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TS-LDPC Codes: Turbo-Structured Codes
With Large Girth

Jin Lu, Member, IEEE, and José M. F. Moura, Fellow, IEEE

Abstract—We consider turbo-structured low-density parity-
check (TS-LDPC) codes—structured regular codes whose Tanner
graph is composed of two trees connected by an interleaver.
TS-LDPC codes with good girth properties are easy to construct:
careful design of the interleaver component prevents short cycles
of any desired length in its Tanner graph. We present algorithms
to construct TS-LDPC codes with arbitrary column weight j � 2

and row weight k and arbitrary girth g. We develop a linear
complexity encoding algorithm for a type of TS-LDPC codes—en-
coding friendly TS-LDPC (EFTS-LDPC) codes. Simulation results
demonstrate that the bit-error rate (BER) performance at low
signal-to-noise ratio (SNR) is competitive with the error perfor-
mance of random LDPC codes of the same size, with better error
floor properties at high SNR.

Index Terms—Error floor, girth, interleaver, low-density parity-
check (LDPC) codes, turbo-structured.

I. INTRODUCTION

LOW-density parity-check (LDPC) codes, [1], are being
considered in numerous applications including digital

communication systems and magnetic recording channels.
Their bit-error rate (BER) performance using iterative decoding
is close to the Shannon limit, [2].

There are several ways to specify LDPC codes. In this paper,
we use indistinctly the code parity-check matrix and its asso-
ciated bipartite Tanner graph, [3]. We adopt the common nota-
tion of referring to a code with block length and column and
row weights and , respectively, as an -LDPC code.
The rate of the code is (approximately) given by . An
important parameter affecting the performance of the code is the
length of the shortest cycle in its Tanner graph. This parameter
is the girth of the code. The relation of girth to performance
is not completely understood. Codes with four-cycles and pro-
jective geometry codes, which may have limited girth, can per-
form well, [4]. However, in general, in codes with small , i.e.,
with short cycles in the Tanner graph, the decoding algorithm
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takes longer to converge or may fail to converge to the optimal
decoding result. On the other hand, for codes with very large
girth , the first decoding iterations correspond to op-
timal decoding iterations. For moderate to high signal-to-noise
ratio (SNR), it is with very high probability that the decoding
success is reached within the “optimal” iterations when

is large. Therefore, we can actually achieve optimal decoding
results in the sense that the probability of symbol error is mini-
mized. Furthermore, [3] shows that a lower bound on the min-
imum distance of LDPC codes increases exponentially
with the girth . Therefore, it is desirable to have LDPC codes
with good girth properties.

An important consideration for the practical application of
LDPC codes is the regularity and structure of their encoding and
decoding implementation. Recently, structured regular LDPC
codes have drawn much attention in the sense that they facilitate
low-complexity encoder and decoder designs. We briefly review
several typical designs of structured regular LDPC codes in this
paper.

We discuss here very briefly recent literature on designs
of LDPC codes. A more extensive review of LDPC codes is
in [5], [6]. Kou, Lin, and Fossorier [7], [8] developed LDPC
codes based on finite geometries and incidence structures. Fi-
nite-geometry LDPC codes can be designed over a wide variety
of block lengths and code rates and achieve good minimum
distances. Finite-geometry LDPC codes have girth . Another
method to construct structured -cycle-free regular LDPC
codes is based on balanced incomplete block designs (BIBD)
[9]–[13]. A BIBD is defined as a collection of equal size
blocks, comprising elements drawn from a set , such that each
pair of distinct elements of occurs in exactly blocks
of . BIBD-based codes are well structured, free of -cycles,
i.e., with girth , but exhibit a large number of -cycles in
their Tanner graphs. Finite-geometry codes and BIBD codes are
examples of cyclic and quasi-cyclic [14], [15] codes. For these
codes with column weight the girth is less than or equal
to , see Fossorier, [16], and our own paper [17]. This pre-
vents the girth of -cyclic and quasi-cyclic LDPC codes
of growing according to the prediction
derived by [1] for random LDPC codes; hence, such codes with
very long code block lengths perform poorly.

Hu, Eleftheriou, and Arnold propose in [18] a nonalgebraic
method named progressive edge-growth (PEG). They present
examples of codes of girth by progressively establishing
edges between bit and check nodes in an edge-by-edge manner.
PEG optimizes the placement of a new edge on the Tanner graph
with the goal of maximizing the local girth. Reference [16] con-
structed LDPC codes from circulant permutation matrices. It

0018-9448/$25.00 © 2007 IEEE



LU AND MOURA: TS-LDPC CODES: TURBO-STRUCTURED CODES WITH LARGE GIRTH 1081

Fig. 1. Left: The encoder structure for the concatenated LDPC codes in [22].
Right: The parity-check matrix HHH for the concatenated LDPC codes in [21],
[22].

presents conditions for such codes to achieve girth up to .
References [19], [20] also provide good constructions for struc-
tured LDPC codes with large girth.

