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Recursive Structure of Noncausal
Gauss—-Markov Random Fields

José M. F. Moura, Senior Member, IEEE, and Nikhil Balram

Abstract—Causality is a common assumption with one-di-
mensional (1-D) Markov random processes. It leads to recursive
descriptions and recursive filtering algorithms, such as the
Kalman-Bucy filter. However, in 2-D, e.g., in physical oceanog-
raphy or in image processing, noncausality is an important
property, leading to Markov random field (MRF) models. To
apply recursive techniques to MRF models, many authors work
with subclasses that are causal or, more generally, unilateral,
thus compromising an important property of the model. An
alternate approach for noncausal Gauss-Markov random fields
(GMRF) that enables the use of recursive procedures while
retaining the noncausality of the field is developed. Recursive
representations are established that are equivalent to the original
field. This is achieved by first presenting a canonical representa-
tion for GMRF’s that is based on the inverse of the covariance
matrix, which we call the potential matrix. It is this matrix
rather than the field covariance that reflects in a natural way the
MREF structure. From its properties, two equivalent one-sided
representations are derived, each of which is obtained as the
successive iterates of a Riccati type equation. For homogeneous
fields, these unilateral descriptions are symmetrized versions of
each other, the study of only one Riccati equation being re-
quired. It is proven that this Riccati equation converges at a
geometric rate, therefore the one-sided representations are
asymptotically invariant. These unilateral representations enable
us to process the fields with well-known recursive techniques
such as Kalman-Bucy filters and two-point smoothers.

Index Terms—Noncausal, random fields, Gauss-Markov ran-
dom fields, potential matrix, equivalent one-sided representa-
tions, recursive 2-D processing, image processing.

1. INTRODUCTION

N one-dimensional (1-D) signal processing, Markov ran-

dom processes are commonly assumed models. They cap-
ture the natural assumption of causality in time dependent
signals and lead to recursive processing algorithms of the
Kalman-Bucy type. When describing spatially dependent
phenomena, as for example in mapping temperature or salin-
ity fields in physical oceanography or in 2-D image process-
ing, noncausality is a more appropriate characteristic than
causality. The noncausal Markov property applied to 2-D
fields produces the noncausal Markov random field (MRF)
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model, see, e.g., [11]. However, noncausality is conducive
to iterative processing algorithms and not to recursive algo-
rithms. To recover recursive algorithms for 2-D fields, au-
thors frequently enforce a causal type 2-D Markov property.
Examples of these models include Markov mesh fields [1],
Pickard random fields [25], mutually compatible Gibbs ran-
dom fields [12], or unilateral recursive autoregressive fields,
e.g., [14], [33].

In this paper, we readdress the issue of recursiveness for
2-D signal processing, but do so while retaining the non-
causality property for the 2-D fields. We consider noncausal
Gauss-Markov random fields (GMRF’s) defined on finite
lattices. The key result is the establishment of two recursive
spatially varying field formulations that are equivalent to the
original noncausal Markov field, and, furthermore, in the
case of homogeneous fields, are asymptotically spatially in-
variant.

The success of the present approach is a consequence of a
shift of focus. We characterize the field, not by its covari-
ance, but rather by the inverse of the covariance matrix,
which we term the potential matrix. Except in very special
cases, like for example fields on a torus (e.g., [5], [17], [9]),
separable fields, or binary valued Ising fields (see the work of
Kaufman and Onsager [18]), the covariance of noncausal
MRF’s is difficult if not impossible to parametrize directly.

By taking the alternate point of view of focusing on the
inverse of the covariance matrix, we show how GMRF’s are
easily described by the potential matrix. We present the
canonical form of the potential matrix of any GMRF. This
matrix is highly sparse, its structure reflecting the order of
the field and the type of boundary conditions assumed.

The recursive formulation intrinsic to noncausal GMRF’s
(which of course include all unilateral classes) is obtained by
the Cholesky factorization of the general potential matrix
associated with the field. It comprises of two one-sided
representations, each of which is statistically equivalent to the
original noncausal one. These are derived from the noncausal
autoregressive field representation of Woods [32]. For homo-
geneous fields, these two representations are mirror images
of one another, and hence, only one of them needs to be
computed explicitly. These representations are computed by
the successive iterations of a Riccati equation. We show that
under certain conditions the iteration procedure converges at
a geometric rate.

Conceptually, this means that every noncausal field defined
on a finite lattice is equivalently represented by one-sided
fields. These fields are described by finite-order spatially
varying unilateral regressors that are asymptotically invariant
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for homogeneous fields. From a practical point of view, it
enables the optimal processing of noncausal 2-D GMRF’s by
recursive techniques such as Kalman-Bucy filtering and
two-point smoothers. In addition, it provides the means for
fast recursive synthesis of noncausal field samples.

The organization of the paper is as follows. To facilitate
the discussion, we defer all but the most elementary proofs to
the appendix. In Section II, we define terminology and
notation that will be used throughout. The canonical repre-
sentation of GMRF’s in terms of the potential matrix is
studied in Section III. The recursive structure of these fields
is derived in Section IV. It is shown here that for homoge-
neous fields the Riccati equation converges and the spatially
varying regressors are asymptotically invariant. Application
of these results to first- and second-order fields is carried out
in Section V. In Section VI, the two equivalent one-sided
representations are used to formulate *‘backward’’ and ‘‘for-
ward’’ state space descriptions. Section VII briefly indicates
how these can be utilized to do recursive smoothing of noisy
fields. Finally, in Section VIII, conclusions are presented.

II. TERMINOLOGY AND NOTATION

A finite N X M lattice, L, is defined as a set of sites,
(i, j)such that L = {(i, j):1 <=i<N,1=<j< M} We
define the neighborhood order using a Euclidean distance
based measure, as is done, for example, in [11], [15].

Definition 1: A Pth order neighborhood is defined on an
N x M lattice, L, by S5/, the set of neighbors of site (i, j),
where

Si/ = {(k,1):0< (i - k) + (j - 1)’ = Dp}, (1)

and Dp is an increasing function of P that represents the
square of the Euclidean distance between a site and its
furthest neighbor.

Usually (see, for example, [11], [15]), Dp takes on values
1,2,4,5,8,9,andsoon, for P=1,2,3,4,5,6, . See
Fig. 1 for a hierarchical sequence of neighborhoods produced
by this definition. Note that a neighborhood set of order P
includes all the neighbors of sets of order 1 to P — 1.

Defining N,, and H,, respectively, as the number of
vertical and horizontal neighbors for a given neighborhood
set, we have

N, = N, =2| D},

(2)

where | - | is the floor function. This relationship comes from
the Euclidean distance based definition of the neighborhood
set (see (1)). In addition, because of the symmetry of this
definition, we can define

v

k =

v

- D). (3)
as the number of neighbors south (or north) of any site in the
interior of the lattice, and similarly for k,, the number of
east (or west) neighbors.

For a finite lattice, special rules have to be specified to
extend the definition of neighborhood order in Definition 1 to
the “*boundary sites.”” Here, the so-called boundary sites are

Fig. 1. Hierarchical sequence of neighborhoods.

those that would have one or more neighbors from outside
the lattice, if the same neighborhood rule defined for the
MREF is applied. These special rules are called boundary
conditions. In the rest of this paper, we assume the boundary
conditions satisfy the following definition.

Definition 2: The boundary conditions are defined to be
consistent with the order of the field, if for a Pth order field
the rule used to assign the off-lattice neighbors of a boundary
site/zdoes not assign it sites that lie outside a circle of radius
Dy

For any matrix R = [r,;], define the left bandwidth as
b(R) = max,{{i—j|:j=<i, and r,;# 0}, the right
bandwidth as b,(R) = max,{|i—j|:j =i, and r; ; # 0}.
If the matrix is symmetric, we define its bandwidth as
b(R) = b(R) = b,(R).

Symbol & represents the Kronecker product (see, for
example, [13]), while ®j represents a modified Kronecker
product that handles varying matrices, e.g., 4 ®;B; means
that matrix B; multiples the entries of row j of matrix A.
The vector €, is the ith unit vector,

i

o0 - - - 01 0 -
1 00 - - 1 01 0 -

Kyv=]10 1 0 0 , Hy = : L
.. 01 0 1

01 0 - - 1 0]

1 00 [0 0 0 1]
0 0 0 - 0 0 1 0

Il,N= . . . . -, JN___ . . . . -,
0 0 0 01 0 .

0 0 1 1 0 - - -]

e, Ky=1[6 "'- €\0l, Hy=Ky+ KT, I y=2¢¢l

+ éyél, and Jy = [éy -+ €], is the reflection matrix.
Define E, ; = €7, i.e., it has element (i, j) equal to 1
while all the rest are zeros, and let F; ; = E; ; + E,-Tj. Let 0,
be an N X N matrix of zeros, and I, the N-dimensional
identity matrix. When the dimensions are obvious from the
context, we will use J, 0, and 7, without any subscripts, for
the reflection, zero, and identity matrices respectively.

The backward difference is A™x; = x; — x,_,, the for-
ward difference A*x; = x,,, — x;, and the symmetric dif-
ference A, x; = (A x; + Atx;) /2.

sym

III. CANONICAL REPRESENTATION OF NONCAUSAL
Gauss-~MARKOV RANDOM FIELDS

Consider a random field X, defined on an N X M lattice,
L. The lattice sites can be ordered so as to form an NM X 1
vector of random variables. For convenience, we adopt lexi-
cographic ordering and will refer to this as the canonical
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ordering. Any other ordering is the result of premultiplica-
tion by a permutation matrix. Lexicographic ordering maps
each row of the lattice into an M X 1 random vector and
these are stacked one on top of the other to form the
NM x 1vector, X = [X], X1, -+, %17, where ¥, = [x,,,
X;,°**, X1 Boundary conditions are given with respect
to bordering sites, lying outside the lattice, collected in row
vectors X, ¥y, and in column vectors ¥, and ¥,,, ,.

