebra in which is invertible and deter-

mines a monomial signal extension in , if and only if
the polynomial is a nonzero constant, i.e., .
The signal extension in this case is given by , where

is expressed as , with .
Proof: Let , , and let . We write

, with , and thus
, which is a monomial signal extension. Conversely, let

determine a monomial signal extension. This implies
, for some . Since is by assumption invertible

modulo , it follows and as desired.
Resulting Signal Model: In summary, the signal model ob-

tained is for and given by

(39)

For , this is exactly the finite model in (19), which we
studied in Section IV.

For other values of , it is an easy exercise to specialize the
general results from Section IV. In short, the visualization is as
in Fig. 3 with the backwards edge weighted with , the filter
matrices are skew-circulant matrices, filtering is hence skew-
circular convolution, and the polynomial Fourier transform has
the form DFT , with a suitable diagonal matrix [9].

In particular, this class includes the generalized DFTs from
[38] and [39] defined as

where . We briefly investigate the 4 special cases given
by , which in [39] are called DFTs of types 1–4,
written as DFT-1 DFT-4. Namely,

DFT-1 DFT (40)

DFT-2 DFT (41)

DFT-3 (42)

DFT-4 DFT-3 (43)

We identify the signal models for which these transforms are
Fourier transforms. The DFT-1 DFT is, as seen above, a
polynomial transform for . The DFT-2 in (41) is
also a Fourier transform, but not the polynomial transform, for

. The DFT-3 in (42) is the polynomial transform
for , since , , are precisely
the zeros of . Finally, the DFT-4 in (43) is also a Fourier
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transform, but not the polynomial transform, for .
This means that these DFTs cover the two important cases of
boundary conditions or .

Other Boundary Conditions and Effect on Spectrum: At this
point it is instructive to investigate what problems arise if we
slightly relax the conditions in Lemma 5 by dropping the re-
quirement of monomial signal extension or the requirement that
the shift operator is invertible in the resulting algebra.

If we allow any signal extension and hence , we obtain
the generic finite time model

If has pairwise distinct zeros, then the polynomial trans-
form is precisely a Vandermonde matrix and the shift matrix

is the transpose of the companion matrix of .
If we require a monomial signal extension, but allow for a

noninvertible shift, then the proof of Lemma 5 shows that neces-
sarily . A simple choice is yielding

, which realizes a right zero extension (
implies for ). The problem with this model
is that it does not permit spectral analysis: cannot be
decomposed by the Chinese Remainder Theorem (CRT). This
can also be seen from the shift matrix , which is the lower
Jordan block (and hence cannot be block-diagonalized)

. . .
. . .

Another simple choice is the symmetric boundary condition
, i.e., . This choice implies

a constant right signal extension, since implies
for all . In this case, the CRT yields

and the rightmost module, of dimension , is again indecom-
posable. In contrast, in [1] we will see that finite space models
(which have DCTs/DST as Fourier transforms) do permit sym-
metric boundary conditions.

If we relax the requirement of a monomial signal extension
and only require that the Fourier transform approaches the
DTFT as , then choices nontrivially different from the
DFT are indeed possible [40].

C. Real Finite Time Model

ASP naturally extends to base fields other than and gives
insight into the necessary changes in the SP concepts associated
with a signal model. As an example, we consider real finite time
models in this section. In particular, we will explain why the real
DFTs (RDFTs) or discrete Hartley transforms (DHTs) are now
the associated Fourier transforms.

The algebraic interpretation of the DHT in this section is
equivalent to recognizing the DHT as a special case of an ADFT

(algebraic discrete Fourier transform), a general concept intro-
duced in [41] and [42] and rediscovered (using a different name)
in [43].

Real Finite Time Model: If only real signals and filters are to
be considered and all the computations are in then we simply
replace by in a given signal model. For example, the real
equivalent of (19) for is given by

(44)

Compared to its complex counterpart in (19), (44) has the same
notions of filtering (only restricted to ), visualization, and
signal extension.

Spectrum and Fourier Transform: The difference arises when
computing the spectrum. Since only real numbers are available,
and the roots of are complex, cannot be decomposed
into one-dimensional irreducible modules.12 Over , the irre-
ducible factors of are polynomials of degree 1 or 2.
Namely, if , , , are conjugated complex roots
of , then

with is irreducible over .
Hence the spectral decomposition is now given by

(45)

where the last summand appears only for even .
We want to compute the matrix form of (45). The situation

is slightly outside the scope of Section IV; in particular there is
no notion of polynomial transform. Still, the theory is readily ex-
tended. To compute , we choose a basis in each spectral com-
ponent. It turns out that the natural choice is

, . Namely, this choice associates the
matrix with the decomposition

and hence shows that the coordinates of the real spectrum are the
real and imaginary parts of the complex spectrum. Further, the
irreducible representation (i.e., frequency response) afforded
by a two-dimensional spectral component in (45) maps the shift
to a rotation

and hence, as a homomorphism, . The
matrix is now computed by reducing modulo ,

, and . Further, to precisely match the common
definition of the real DFT, we order the spectral basis such that
first come all the 1’s (bases of the one-dimensional components

12In algebraic terms, is not a splitting field for the�-module�.
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and first half of bases of two-dimensional components) and then
the remaining. The result is

RDFT

with

.

From the above it follows that

DFT
...

. . . . .
.

... . .
. . . .