A. Canonical Representation

Hammersley Clifford Theorem: The Markov-Gibbs
equivalence provides the joint distribution of a Markov ran-
dom field as a Gibbs distribution:

P(X) = 2 exp(~U(X)). @

where Z is a normalization constant, called the partition
function, and U(X) the sum of the field interactions, is
known as the energy function. This theorem is attributed to
Hammersley and Clifford by Besag [4] (see also Spitzer [28],
Averintsev [2]), and proved in [4] for discrete valued fields.
We refer to it here as the Hammersley-Clifford theorem
(HCT). Using Brook’s factorization theorem [6] and the fact
that Bayes’ law has exactly the same functional form for
distributions and probability density functions (pdf’s), it is
straightforward to show that the HCT holds for continuously
valued random fields, where, in (4), P(X) is now inter-
preted as a pdf and the right hand side is assumed to be
integrable.

Quadratic Fields: Consider zero-mean fields that have
only pairwise neighbor interactions (e.g., X; jX, ;) and sec-
ond-order self interactions (e.g., xf‘ 7). We call such fields
quadratic fields. For these fields, the exponent of the Gibbs
distribution can be written in a compact form:

202U(X) = XTAX, (5)

where ¢ is a positive constant, and A is an NM X NM
matrix that contains all the field potentials (i.e., the field
interaction parameters); hence, we call it the potential ma-
trix. In the particular case of Gauss-Markov random fields
(GMRF), the potential matrix, A, is a scaled version of the
inverse covariance matrix. Here, we consider nondegenerate
Gauss-Markov fields, i.e., those with positive definite (pd,
or >0) covariance matrices. With the exception of special
cases, such as fields on a torus [24], [17], specification of the
covariance structure is difficult, and correspondingly it is
difficult to characterize a field of given order through its
covariance matrix. However, by looking alternatively to the
potential matrix, it becomes easy to characterize a GMRF of
any order, by using the structure and properties of its poten-
tial matrix. Since a nonzero-mean does not affect the field
covariance, without loss of generality, we consider here only
zero-mean GMRF’s,

Canonical Structure: The potential matrix is character-
ized by highly structured sparseness. The properties of this
matrix are defined in a theorem stated next. For clarity, the
theorem and the discussion that follows it are stated in terms

of the simplest case, the first order model (with neighbors to
the north, south, west, and east, see Fig. 1), but is general-
ized later to higher order models. The theorem assumes the
canonical ordering and consistent boundary conditions.

Theorem 1: The matrix
A=AT>0 (6)

is the potential matrix of a zero-mean (nondegenerate) first-
order Gauss-Markov random field, if and only if it is
decomposable as

A=A+ A, (7)

where, up to reordering,

1) A, the canonical potential matrix, is independent of
the boundary conditions, and has the following struc-

ture:
(B, & o |
¢, B, G o
0 éN—Z EN——I éN—l
| 0 éN—l EN_
=1y ®i§i + Ky ®i+léi + Kﬁ ®iéi’ (8)
where
ai,l _B;'T,l 0
_6;'1,] (Xi’2 _62,2 0
B=| -
0 _ﬁ;',M—Z a(I',Mfl _B;’.M—l
0 _B;I,M—l aiM

C.

¥

=1y ®j°‘i'j - Ky ®j+|6;{j - KAT! ®j5;{j (9)
)

., B:M)

i 2o,
v o2

— diag ( (10

I

v o

2) A, ., the boundary potential matrix, is specified by the
choice of boundary conditions and has the following

structure:
B, ci. o0 - 0o ¢ ]
Cli.c. Bgc 0 ’ : 0
Ab.c.= 0 0 BSC 0
0 0 BY' )
e 0 0 Y By

IN ®lBlI)c+ FZ,I ® C\ic+ FN,N—] ® C{)Vc_l

(11)

+ Fy,®C),
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where, for i = 1, N,

aé‘c - B;:lbc 0 : 0 - B;;tlc
“Bibe. oyr 0 - : 0
. 0 0 al? 0
B{,vc — b.c.
0 0 ayd™' B!
L —Bhe.. O ~Bype!
=1y ®;°‘falc — B llxc,FZ,l - 32’,)1‘)4.; 1FM,M—1
- Bhﬁlcpl M> (12)
for i # 1, N,
afl  =BiL. O 0 -Bi¥.
_ﬁ;l Ib c 0 0 0
) 0 00
By .=
0 0 0 -g!
=Bptle. 0 0 MY apM
= l,M®jaL'.£.— 55:'.'!;.01:2.1 - B;‘z’.ly,; lFM.M—l
- ﬁ;{.gl.c.Fl,M (13)
and
Coo= —diag (Blhc, Blh e o» BIAL),
i=1,N-1,N. (14)

Remarks: Theorem 1 shows that the canonical potential
matrix, A, and the boundary potential matrix, A, ., have
the following properties.

1) They are symmetric and highly sparse, with A, being
block tridiagonal, while A4, . has a maximum of five
nonzero block diagonals.

2) The nonzero blocks are symmetric, banded, and highly
sparse. In particular, the diagonal blocks replicate the
structure of the corresponding matrix itself, being sym-
metric, tridiagonal, for 4, and symmetric, and sparse
with a maximum of five nonzero diagonals, for A4, .
For either matrix, the nonzero off-diagonal blocks are
diagonal.

3) For A, the number of nonzero diagonals N, = N, +
1, where Np is the number of sites in the neighborhood
set.

Homogeneous Quadratic Fields: An MRF with poten-

tials that are independent of the site locations is said to be
homogeneous or spatially invariant. At the boundaries,
homogeneity is interpreted to mean that the same boundary
condition rule, along with the same boundary potentials, is
applied everywhere. For a homogeneous first-order GMRF,
let 8, and B,, represent the vertical and horizontal field
interactions, respectively. Then the following corollary to
Theorem 1 holds.
Corollary 1: The matrix

A=AT>0 (15)

is the potential matrix of a zero mean (nondegenerate) homo-
geneous first-order Gauss—Markov random field, if and only
if its canonical potential matrix, A., has the following
structure:

B C o
c B C o
A4,=|0 ¢ B C o -
0 ¢ B C
-0 C B
=I,®B+H,®C, (16)
where
1 -8, O
_Bh 1 _Bh 0
B=| 0 A om0
0 -8 1 —Bn
0 -8, 1
= IM - BhHM’ (17)
C=-8,1,, (18)

and the boundary potential matrix,
(11)-(14) with

A, ., is given by

Ctl, = - L,b,c.IMa i= 1, N - ], (19)
- _Bs,b.c.IM9 l = N,
B = Bi., fori=1, N, 20)
> |B2,, fori#1,N,

where Bl_ and B?_. have the structure given in (12), and
(13), respectively, with

1,1 . -

Qple.s for J = l, M’
ayl=1 " : (21)

Qp'es forj#1,M,
apl = age, for j =1, M, (22)

Bhbes fori=1,j=1,M-1,

Bibe=Biye, fori=2,j=1,M-1, (23)

Bive, fori=1,2,j=M.
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Remarks: For a homogeneous, first order, nondegenerate
GMRF, A, and A, . have the following properties.

1) They are centrosymmetric. In addition, A_ is block
tridiagonal, and block Toeplitz.

2) The blocks along the main diagonal replicate the struc-
ture of the corresponding matrix, being centrosymmet-
ric in both cases, and in the case of A4, tridiagonal and
Toeplitz, as well. The nonzero off-diagonal blocks are
diagonal Toeplitz matrices.

B. Boundary Conditions

In this subsection, we look at examples of first-order
GMRF’s considered in the literature, and show how they are
captured by Theorem 1 through a suitable choice of the
boundary potential matrix A, .. The boundary conditions are
usually imports from the PDE literature. Examples include
the following.

1) Free or Dirichlet b.c.: Here, the field values of the
off-lattice neighbors of a boundary pixel are set to zero
(or to some deterministic constant for a GMRF that is
not zero-mean). The boundary pixels simply have fewer
neighbors. This is the simplest boundary condition
because it results in

(24)
(25)

which shows that A is a potential matrix in its own
right. These boundary conditions lead to the autonor-
mal models considered in [4]. Since this term was later
applied to more general GMRF’s, henceforth, to avoid
confusion, we will refer to fields with Dirichlet bound-
ary conditions as Dirichlet fields.

2) Neumann b.c.: Here, we derive the boundary condi-
tion by assuming zero Neumann b.c.’s. This means that
the field gradient normal to the boundary is constant at
the boundary. Depending on the type of difference
operator used to define the gradient, different cases are
obtained. Two of these are the following.

a) Asymmetric Neumann b.c.: Here, the gradient is
defined by a backward difference operator. For a
zero-mean field, the constant gradient value at the
boundary is set to zero, so that the off-lattice neigh-
bors of a boundary pixel are assumed to have the
same intensity as the pixel. As an illustration, for
example, at the top row of the image, it follows that

A™x; =x, —x,=0. (26)

Collecting (26) and the corresponding relation at

the bottom, left and right edges of the lattice, the

first-order, homogeneous case leads to

Ape=Iy® (‘5h11,M) + I],N® (—ﬁUIM)'

(27)

We will call this the variational field. A field with
similar potentials has been used by Marroquin,
Mitter, and Poggio [22] to represent quadratic in-
tensities.

b) Symmtric Neumann b.c.: Here, the symmetric
difference operator is used when defining the gradi-
ent. For a zero-mean field, the constant gradient
value at the boundary is set to zero, this means that
the off-lattice neighbors of a boundary pixel are
assumed to have the same intensity values as the
pixels that are their mirror images when reflected
across the x and y axes (defined with the boundary
pixel as their origin). As an illustration, for exam-
ple, at the top row of the image:

Agmx = (A7x, +A%))/2=(x;, — x4)/2=0.
(28)
In the first-order, homogeneous case, this leads to
Ape=Iy® By +(F 5+ Fy_ ) ®(=8,1y),
(29)
where

By =1y~ By(Fio+ Fy_y ). (30)
We will call this the symmetric field. These bound-
ary conditions were mentioned by Kashyap [17], in
the context of white noise driven fields.

3) Periodic or Cyclic b.c.: Here, the lattice is as-
sumed to be a torus. Thus, the off-lattice neighbors
of the boundary pixels on one side of the image are
simply the appropriate boundary pixels from the
other side of the image, and vice-versa. In the
first-order, homogeneous case this leads to

Ape=Iy® (=B4F ar) + F n® (—8,1,,).
(31)

These fields have been used by many authors, e.g.,
Moran [24], Besag and Moran [5], Kashyap [17],
and Chellappa and Kashyap [9].

C. Generalization to Fields of Any Order

Theorem 1 and Corollary 1 are easily extended to fields of
any order. Since in the rest of the paper we are concerned
primarily with homogeneous fields, the discussion that fol-
lows is centered around these fields. We decompose the
potential matrix A as in equation (7), i.c., as the sum of the
canonical potential matrix A, and the boundary potential
matrix A, .. We consider first A, then A, _, and finally
the structure of A.
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Structure of A_: The structure and properties of the
canonical potential matrix for 2 homogeneous first-order field
were given in Corollary 1. These are extended to homoge-
neous fields of arbitrary order P in Theorem 2. The theorem
assumes the canonical ordering.

Theorem 2: The canonical potential matrix of a zero
mean (nondegenerate) homogeneous GMRF of order P is
independent of the boundary conditions and has the following
structure:

_AO Al AZ

AT A, A, A,

4= | AL AL 4,
0 AL AL,

0 AL

where k, is given by (3), and the M x M blocks A;_; have
the following properties.

1) AT, =JA,_;J,ie., A, ; are persymmetric.
2) A, = AL, and Al = JA,J, i.e., A, is centrosym-

metric.

3) A,_; = [d{7”] = [a{"], with a{=P =0 for (i -
N+ (k—=1?>Dp, ie., A, ; are Toeplitz and
banded.

The proof is straightforward and follows from the fact that
the canonical potential matrix A, is the potential matrix of a
field for which all the off-lattice neighbors of the boundary
pixels have been set to zero, i.e., a Dirichlet field. With this
in mind, A, can be partitioned into N rows of M x M
blocks, where the (i, j)th block, A; ; represents the neigh-
bor interactions between the pixels in row i and those in row
J. The symmetry of the neighborhood definition means that
AT, = A, ;. Furthermore, pixels in row i do not have any
neighbors in any row j that is more than k, rows away,
therefore,

A, =0,

i for {i—j| > k,.
For homogeneous fields it is immediately apparent that A4, ;
= A, ;. The symmetry properties of the blocks A;_; follow
immediately as a consequence of homogeneity, as does the
fact that these blocks are Toeplitz. Lastly, the banded nature
of the blocks and the extent of their nonzero band follows
from the definition of neighborhood order P (see Definition
1).

Remarks: From Theorem 2, A, has the following proper-
ties.

1) It is centrosymmetric, block Toeplitz, and block banded,
with block bandwidth .

1) It is centrosymmetric, block Toeplitz, and block banded,
with block bandwidth k.

2) The blocks along the main diagonal replicate the struc-
ture of A, being centrosymmetric, Toeplitz, and
banded. The off-diagonal blocks are persymmetric,
Toeplitz, and banded.

3) The number of nonzero block diagonals of A4 is given
by Nyy = N, + 1.

4) The number of nonzero diagonals of A_ is given by

A, 0
A, 0
A, A, 0 | (32)
AO Al . Aku “en
A%, A7 AT A |

N, = Np + 1, where Np is the total number of neigh-
bors in the neighborhood set Sp.
5) The bandwidth of A, is given by

b(A) = kM +b(4,), (33)

where

b(4) = (Do D))" ()

v

As an example, note that for homogeneous second order
fields, from (3) and Fig. 1, k, = 1; therefore the canonical
potential matrix is block tridiagonal as for first-order fields,

A =L, 84, +Ky®AT+ KT ® A, (35)
where A, has the same structure as the corresponding

matrix, given by (17), for first-order fields, but the off-diag-
onal blocks are now tridiagonal,

A, = _(BUIM+BdlKAI;+Bd2KM)‘ (36)

Here, 8, and B, represent the vertical and horizontal inter-
actions, respectively (as was the case for the first-order
model), while 8,,, and (3,, represent the NW-SE, and the
NE-SW, diagonal interactions, respectively.

The canonical potential matrix given by (32) can be repar-
titioned to cast it into the form of a block tridiagonal matrix,
as in (16), with N, rows of M, X M, blocks, where

M, = kM, N, =N/k,, (37)

with k&, being defined in (3). For first- and second-order
fields, from (3) and Fig. 1, k, = 1. For higher order fields,
to facilitate the discussion, we assume that the factoring in
(37) is possible and so ignore possible end effects in the
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repartitioning technique when this is not true. Then

{E c o
CT B ¢ o
0o ¢ B ¢ o -
Ac: . . . . . . , (38)
0 CT B ¢ o
0 C™ B ¢
| 0 C7 B

with the M, x M, blocks, B and C, given by
A A A, Aku—l
~ AIT A A, Aku—2
B= : . ) . D,
Ak AL, AT A4,
A 0 0
~ A Ak‘. 0
C= N . (39)
A, A, Akl,

From the properties of the blocks A i—j» it follows that

1 Ig is centrosymmetric, i.c., B = BT and B = JBJ,
2) C is persymmetric, i.e., CT = JCJ.

The repartitioning of the canonical potential matrix into
block tridiagonal structure has the effect of regrouping the
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(0,0) (0,1) (0,2)

Fig. 2. Second-order fields: Neighbors of corner pixel (1, 1) marked by

‘*0,”” that lie off the lattice 13.
boundary conditions. If the field is defined on a torus, it also
includes the periodic b.c. case. As an illustration, consider
the symmetric Neumann condition for a second-order field.
For a second-order field, the neighbors of the top left corner
pixel (1, 1) are (0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (1, 2),
(2, 1), and (2, 2). Of these, the first five lie off the lattice (see
Fig. 2). As explained in Section III-B, for symmetric Neu-
mann b.c., the off-lattice neighbors of (1, 1) are assumed to
have the same intensity as the on-lattice neighbors that are
their corresponding mirror images (when reflected across x
and y axes that are defined with (1, 1) as their origin). Thus,
pixels (0, 0), (0, 2), and (2, 0), are all defined to have the
same intensity as pixel (2, 2), while pixels (0, 1), and (1, 0),
are defined to have the same intensity as pixels (2, 1), and
(1, 2), respectively.

We pursue the discussion of A, . in the context of the
repartitioning technique discussed above. Once again assum-
ing the canonical ordering, the structure of the repartitioned
A, is given by the following theorem.

Theorem 3: The repartitioned boundary potential matrix
Ay of a homogencous GMRF of given order P, with
consistent b.c., has the following structure:

B, . o o (c)]
(Coe)” B ci. o 0
o (G B . o
Ab.c.: . . . . . s (40)
o (@) B, c. 0
0 o (c2) B, o
e 0 0 (e BN

S S
rows of the lattices into larger entities, which we call pseudo
rows, that have a first-order neighborhood relationship, i.e.,
all the pixels in a pseudo row depend only on pixels from the
pseudo rows that lie immediately above and below it. Then,
from (37), the number of lattice rows that form a pseudo row
is k,, and the number of pseudo rows is N,. Repartitioning
is purely conceptual, i.e., no changes are made to A4 ,; we
simply look at the block structure in a different way that, as
we will see in the next section, is more convenient.
Structure of A, .: The boundary conditions are assumed
to be consistent with the order of the field. As explained in
Definition 2, this means that, for a Pth-order field, the rule
used to assign the off-lattice neighbors of a boundary pixel
cannot assign it pixels that lie outside a circle of radius D2,
Examples of such boundary conditions are provided by the
direct generalization of the ones discussed earlier in the
context of first order fields, e.g., the free and Neumann

where the M; X M, blocks have the following properties:
1) By = (By.) and (B} )" = JB} J,
2) (CiHT=JCi, J,
3) Bv=JB! Jand CM' = .,
4) For nonperiodic lattices,
C =0,

(41)

i.e., A, is block tridiagonal.

The proof is straightforward and uses a line of reasoning
similar to the one followed in the corresponding proof for
Theorem 2. The matrix A, . can be partitioned into N rows
of M X M blocks, where the (i, j)th block, AV, repre-
sents only those neighbor interactions between the pixels in
row / and row j that arise as a consequence of the boundary
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conditions. For nonperiodic lattices, the definition of consis-
tent b.c. constrains A, . to a block banded structure with
block bandwidth k. This matrix can be repartitioned to
obtain a block tridiagonal matrix. The symmetry properties
of the blocks and the relationships between them, including
the perturbed block Toeplitz nature of A4, ., follow from the
symmetry of the neighborhood definition and the homogene-
ity of the field. In particular, since the same boundary
condition rule, along with the same boundary potentials, are
applied to every pixel along the lattice boundary, only the
interactions that involve the first and last pseudo rows can be
different. For periodic lattices, the first and last pseudo rows
become neighbors and their interaction is represented by
additional blocks, C{'t and (C1)7.