RDFT (46)

Since the only degree of freedom is in choosing a spectral basis
in (45), a generic real DFT has the form

RDFT

where is any invertible matrix with the same x-shaped pat-
tern as the matrix in (46). An example is

DHT

where . Obviously

DHT
...

. . . . .
.

... . .
. . . .

RDFT (47)

Both transforms, the RDFT and the DHT, are special among
the class of all possible real DFTs. The RDFT appears to have
the lowest arithmetic complexity13 and the DHT is equal to its
inverse (up to a scaling factor).

The above derivation extends to the DFTs of type 1–4 in
(40)–(43) and allows us to define DHTs and RDFTs of type 1–4
in parallel to (40)–(43). Namely, the types ,2,3,4 corre-
spond, respectively, to the parameters , (0,1/2),
(1/2,0), (1/2,1/2) in the following definitions.

with

where for ,2 and for 3,4.

The relations (46) and (47) hold for all four types.

13We do not have a proof. The assertion is based on the best known algorithms.

TABLE III
OVERVIEW OF FINITE TIME MODELS AND ASSOCIATED FOURIER TRANSFORMS

DISCUSSED IN THIS PAPER

The four transforms DHT-t were introduced (in their orthog-
onal form) in [44]–[47],where theywerecalleddiscrete -trans-
forms (DWTs) of type 1–4. We suggest to rename these trans-
forms to DHTs of type 1–4 since: 1) the name DHT (for type 1)
is much more commonly used than DWT, and the types 2–4 are
just variants; and 2) even though the DHT and the DWT were in-
troduced at about the same time [47], [48], the continuous coun-
terpart was introduced by Hartley much earlier in 1942 [49].

Diagonalization Properties: The above discussion gives im-
mediately the “diagonalization” properties of the RDFT and
DHT. We use double quotes, since these properties are not ac-
tually a diagonalization. If is any filter,
then is a real circulant matrix, i.e., of the form (21) with

. Then

RDFT RDFT (48)

where is real and has the same x-shaped structure as the ma-
trix in (46). Convolution theorems can be similarly derived.

Finally, we note that other basefields than and can be
considered. For example, the rational finite time model can be
studied by decomposing over . Interestingly, this yields
the rationalized Haar transform as one possible Fourier trans-
form choice. See [9] for further details.

D. Overview of Finite Time Models

In Table III we list the finite time models that we introduced
in this paper, and their associated Fourier transforms. The table
is divided into complex and real time models. In each row we
list in the first two columns the signal model , in the
third column the associated unique polynomial Fourier trans-
form, and in the fourth column other possible relevant Fourier
transforms for the model. Note that the notion of polynomial
transform does not exist for the real time models since the spec-
tral components are not all one-dimensional.

VI. CONCLUSION

We presented the algebraic signal processing theory (ASP), a
new approach to linear signal processing.

ASP is an axiomatic theory of SP. It is developed from the
concept of the signal model, the triple . We showed
that basic concepts such as filtering, spectrum, Fourier trans-
form, shift, and shift-invariance can be defined (if they exist)
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for any signal model, just like basis, dimension, and linear map-
ping can be defined for any vector space.

ASP is a very general platform for SP. In this paper, we fo-
cused on capturing time SP in ASP; reference [1] presents ASP
for space dependent signals.

ASP gives deep insight into the structure and choices in
SP. For example, for finite time SP, we derived the periodic
boundary condition from basic principles but also showed that
other choices are possible. We also considered DFT variants
and showed that they are Fourier transforms in ASP for a
properly chosen signal model. This understanding is crucial
when we leave the familiar domain of time SP.

ASP is constructive. For example, we showed how to derive
the time signal models from the shift operation. This enables the
derivation of novel signal models for other, nonstandard shifts.
Further, in [5] and [7], we use ASP to present concise derivations
of existing and new fast algorithms for linear transforms.

Besides the derivation of other SP frameworks, or signal
models, a future research direction is to capture “advanced” SP
concepts abstractly within ASP including sampling, downsam-
pling, filter banks, multiresolution analysis, frames, and others.

APPENDIX I
ALGEBRAIC BACKGROUND

We provide here formal definitions for the most important
algebraic concepts used in this paper. For an introduction to
algebra we refer to [28].

Definition 6 (Algebra): A -algebra is a -vector space
that is also a ring (multiplication is defined and the distributive
law holds), such that the addition in the ring and the addition in
the vector space coincide. Further, for and

.
Definition 7 (Module): Let be a -algebra. A (left)
-module is a -vector space with operation

which satisfies, for and

Definition 8 (Homomorphism of Algebras): Let , be -al-
gebras. A homomorphism of algebras is a mapping
that satisfies, for , :

An isomorphism is a bijective homomorphism.
Definition 9 (Homomorphism of Modules): Let , be
-modules. An -module homomorphism is a mapping

that satisfies, for , ,

We denote with the ring of integers with
addition and multiplication modulo . The Chinese remainder
theorem (CRT) for integers states that if and

, then

is a ring isomorphism. In words, the CRT states that “computing
(addition and multiplication) modulo is equivalent to com-
puting in parallel modulo and modulo .”

The CRT also holds for polynomials. In this case,
is the ring (even algebra) of

polynomials of degree less than with addition and
multiplication modulo . These polynomial algebras are
discussed in detail in Section IV.

Theorem 10 (CRT for Polynomials): Let
be a polynomial that factorizes as with

. Then

is an isomorphism of algebras. Note that we write instead of
in this case, since the rings also carry the vector space structure.
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