Remarks: From Theorem 3, the repartitioned boundary
potential matrix A, . has the following properties.

1) It is centrosymmetric and sparse with a maximum of
five nonzero block diagonals; for nonperiodic lattices it
is block tridiagonal.

2) All the blocks are persymmetric. In addition, the inte-
rior blocks B2 along the main diagonal are cen-

trosymmetric.
3) For nonperiodic lattices, the bandwidth of A, . is

given by

b(Ab.c,) = kvM+ max br(c{)c)’ (42)
where

. n1/2
max b,(Ci.) = (Dp— | D¥*]) . (43)
7

The structure and properties of GMRF’s on periodic lat-
tices have been thoroughly investigated; see, e.g., Moran
[24], Besag and Moran [5], Kashyap [17], and Chellappa and
Kashyap [9], and fast transform based processing algorithms
have been derived in [9]. Accordingly, we proceed here with
GMRF’s defined on nonperiodic lattices. Unless otherwise
stated, in the sequel all references to GMRF’s assume the
underlying lattice to be nonperiodic.

Structure of A: Adding A_, and A, ., (from (38) and
(40), respectively), and applying (41), the block structure of
the potential matrix A for nonperiodic lattices is obtained as

B, C, 0
cT B C 0
0 ¢ B C 0
I . .
0 ¢ B C 0
0 ¢ B Cy_,
0 Cf_.. By

1

(44)

where the M, X M, blocks B,, B, By, C,, C, and Cy, _,,
and their properties are obtained from the corresponding
blocks of A, and A, .. A valid potential matrix A4 for a
nondegenerate GMRF must be positive define (pd). Conse-
quently, the blocks on the main diagonal, B, B,, and BNl
are pd.

Thus, a valid potential matrix for a zero-mean nondegener-
ate homogeneous GMRF of given order, with consistent b.c.
defined on a nonperiodic lattice, has the following properties.

1) It is centrosymmetric, pd, and block tridiagonal, with
the block structure previously given, in (44).

2) The blocks along the main block diagonal are symmet-
ric and pd, i.e.,

B,=Bl>0, B=B">0, By =BL>0,

(45)

while B is also persymmetric, i.e., B” = JBJ, there-
fore it is centrosymmetric, and By, is related to B,
through the reflection matrix, J, by

By = JB,J. (46)

3) The off-diagonal blocks are persymmetric, i.e., C/ =
JC,J and CT = JCJ, while Cy_1 =C,.
4) Tt is banded, with bandwidth

2172
b(A) = k,M+ (Dp— | D)7, (47)
0172
where k, was defined in (3), and (D — | DY?|’)
is the right bandwidth of C.

As we have seen, the potential matrix, in particular its
block structure, reflects the structure and properties of the
underlying field. The blocks along the main diagonal repre-
sent the interactions of pixels within each pseudo row (or
lattice row, depending on whether the repartitioned or origi-
nal potential matrix is considered), while each off-diagonal
block represents the interactions between the pixels in two
different (pseudo) rows. The symmetry properties of A and
its blocks reflect the homogeneity of the field, while the
perturbed block Toeplitz nature of A reflects the effect of
finite lattice boundaries. The block bandedness of A and the
banded nature of each of its blocks is a consequence of the
locally limited spatial dependence of the field. In particular,
the block tridiagonal nature of the repartitioned potential
matrix represents the fact that any pseudo row is only related
to the one that immediately precedes it and the one that
immediately follows it; equivalently, in terms of rows of the
lattice, any row is only dependent on k, rows on either side
of it.

Inhomogeneous Fields: The above argument regarding
the effect of the neighborhood order on the structure of A,
can be applied to inhomogeneous fields to derive a reparti-
tioned potential matrix with a block tridiagonal structure,

A=1Iy&®B + Ky ®..,Ccr+ K,Cl ®,C;,  (48)
with its bandwidth still given by (47).

IV. RECURSIVE STRUCTURE

In this section, we develop a recursive structure for non-
causal GMRF’s by using the properties of the potential
matrix. The recursive structure consists of two equivalent
one-sided representations that are obtained by the Cholesky
factorization of the potential matrix, using a Riccati equation.
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Each of these equivalent representations is defined through a
set of spatially varying regressors. The transformation is
simple; what makes it interesting and useful is the effect of
the special structure of A on the structure and properties. of
the equivalent one-sided representations. The end result is an
alternate representation, for a noncausal field of any order,
consisting of a set of finite one-sided spatially varying regres-
sors that, in the case of homogeneous fields, are shown to
converge asymptotically to a spatially invariant regressor.
We emphasize that, unless stated otherwise, the results to be
developed in this section are valid for GMRF’s of arbitrary
order, not necessarily first or second order only. This gener-
ality is a result of the repartitioning technique of Section
II-C, which in essence makes the block structure of the
potential matrix of higher order fields look like that of first or
second order.

In Section IV-A, a noncausal AR model for GMRF’s is
presented in terms of the potential matrix. The equivalent
one-sided representations are derived in Section IV-B and
some important properties of their spatially varying regres-
sors, including their convergence to a spatially invariant
regressor, are presented in Section IV-C.

A. Noncausal Autoregressive Field Representation

Alternatively to the Gibbs representation, a GMRF can be
described by a noncausal autoregressive (AR) model driven
by a correlated input field. This is the minimum mean-square
(mmse) representation considered by Woods [32]. A matrix-
vector formulation of this representation can be derived in
terms of the potential matrix, as follows. Let

U= AX, (49)
where A is the potential matrix and X is the NM x 1
vector of the field values arranged using the canonical order-
ing. Since X is zero-mean Gaussian with covariance, from

3,

E(XXT) = (%A)l, (50)

it is immediately apparent that ¥ is zero-mean Gaussian with
E(337) = o4, (51)
and
E(XTT) = o?I. (52)
Then,

AX =%, T ~y(0,0%4), (53)
is a noncausal AR representation for a GMRF with potential
matrix A.

From (53) and the structure of the potential matrix, the
intensity (pseudo) row vectors satisfy a noncausal regressor
whose structure is determined by the order of the field and
the choice of boundary conditions. For example, for a homo-
geneous Dirichlet field, the noncausal regressor is

C™%_ |+ BX;+ C%,, =7,

s (54)
with boundary conditions

X, =0, Xy = 0.

PAST
N ——

.FUTURE.

Fig. 3. Partitioning of the lattice produced by the equivalent one-sided

regressor model: ‘*0’’ represents the ‘‘present.’’
8

Equation (54) is not to be confused with (3.1) in [20] which
superficially has the same form. Equation (54), which fol-
lows from Wood’s mmse representation in (53), represents
2-D fields. As a result, even though the iteration index i
operates in one dimension, the second dimension’s interac-
tions are found in the highly structured form of the matrix
coefficients B and C. In contrast, (3.1) in [20] is concerned
with 7-D fields. It has matrix coefficients simply because it
represents a 1-D vector field, i.e., each site in the 1-D lattice
has a vector of attributes. For this equation, the one-dimen-
sional interactions are in the direction of the index i and the
matrix coefficients, that appear to be analogous to B and C
in (54), actually have arbitrary structure since there is no
second dimension of interactions to be encoded.

For homogeneous fields, the regressor produced by the
mmse representation is spatially invariant, barring the initial
and final conditions. It is also noncausal, and therefore
nonrecursive. Next, we see that it is possible to derive
alternate representations that are one-sided, recursive, and, in
the case of homogeneous fields, asymptotically spatially in-
variant.

B. Spatially Varying One-Sided Regressors

In this subsection, we derive two completely equivalent
one-sided representations for a noncausal field, one ‘‘back-
ward,”’ the other ‘‘forward.”” Each of these is based on a set
of finite, one-sided, spatially varying regressors that turn out
to be asymptotically invariant when the field is homogeneous.

Backward Representation: Since A is pd, we can define
its lower /upper Cholesky factorization,

A=UTU, (55)

where U is upper triangular. Then equation (53) can be
rewritten as

UX = w, (56)
where
w=(UT) % (57)
and
W~ (0, 2I). (58)
As a result,

E(XwT) = o?U 1. (59)
Equations (56) and (58) define an equivalent one-sided
‘*backward’’ regressor model, in which any pixel (i, j),

depends only on those pixels that lie in its ‘future’’ (see Fig.
3).
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The importance of this model lies in the fact that the
special structure of A is reflected in the structure of U.
Since A is banded as well as block banded, so is U. In fact,
since A is block tridiagonal, U has only one nonzero
off-diagonal block per block row:

U e, o
0 U ©, 0
u=1\|. . S,
0 0 UN,—1 @N,-l

o 0 U,

= I, ®,U + K}, ®,6,, (60)

where U; and ©; are M, X M, blocks, with the U’s being
upper triangular.

The matrix vector representation in (56) can be expanded
as an (M, X 1) vector AR process:

UX;, + 0%, =w, l<=isN -1,

(61)

UleNl = Wy,

with w; L X; for { < j, and

E(wWT) = 021, 8,;,  E(¥wF) = 02U}, (62)
for 1 =i =< N,, where ¢, ; is the Kronecker symbol. Here,
the X, are M, X 1 (i.e., k,M x 1) vectors, each of which
represents a pseudo row (i.e., k, rows of the lattice, stacked
one on top of the other). The driving noise, {w; ;}, is white
and uncorrelated with all the pixel values, x, ;, that lie in its
““future.”

At the pixel level, for a pixel in pseudo row #, U; and O,
contain the regressor coefficients for the ‘‘future’” pixels in,
respectively, the same pseudo row (i), and the next pseudo
row (i + 1). The order of the regressor follows from the
right bandwidth of U, which is equal to the bandwidth of A,

172
b,(U) = b(A) = k,M + (Dp — | DY[*) . (63)

As an illustration, consider first-order fields. For these
fields, k, = 1 and M, = M, i.e., the pseudo rows reduce to
being the rows of the lattice. Then

b(U) =M, (64)

and, as a result, the ©,’s are lower triangular. At the pixel
level, this means that the noncausal neighborhood set of four
pixels (labeled as pixels ““1”” in Fig. 4(a)) is replaced by a
‘‘anticausal’’ neighborhood set of M pixels (labeled as pixels
‘1"’ in Fig. 4(b)).

More generally, a noncausal neighborhood set of Np
pixels is replaced by a l‘/‘zanticausal” neighborhood set of
k,M + (D,, - | Dy? 2) pixels. For example, with refer -
ence to Fig. 4, the second-order noncausal neighborhood set
(labeled as pixels ‘“‘1’* and ‘2’ in Fig. 4(a)), is replaced by
an ‘‘anticausal’’ neighborhood set of M + 1 pixels (labeled
as pixels ‘1’ and ‘2"’ in Fig. 4(b)). Similarly, the same
applies to higher order noncausal models as illustrated in Fig.

L o -
B RN SO N 2 IR
R N P
B N U N
B N S NS R

O WO = WO

o L =
B RS-
L e

ot W

D W

o w

(b)

.o 6 6

6 6 5433333

333211111
1o .o

(©
Fig. 4. (a) Neighbors for Pth-order noncausal MRF, P =1, 2, 3,4, 5, 6.

(b) Neighbors for the equivalent backward regressor. (c) Neighbors for the
equivalent forward regressor.

Thus, (61) provides an ‘‘anticausal’” or ‘‘backward,”’ or
‘“‘bottom up’’ recursive procedure to generate the field using
a set of one-sided spatially varying regressors that are
defined by the matrices {U;} and {©;}.

Forward Representation: Alternatively to (55), an up-
per/lower factorization of A4 as

A=L"L, (65)
where L is lower triangular, produces a ‘‘forward’’ regres-
sor model

LX =7, (66)
where
=" (67)
and
Z ~ (0, ¢%1), (68)
resulting in
E(XZT) = o?L~! (69)
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As a consequence of the fact that A4 is block tridiagonal, L
has only one nonzero off-diagonal block per block row:

Ly 0 0
Py Ly-, 0 0
L=] : N
0 P, L, 0
0 P I

= INI ®iLN1—i+1 + K}Q ®iPN,—i+l’ (70)
where L; and P; are M, X M, blocks, with the L;’s being
lower triangular.

Analogous to (61), a ““causal’’ or “‘forward”’ procedure,
in the form of a set of spatially varying one-sided regressors
defined by the matrices {L;} and { P}, can be derived from
(66):

LyX =7,

LNl-i+1}i+PN,~i+]5éi—l=zi’ 2=i=N, (71)

with Z; L ¥, for j < i, and
r J

E(Eizj?-) = 021M16 E(Eizir) = OQLI:’,LH—I’ (72)

1,]?
for 1 < i < N,. Using the same argument as for the ‘‘back-
ward’’ representation, the one-sided neighborhood set for the
“forward” regressors is shown to be a reflected version of
the corresponding one for the ‘‘backward’’ regressors (see
Fig. 4(c)).

For homogeneous fields, since A4 is centrosymmetric, it
follows that

L =JuJ, (73)

ie.,
L;=JUJ, 1=isN, (74)
P=JOJ, 1<i<N, -1. (75)

In other words, each block in L can be obtained directly
from the corresponding block in U, by rotating it through
180°.

The main thrust of this subsection is the fact that for any
given noncausal field, not necessarily homogeneous, there
exist two equivalent one-sided representations, one of which
is ‘‘backward’ or “‘anticausal,” the other ‘‘forward’’ or
“‘causal.”” Each of the two representations consists of a set of
spatially varying regressors, defined respectively by the two
sets of matrices {U,, ©;}, and {L;, P;}. The effect of this
transformation is to go from a noncausal neighborhood inter-
action with N, neighbors to a one—sidegzspatially varying
interaction with k M + (Dp - | DY 2J2) neighbors which
lie either entirely in the “‘future’ or entirely in the “‘past”’
(see Fig. 4).

For homogeneous fields, the ‘‘backward’’ and ““forward”’
representations are related to each other through a series of
reflections (see (74) and (75)); therefore, only one of them,
and correspondingly only one set of spatially varying regres-
sors, has to be computed explicitly. Consequently, in the

sequel, we concentrate on the properties and structure of the
‘‘backward’’ representation.

C. Asymptotic Convergence of the Spatially Varying
Regressors

The one-sided regressors are found by solving a pair of
Riccati type equations. We will write them for homogeneous
fields only, so as not to clutter the issue with notational
complexity. However, we note that these equations follow
from the block tridiagonal structure of the potential matrix,
so that a similar algorithm is true for inhomogeneous fields.

Let

5= Uy,

i

(76)
and
A; =06,

i

(77)

Then, by multiplying out the block rows in the Cholesky
factorization equation (55) and using the block structure of A
(from (44)), the following pair of iterative schemes for
computing {U;}[¥, and {©,} V'[!, respectively, is obtained.

1

T, = B, (78)
2,=B- CITBFICU (79)

for3<i<N, -1, Z,=B-C"3\C,
(80)

Sx, = JBJ - CT351 ..

(81)

2)
A, = CTB]'C,, (82)
for2=<i=<N, -2, A,-=CT[B‘A:'—1]_IC’
(83)
Ay =Cl[B-Ay_,] ', (84)

Actually only one of these two iterations is needed since

ule, = c,, (85)
U'e,=C, 2s<i<N, -2, (86)
Un.—1On,_, = C;. (87)

Equations of the type of (80) and (83) arise in the study of
stability and control problems in linear systems theory, being
referred to as Riccati equations, see, e. g., [7].

We will see that for homogeneous fields, under minor
assumptions, the spatially varying regressors (U, ©,}) con-
verge asymptotically at a geometric rate to a spatially invari-
ant regressor ({U,, ©,}). This has considerable practical
significance as far as numerical implementations are con-
cerned.

We proceed with the iteration in (80) and consider the
properties of the sequence of matrices, {Z;}, defined by (80),
with initial condition (79), under the assumptions given next.
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Let || - ||, be the matrix spectral norm, and define the
quantity

¢=2[B " ICl.. (88)

Assumed Conditions:

1) B=BT>0,
) 0<i<l,
3) the initial condition matrix, ,, has
a) B/2< X, <B,
b) £, — B+ CTZ;'C is not indefinite.

Condition 1) holds for the potential matrix of any nonde-
generate GMRF (see (45)). The right inequality in Condition
2) can be interpreted as the assumption that the block tridiag-
onal, block Toeplitz, matrix,

Iy®B+Ky®CT+KL ®C,

is strictly block diagonally dominant with respect to the
spectral norm (i.e., [29]). In order to avoid technical compli-
cations, such as division by zero, fields with

C=0 (89)
are handled separately. Such fields have only horizontal
interactions, i.e., they are degenerate 2-D fields that are
really only 1-D. For these fields, substituting (89) into (80)
produces a constant sequence,

%, =B, (90)
which is trivially convergent. We could also include the case
where (89) holds, by requiring 8, # 0 and stacking the field
column-wise instead of row-wise. In the sequel, then, we
need only to consider explicitly the case where

C=+0. (91)
This restriction is enforced through the left inequality in
Condition 2), i.e., { > 0. Condition 3) ensures that sequence
{Z,} is initialized as a bounded and monotone sequence.
Later, when we consider specific fields as examples, we will
see that mild restrictions on the parameter space are sufficient
to ensure that the above conditions hold.

The conditions assumed are used to derive a series of
lemmas that capture the important properties of sequence
{Z,} and these in turn lead to the main convergence results of
this section, presented in Theorems 4 and 5 and Corollary 2.
The proofs are all relegated to the Appendix.

Lemma 1: Given Conditions 1) and 2), B > 4C’B~'C.

Lemma 2: Given Conditions 1), 2), and 3a), {T;} is a
bounded sequence, i.e.,

vi=2, B/2<Z3X,=<B. (92)
Lemma 3: Given Conditions 1)-3), {£,} is a monotone

sequence, i.e.,

(Vi=2,%,-%,,20) or (viz2,%, -

4

i, =0).
(93)

Theorem 4: Given Conditions 1)-3), the sequence, {Z;},
converges, i.e.,

2,2, (94)

where ¥, is a pd solution of the matrix Riccati equation
z,=B-CTz;'C. (95)

Alternatively, if we proceed with the parallel iteration in
(83), it is possible to derive a theorem along the same lines as
Theorem 4 to prove that sequence {A;} converges.

An explicit expression for the steady state solution, X,
can be obtained, if an additional constraint is imposed on the
matrix C:

C= CT{ >0, (96)

<0,

i.e., C is symmetric pd, or symmetric nd (negative definite).
In the last section, we saw that for third- or higher order
fields repartitioning of A is required, and the resulting C is
block lower triangular. Thus, (96) is only plausible for first-
or second-order fields.

Then the following lemma can be derived.

Lemma 4: Given Conditions 1) and 2), and the additional
condition in (96):

B*2C > 0. (97)

For any symmetric, pd matrix R, define the square root as
the symmetric, pd matrix R'/> such that R = R'2R'/2. The
additional condition in (96) and Lemma 4 can be used to
derive the following corollary to Theorem 4. Let

ifC>0,
C, if C<O0.

Corollary 2: Given the condition in (96), in addition to
Conditions 1)-3), sequence {Z,} converges to

(98)

T, = (B2) + Dl/z[(D_”z(B/Z)D“/Z)Z B I]I/le/z’
(99)

where D is given by (98).

Given the additional condition in (96), the Riccati equation
(95) has two pd solutions (see the proof of Corollary 2 in the
Appendix), one of which, (99), is the steady state solution of
the iteration in (80). It is straightforward to show that the
other one,

A, = (B/2) - D2[(D"2(B2) D7) ~ 1] D12,
(100)

is the steady state solution of the parallel iteration in (83).

Theorem 4 provides the convergence of sequence {Z,}.
Under the same conditions that are sufficient for the conver-
gence, it is possible to derive a bound on the convergence
rate, that is an explicit function of blocks B and C.

Theorem 5: Given Conditions 1)-3), the rate of conver-
gence of sequence {X,} is geometric, i.e.,

12 = Z.ll; < Kod',  viz=2, (101)
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where
a= {2, (102)
12, — 2.l
KO = _3'4_ ) (103)
¢ is defined by (88), and
O<ax<l, (104)
2| B
0<K,< “ ”s. (105)

Most applications involve numerical implementation on a
digital computer with finite precision. For such applications
the geometric rate of convergence of the iteration is highly
significant because it means that after a small number of steps

n<N|, (106)
it can be safely assumed that
2, =3z, n<isN, -1, (107)
and so
U =U, n<isN -1, (108)
0,=0,, n<i=<N, -1, (109)
where U, is the Cholesky factor of S i.e.,
. =UTU,, (110)
and
e, =U;Tc. (111)

To satisfy the end condition, (81), one more iteration is
needed at the end:

Iy, =JBJ-CTs lc,. (112)

These results are applicable to fields of any order, for the
parameter space (i.e., a range of parameter values) in which
Conditions 1)-3) hold. When considering a specific field, it
is often the case that tighter bounds can be derived for the
convergence rate, than the one in Theorem S5, by using
additional information regarding the structure of matrices B
and C. This will be demonstrated in the next section where
we consider some examples.

V. FirsT- AND SECOND-ORDER FIELDS

In the previous section, we proved that for a homogeneous
field of any order, under certain conditions (Conditions
1)-3)), the spatially varying one-sided regressors converge
asymptotically, with a geometric rate, to a spatially invariant
regressor. Here, we illustrate the fact that for a given field
these conditions are easily verified if mild restrictions are
imposed on the parameter space. We also illustrate how the
general results can be tightened when we consider explicitly
the structure of first- and second-order homogeneous fields.
Finally, we show the practical significance of the geometric
rate of convergence by running a simple computational ex-
periment.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992

For first and second order fields, k, = 1, therefore, M, =
M and N, = N, i.e., the pseudo rows reduce to being the
rows of the lattice.

A. First-Order Fields

For homogeneous first-order fields, the potential matrix,
A, has the block structure given in (44), with B, and B,
being the vertical and horizontal potentials,

C=-B,1, (113)

and B, B;, C, depending on the b.c. chosen (see Corollary

1.
Substituting (113) into (88), we find that, for first-order

fields, { simplifies to the following form:
¢=21B,I1B7',. (114)

We consider the following three fields that were introduced
in Section III-B.

1) Dirichlet Fields: From (16) and (25), it follows that B
is given by (17), and

B, =B, C, =C. (115)

2) Variational Fields: From (7), (16), (17), and (27), it
follows that

[1-8, -8, ©
_B}, 1 _Bh 0
0 -8B, 1 -8, 0
B = . . . . . . ,
0 -8B, 1 - B, 0
0 _ﬁh 1 _B},
| 0 -8, 1]
=IM_Bh(HM+11,M)» (116)
B, =B+ C, (117)
C, =cC. (118)

3) Symmetric Fields: From (7), (16), (17), (29), and
(30), it follows that

[ 1 -2, 0 - - .

—28, 1 -8, 0 :
0 -8, 1 -8, 0

B: . . . . . s

0 -8, 1 -8, 0
: 0 -8, 1 —28,

0 -28, 1

= M_Bh(HM+F],2+FM~l,M)’ (119)

B =B, C =2C. (120)

Note that for the variational and symmetric fields, B fails to
be Toeplitz because of the effects of the boundary conditions.
In the sequel, if not otherwise specified, when simply refer-
ring to first order fields we mean one of these fields.
Verification of Conditions 1)-3): Sufficient conditions
for a symmetric matrix to be pd are that all its diagonal
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elements are positive and that it is strictly diagonally domi-
nant (see the corollary to Theorem 1.8 in [31}). For Dirichlet
and variational fields, applying these conditions to the poten-
tial matrix results in the constraint

IB,1 + 184l <1/2, (121)

while for symmetric fields the corresponding constraint is

18,1 + 184l <1/3. (122)

To avoid the trivial case of a null C (see discussion following
(89)) we also assume that

B, #0. (123)

Result 1: For the parameter space defined by (121) (or
(122)) and (123), Conditions 1), 2), and 3) are satisfied for
Dirichlet and variational (symmetric) fields.

The details of the proof are given in the Appendix

Steady State Solution: From (113) and (123), the addi-
tional constraint in (96) is satisfied for all three of the
first-order fields, and Corollary 2 can be applied. We can
obtain a simpler form for the steady state solution of the
Riccati equation. The steady state solution of the iteration in
(80) is obtained from (98), (99), (113), and (123). After a
little algebraic manipulation, it leads to the following expres-
sion:

Result 2: For first-order fields:

2o =B/2 + \/W

where B depends on the particular field.

Monotonic Behavior of {X;}: Lemma 3 has shown that
{Z,;} is monotonic. For first-order fields more can be said.
From (167), (217), (220), (222), and (223), we have the
following.

Result 3: The sequence {Z,} is:

(124)

1) monotonically decreasing for first-order Dirichlet fields,
ie.,
£, -%,.,>0, Vvi=2; (125)
2) monotonically increasing or decreasing with 5, < 0 or
8, > 0, respectively, for first-order variational fields,
ie.,
B,>0=%,-%,,, <0,

viz=2, (126)

,<0=%,-%2,,,>0, viz2; (127)
3) monotonic increasing for first-order symmetric fields,

ie.,

$,-8,,,<0, Vi=z2.

i

(128)

Tighter Bounds on the Rate of Convergence: For
first-order fields, it is possible to derive for the rate of
convergence in (101) bounds tighter than the one given by
(102).

Lemma 5: Given X, defined by (124), and { defined by
(114), it follows that

o, - 1k (129
T Vi
and
¢ (130)

a= —F—.
1+ V1 -=¢?

The bound in (130) is tighter than the one in (102), because
Condition 2) implies that

1 1

_<__—__
2 1+ V1=

Lemma 6: When {Z,} is monotonically decreasing, then

<1. (131)

§-2
(1+ m)z.

The proof is simple. Since {Z,} is monotonically decreasing,

a= (132)

viz2, >3 =3l<zy!

= =< iz . (133)
Substituting (133) into (190), in place of (195), and using
(129) instead of (196), in the proof for Theorem 4, we obtain
(132).

The bound in (132) is tighter than either (102) or (130),
because of (131). From (127) and (125), respectively, varia-
tional fields with negative 8, and Dirichlet fields have mono-
tonic decreasing sequences. Consequently, the bound in (132)
can be applied to them.

Effect of the Field Interactions on the Convergence
Rate: From (102), (130), or (132), it is clear that the
convergence rate factor, @, increases or decreases as {
increases or decreases. When the eigenvalues of B are
known we can get exact expressions for | B™'||,, and hence,
from (114), for ¢. For example, for the first-order Dirichlet
field, B has the structure given in (17), which corresponds to
the sine transform matrix in [16], whose eigenvalues are
given by

in
M+ 1

N(B) =1 - 28,cos ., 1=i=M. (134)

Similarly, for the first-order variational model, B has the
structure given in (116), which corresponds to the cosine
transform matrix in [16], whose eigenvalues are given by

(i-1xw
N(B) =1 —28,cos

-_— 1<i=sM. (135)
M
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Substituting (134) and (135), into (114), we get the following
result.
Results 4: For first-order fields,

2|8,1

K
1-2 cos
184 M+ 1
for Dirichlet fields,
218,
(1=218,1)"
for variational fields, with 38 »>0,

2181

1-2|8 il
_ cos ——
a Y

(136)

>

for variational fields, with B, <0.

From (136), it is clear that for first-order Dirichlet and
variational fields, weak field interactions, as represented by
small values of the interaction parameters, B, and 8B, lead to
faster rates of convergence, while strong interactions imply a
slower convergence rate. A similar result, although not as
clean, can be obtained for symmetric fields and is presented
elsewhere.

Practical Significance of Convergence: A simple compu-
tational experiment illustrates the practical significance of the
geometric rate of convergence. For a first-order Dirichlet
field with parameter space defined by (123) and (121), the
iteration in equation (80) was used to generate the Cholesky
factor U, up to a specified precision, e, i.e., the iteration was
stopped at i = n if

I%; -

i (137)

Ei— 1 “ s =€
and the approximation

v=U, forj>n (138)
was used, or continued to i = N if the tolerance level was
not achieved. This experiment was carried out with N = M
= 8, and tolerance level ¢ arbitrarily set to 106, for several
different pairs of parameter values. In each of these cases,
Ny ar> the number of iterations needed for convergence (up
to the specified tolerance level) is recorded in Table I. The
experiments were repeated for N = M = 16, 32, 64, and
128. The columns for N = M = 32, 64, and 128 are omitted
because the values of n, ,, are the same as obtained for
N =M =16, given §,, B,, and e. The table shows that
even for values of 8, and 8, near the upper bound in (121),
the iteration converges very fast. The worst case recorded is
Ny =9, which for values of N > 8 represents consider-
able savings. The results also indicate that the lattice size
(M) has an insignificant effect on the number of iterations
required which is consistent with the fact that the upper
bound on the convergence rate (see (132) and (136)) only
depends on M through the cosine term (cos (7 /(M + 1))
which stays practically constant as M increases past 8.

TABLE 1
FACTORIZATION OF POTENTIAL MATRIX FOR FIRST-ORDER DIRICHLET FIELD
€ B, B Ng g 6,16
10-¢ 0.10 0.15 4 4
1076 0.10 0.30 5 5
1076 0.15 0.10 5 5
10 0.15 0.15 5 5
10-6 0.15 0.22 6 6
10-¢ 0.22 0.15 7 7
107¢ 0.22 0.22 8 9
10~ 0.30 0.10 8 9

B. Second-Order Fields

For the purpose of illustration, we consider only Dirichlet
fields. Other second-order fields follow with slightly more
complicated constraints on the parameter space. For homoge-
neous Dirichlet fields, B is given by (17), C by (36), and B,
and C; are still given by (115) (recall that free b.c. imply
A=A).

A sufficient condition for A to be pd is strict diagonal
dominance. This translates to the constraint equation

18,1 + [Bul + |Bar] + 18s) < 1/2.  (139)
To avoid C = 0, the parameters are restricted to
max (|8, |, | Bar |, | Banl) #0, (140)

i.e., the field must have at least one nonzero interaction
between pixels in two adjoining rows. Alternatively, as pre-
viously mentioned, we could assume 3, # 0 and stack the
field column-wise instead of row-wise.

Verification of Conditions 1)-3): 1t is straightforward to
verify Condition 1). To verify Condition 2), let || - ||., be the
matrix infinity norm. Using (203), (204), and (17), in (88),
we get

2|IClls
(1=21841)

2|ICl =2(|Bul+|6dl|+‘6d2l)
~ (=218, (1-218,1)
(using (139)),

¢ <

<1 (141)

ie., Condition 2) holds. Finally, the procedure to prove
Conditions 3a) and 3b) follows along the same lines as the
corresponding procedure for first-order Dirichlet fields.

Thus, for second-order Dirichlet fields the convergence
results derived earlier (in Theorems 4 and 5) are valid over
the parameter space defined by (14) and (139). Note that the
parameter space previously defined is only a sufficient space,
and does not preclude the possibility of these results being
applicable for parameter values that lie outside it.

VI. STATE SPACE REPRESENTATION

The “‘backward’’ and ‘‘forward” regressor- models de-
rived in the last section can be put in the form of ‘‘backward”’
and ‘‘forward” state space representations, which are con-
venient for field synthesis and applications such as filtering or
smoothing of noisy fields.
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Inverting U, in (61), the following ‘‘backward’’ state

space row model results:
¥ =FPX%,, +Gtw, 1=i=N -1, (142)

— _ b =,
Xn, = GleNI,

where
-37'cy, fori =1,
FP=-U"'e,={-37'C, for2<i<N, -2,
—E;,I'_lCl, fori=N, -1,
(143)
G’=U""', 1=sis<N,. (144)

The second equality in (143) follows from (85)-(87) and
(76).

For homogeneous fields, the results of Theorem 5 say that
this backward model is asymptotically invariant, so that in
actual computations only a few distinct models need to be
taken into consideration, i.e., for i = n

Ft=Fb=-33'C (145)
and
Gl =GP =U]". (146)

The corresponding ‘‘forward’’ state space model is ob-
tained from (71),

X, = G{zZ,,
X;=F/%_,+G/Z,, 2=<isN, (147)
where
Fif= _L;l,]—i+1PNl—i+l
-JEy G, fori=2,
={-JS3' ,CJ, for3=i=<N, -1, (148)
-JEe,J, for i = N,,
G/ =Ly iy, 1=i=<N,. (149)

The second equality in (148) is obtained from (74), (75),
(85)-(87), and (76). Substituting (143) into (148), and (144)
into (149), we get

F/=JF ,.\J, 2=<i=<N, (150)
G/ =JGR iy, J, 1=i=N, (151)
and for the invariant model
F/ = JF*J, (152)
G/ =JGYJ. (153)

Either of the state space representations may be applied to do
fast recursive synthesis of samples of noncausal GMRF’s,
see, e.g., [3].

VII. RECURSIVE SMOOTHING OF Noisy FIELDs

The ‘‘backward’’ or ‘‘forward’’ state space representa-
tions previously given by (142) and (147), respectively, can
be used as the basis for recursive estimation from noisy
observations. Let the noisy field be represented by

yi,=X;;+n,; 1=isN, 1=j=<M, (154)

where n, ; is additive white Gaussian noise independent of
X; ;. Equation (154) can be applied in conjunction with either
(142) or (147) to produce the optimal fixed interval smoother
estimate using, for example, the recursive double sweep
Rauch-Tung-Striebel (RTS) implementation [26]. For other
formulations of recursive smoothers, see, for example, Mayne
[23], Fraser and Potter [10], and Bucy [8]. See [3] for results
on the enhancement of noisy images using the recursive
framework and the RTS smoother.

VIII. CONCLUSION
The main points presented are the following.

e Rather than describing GMRF’s by their covariance
structure, this paper proposes that the inverse of the
covariance structure, herein called the potential matrix,
be used.

e The paper introduces a canonical representation for
GMRF’s in terms of the structure of the potential matrix
that reflects in a natural way the modeling assumptions
on the fields.

e Noncausal GMRF’s have a recursive structure that is
intrinsic to the field. This structure is derived by utiliz-
ing the properties of the canonical representation. As a
result of this recursive structure, a noncausal field of any
given order can alternatively be represented by a set of
finite-order one-sided spatially varying field regressors.
Fig. 4 captures the essence of this equivalence.

e The noncausal mmse field regressor (see (54)) is driven
by correlated noise. In contrast, the corresponding one-
sided regressors (see (61) or (71)) are driven by white
noise.

e The spatially varying regressors correspond to the suc-
cessive iterates of a Riccati equation.

e For homogeneous fields, the one-sided spatially varying
regressors converge at a geometric rate to an invariant
regressor. This is of considerable practical significance
as far as numerical implementations on finite precision
machines are concerned since it reduces the computation
required to derive the alternate representations.

e The equivalent unilateral descriptions enable samples of
noncausal fields to be synthesized recursively.

e The recursive equivalent representations are convenient
for applications such as field enhancement from noisy
observations, allowing the use of techniques such
as Kalman-Bucy filtering and two-point recursive
smoothers.

Elsewhere, we apply the results on the structure of the
potential matrix to the problem of estimating the field param-
eters.
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APPENDIX

Proof of Theorem 1: From (6), the inverse of A is a
nondegenerate covariance matrix. Then (6) is equivalent to the
existence of a Gauss random field, X, whose covariance is a scaled
version of A~'. It remains to show that the structure of A, as
defined by (7)-(14), is equivalent to X being a first-order Gauss
MRF.

Assume the canonical ordering. Any other ordering is just a
permutation of this one.

If: Given A, satistying the properties listed in the theorem, it is
straightforward to verify that XTAX only involves quadratic terms,
x,-z.j, and x; ;x.,, such that (i, j) and (k, /) are neighbors
according to the first-order neighborhood rule. Therefore, X is a
zero-mean, nondegenerate, first-order GMRF.

Only if: Given a zero-mean, nondegenerate, first-order GMRF
with boundary conditions that are consistent with the first-order
neighborhood rule (but allowing for the possibility that the lattice is
periodic) and assuming the canonical ordering, the structure of A in
the statement of the theorem, follows immediately from the HCT.

O

Proof of Corollary 1: The Corollary follows from Theorem 1,
by applying the definition of homogeneity. O

Proof of Lemma 1: Using Condition 1) and properties of pd
matrices, it follows that

B~!'=p-12p-172 (155)
and
C'™B~'C=0. (156)
Then
B>4C'B'X =0
e I>4B '2CTR~12g~12CcB~ 112 » ¢
©I>D'D=0, (157)
where
D =2B"'2CB™', (158)

The second inequality in (157) follows immediately. Let N(DTD)
represent the ith eigenvalue of the matrix D”D. Using Theorem
1.3 and Definition 1.2 from [31, pp. 9, 11],

1/2

121, = max (\(D7D)) (159)

From (158) and matrix norm properties (Theorem 1.2 in {31, p- 9,
we get

1Dl =2 B 2|ZICll, = 21 B Cll,

<1 (using (88) and Condition 2)). (160)
From (159) and (160),
max \,(D'D) < 1 (161)
i
=D'D< I 0 (162)
Proof of Lemma 2: Prove by induction.
Basis: Follows immediately from Condition 3a).
Induction: Assume for arbitrary i > 2
B/2<Z,_,<B. (163)

This implies that

C'B-'C=CTy \Cc=<2C"B'C. (164)
Applying (164) to (80), we get

£;< B,  (because Condition 1) = C'B~'C = 0), (165)
and
S, =2B-2C"B"'C
>B-B/2 (applying Lemma 1). O
Proof of Lemma 3: Prove by induction.

Basis:

2, -%=%,-B+CTz;!C (166)

which, by Condition 3b), is either nonnegative definite, or nonposi-
tive definite.

Induction:
=% =C0N(E - 2Y)
=0 if% ,—-2,=20
-C ' T (167
<0, if2,_,—-%,=0. (167)

Depending on the induction hypothesis, (2; — 2, ) is either mono-
tone nonincreasing or monotone nondecreasing. Conditions 1), 2),
and 3a) are used implicitly because (167) assumes 3°;_, and ¥, are
pd. O

Proof of Theorem 4: From lemmas 2 and 3, {Z,} is a
bounded monotone sequence. Hence, from [27, p. 263],
' T, - 3.,
Taking the limit on both sides of equation (80), we get the Riccati
equation (95). 3

Proof of Lemma 4: There are two cases to consider.

HpcCc=Cc">o0.
Then
B+2C>0

follows immediately.
From the corollary to Theorem 1.3 in [31, p. 11],

1B~ = " (B) (168)
IClHs = Nuax (C) (169)

where
Amin( B) = mi'm N(B), (170)

Ao (€) = max 1(C). (171)

with N(B) and A\(C) being the eigenvalues of B and C,
respectively. Substituting (168) and (169) into (88) and applying
Condition 2), we get

Min(B) > 2N, (C). (172)
Applying Theorem 4 from [21, p. 203], we get
y’cy Y'BY
2 YTy = 22 (€) < Nyin(B) = YTy
for any vector Y, (173)

which implies that

B-2C>0. (174)
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) Cc=CT<o. and im. As a result, the aforementioned matrices commute. This
The proof for this case is identical to the first one, except for a allows us to express (180) (or (181)) in factorized form
change in sign (~C is used everywhere in place of C). O

Proof of Corollary 2: This requires that we solve Riccati
equation (95) given the additional condition in (96). From (98)
and (96),

D=DT">0. (175)

Substituting (98) into (95), the Riccati equation to be solved
becomes

S.=B-D3;'D. (176)

Premultiplying and postmultiplying (176) by D~ '/2, and substi-
tuting

$,=D"'?3 D', (177)
B=D"'2Bp~'72, (178)
we get a simpler Riccati equation,
$.=B-3;" (179)
Premultiplying (179) by S and rearranging, we get

SH} 2

S, B=3L+1, (180)

while postmultiplying (179) by io, and rearranging gives us
By, =32 +1 (181)
From (180) and (181), we have
$.B=BS,_. (182)

Then, from Theorem 7.2 {31, p. 220}, it follows that im and B
have the sane set of orthonormal eigenvectors. Consequently, the
matrix

[(B/2)" - 1]

has the same set of orthonormal eigenvectors as 3.
From Lemma 4,

B> £2C% B> 2D (using (98))

® g > =1 (using (178)). (183)

The product of two symmetric pd matrices, (B /2) + I) and
(B /2) = I), has all its eigenvalues positive (see, for example,
[19, p. 218]). Furthermore, since the product

((BR2)+1)((B/2) 1) = (B2) -1 (184)
is symmetric, it follows that
(B)2) - 1>o0. (185)
Then we can define its unique symmetric, pd, square root,

[(Bry -1,

which has the same set of orthonormal eigenvectors as

[(Br) - 1],

(5. - (B2) - [(B/2)" - 1]'/2)

(3. - (B) + [(Br2) - 1]’ )=0. (186)

From the factored form, the two pd solutions of the Riccati
equation (179) are immediately available. Substituting (177) and
(178) into these two solutions, we obtain the 2 pd solutions of
(%5)
1/2
S0 = (B/2) + D'2[(D~V*(Bj2) D~ ')’ - 1] D'~
> B/2, (187)

@ = (B2) - D'[(D"'2(B/2) D7) — 1] D12
< B)2, (188)
From Lemma 2, it follows that
Viz2, %> B)2.
Then
I,»X,=2Z2,>B/2,

which implies that (187) is the only valid steady state solution for
(80). d

Proof of Theorem 5: Substituting from (80) and (95),
2 - 2. =CT(25! - 7)),
=CTz (3., - S.)85'C,
(oL P ol s F N o) el o

c's Tzl - T

5 '(5, - 2 (s200) 7 (189)

Taking the spectral norm of both sides of (189) and applying
properties of matrix norms (see Theorem 1.2 [31, p. 9]) and the
fact that for any C

Ieri, =

we get

12 = Zalls = 112, = Sl NCIS2 )22

i—1
I, (190)
Jj=2

From Lemma 2,

vj=2, 2, > B/2, (191)
=3,>B/2. (192)
From (191), we get
vjz=2, T7'<2B7, (193)
and from (192),
s l<2B° (194)

By applying Theorem 9 in [21, p. 208], it is straightforward to
show that for any two symmetric, pd matrices R and 7,
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R>T=|R|;>|T|,.
Applying this result to (193) and (194), we get
viz2, |5, <208, (195)
and
1221 <2087, (196)
Substituting (195), (196), and (88) into (190) we get

I1Zi = Zally = 13, ~ 2a) 542072,

= K,a', (197)
where
2= Sl
Ky = 122 Zalls (198)
§
a=¢2 (199)

The inequality in (104) follows from (88), Condition 2), and
(199). From Condition 3a),

2, <B (200)
= 1%, =1B],, -~ (201)
while from Lemma 1
vj=2, 2, =<B=3,<B
=2, = IB],.  (202)

Using the properties of matrix norms (from Theorem 1.2 in [31,
p- 9]) and (201) and (202) in (198), we get (105).

Proof of Result 1—Verification of Conditions 1)-3) for
First-Order Fields:

Condition 1): This follows immediately for all three fields because
the potential matrix is symmetric pd.

Condition 2): From Corollary 2 in [30], it follows that for a
symmetric, diagonally dominant matrix, B = [6; 1,

1
15—, (203)
where
a=m,in(lb,-,il—z Ibi.jl)' (204)
i JEi
Here
12 | Bn1, for Dirichlet or variational fields, 205
T l1-3]8,1, for symmetric fields. (205)

Using (203) and (205) in (114), we get

2|8,
L =21840)"
T 208,
(1=318,1)°

<1,  (using (121), and (122)), (206)

for Dirichlet or variational fields,

for symmetric fields,

i.e., Condition 2) holds.
Condition 3a): For Dirichlet fields, from (79) and (115),

z,=B-CTB 'C. (207)
Then,
2, <B  (because B>0=B"'>0=C’B"'C>0).

Since Lemma 1 only requires Conditions 1) and 2), which have
already been shown to hold for the fields we are considering in
this subsection, we can apply it to (207), thus getting

2, > B)2.
For variational fields, from (79) and (118),
X, =B-CTB['C. (208)

From (116), (113), and (121), and the sufficient conditions given
above for a symmetric matrix to be pd, we get

B+2C>0. (209)
Then, from (117) and (209),
B, -B/2>0=B'<2B""!
= C'B;'C<2C"B"'C
=3,>B-2C"B7'C  (using (208))
>B/2  (using lemma1).
In addition,
%, <B  (because B, > 0= C"B{'C>0). (210)
For symmetric fields, from (79) and (120),
3, =B-4C"B"!C. (211)
Then,
2, <B. (212)
Using (119) and (113),
B£3C=(1738,)Iy — By(Hy + Fy, + Fy_ia). (213)
Applying (122) to (213), we get
B +3C>0, (214)

because the matrix in (213) has positive diagonal elements, and
is strictly diagonally dominant. Using (214), (113), and (123),
and the properties of pd matrices (see Theorem 24 in [21, p.
22]), it is straightforward to show that

B >9CTB (. (215)
Then, from (211) and (215), it follows that
3, > 3B, (216)

i.e., Condition 3a) holds.
Condition 3b): For Dirichlet fields,

%, -B+CTE'C=CT(2;' - B )C  (using (207))

>0 (because T, < B= 35! > By,
(217)

For variational fields,

L, -B+CTz'c= (3 - BT Y)C
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(using (208)). (218)

There are two possible cases.
Case 1) 8, < 0 (i.e., C > 0):
%, <B  (from (210))
<B+C=B, (from(117))
=>37'>B[! (219)
=3, -B+CTs;!C>0
 (using (218) and (219)). (220)
Case 2) 8, >0 (i.e., —C > 0):
B, > -2C+C=-C  (using (117) and (209))
=B '< -Cl
= -C'Bf'Cc>C
= X, > B,
(117) and (208)).

=3"- B/l <o.

(adding B to both sides and using

(221)
From (218) and (221),
3, -B+CTs5'c<o0. (222)
For symmetric fields:
3, - B+ CT5;'C=C7(2;' - 4B7")C (using (211))
< 0 (because (216) = ;' <4B7').
O (223)

Proof of Lemma 5: Since B is symmetric (by Condition 1)), it
can be represented as

B=QAz07, (224)
where

0=07=0""

is the orthogonal matrix that contains the orthonormal eigenvec-
tors of B, and

Ap = diag ()‘i(B))

is the diagonal matrix of eigenvalues of B.
Using (224) in (124),

Se = Q[As/2+ ((45/2) - 820) |

= QA 07", (225)
with
A, = diag (\()), (226)
where {\; ()}, the eigenvalues of T, are given by
2
A(e) = )"'(ZB) + ()\i(zB)) -2, (227)
Defining
Ain() = lg’!iS“M A(e), (228)

we get

12t = —=

)‘min(m) '

Substituting (227) into (228), applying (170), and then substitut-
ing into (229), we get

(229)

1

PRI - (230)

Mmin( B)

2 \/()\mT(B))Z B

Substituting (168) into (230), and using (114), (129) follows
after some algebraic manipulation. Using (129) in place of (196),
when substituting into (190) in the proof for Theorem 4, we
obtain (130). 0
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