This paper considers a class of structured regular LDPC
codes, the turbo-structured LDPC (TS-LDPC) codes, that
can be designed with arbitrary large girth by appropriately
choosing the code block length . We describe an algorithm
to construct TS-LDPC codes with any desired column and
row weights and , hence, with any desired practical
rate . TS-LDPC codes are hardware friendly: they are regular
and structured, and their parity-check matrix , which can be
very large, is determined from a much smaller object, the shift
matrix , so that their memory requirements can be negligible.
We show by simulation that the BER performance of TS-LDPC
codes is competitive with that of random LDPC codes, with
better error floor properties. Finally, we exploit the specific
structure of the Tanner graph of a particular type of TS-LDPC
codes—encoding-friendly TS-LDPC (EFTS-LDPC) codes to
derive an encoding algorithm with linear complexity.

The Tanner graph of TS-LDPC codes is composed of two
trees, an upper tree and a lower tree , that are connected
in a turbo-like manner by an interleaver . This turbo structure
is exploited to facilitate the systematic design of LDPC codes
with large girth and flexible code rates . Turbo structures have
been used in [21], [22] to construct LDPC codes. The codes pro-
posed by these authors combine two LDPC codes as component
codes on the encoder side. Reference [21] directly borrows the
structure of the turbo encoder, replacing the recursive convolu-
tional codes commonly used in turbo codes with a tree code—a
specific LDPC code whose associated graph for the code-gen-
erating matrix , not for the parity-check matrix , is a tree.
In [22], the encoder is a parallel concatenation of two LDPC
codes without an interleaver, as shown on the left of Fig. 1. Our
TS-LDPC codes stand in sharp contrast with the codes in [21],
[22]: they are turbo-like from the decoder point of view, see
Fig. 2, i.e., from the parity-check matrix and its associated
Tanner graph; their Tanner graphs are NOT the concatenation
of two trees through an interleaver as our decoders are. Fig. 1
on the right shows the parity-check matrices for the codes in
[21], [22] and Fig. 3 for a TS-LDPC code. The structure of these
matrices bear no resemblance. The top and lower tree structures
of the TS-LDPC codes give rise to the top and bottom diagonal
lines in , while the cloud of points in arises from the in-
terleaver. In contradistinction to this structure, the matrix for

Fig. 2. The decoder Tanner graph of a TS-LDPC code: h = 4, j = 3, and
k = 4.

Fig. 3. Parity-check matrix HHH of a (6666; 3; 6) TS-LDPC code with girth 10.

the code in [22] has rectangular blocks, the two right ones cor-
responding to the parity bits of each encoder component.

We comment briefly on the relation between TS-LDPC codes
and generalized quasi-cyclic LDPC (GQC-LDPC) codes, a
class of LDPC code designs that we described recently in [17],
[23]–[25]. In the terminology of TS-LDPC codes, GQC-LDPC
codes are simply reduced to an interleaver, no upper or lower
trees are present like in TS-LDPC codes. At first sight, it seems
that the TS-LDPC codes generalize GQC-LDPC codes. On
the one hand, they are distinct from GQC-LDPC codes since
they add to the interleaver the upper and lower trees in their
code Tanner graph; on the other hand, they seem to borrow in
some generic sense ideas from the design of GQC-LDPC codes
including“grouping and shifting” to avoid cycles within the
interleaver. In this restricted sense, Algorithm 1 for TS-LDPC
codes extends Algorithm 1 for GQC-LDPC codes, see [24].
However, the addition of the upper and lower trees in the
TS-LDPC codes adds additional constraints and degrees of
freedom to the design process not present for the GQC-LDPC
codes. The design constraints on the interleaver being different,
the details of the construction and the theorems underlying the
construction of TS-LDPC codes are quite different from the
corresponding results for GQC-LDPC codes.

Both codes can be designed with flexible girth and code rates
but their designs are very different and they represent distinct
tradeoffs: usually, for codes of similar girth, GQC-LDPC codes
have smaller block length , or, in alternative, for codes with
similar block length , GQC-LDPC codes can be designed
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with larger girth; for similar girth, TS-LDPC codes have
shorter diameter, which may lead to faster convergence; and,
for TS-LDPC codes, we can design faster decoding, [26], and
faster (linear) encoding algorithms, see Section V.

II. TS-LDPC CODES

As shown in Fig. 2, the Tanner graph of TS-LDPC codes is
composed of three components: two height-balanced trees, de-
noted as an upper-tree and a lower-tree , and an inter-
leaver that connects and . The leaf nodes of are bit
nodes (circles), whereas the leaf nodes of are check nodes
(squares). The number of layers or tiers in the trees and is
kept the same and given by . We require to be an even number
because we start the upper tree from a check node and require its
leaf nodes to be bit nodes, and, similarly, we start the lower tree
from a bit node and require its leaf nodes to be check nodes. The
two trees are “coupled” in a turbo-like manner such that many
edges join the leaf nodes of and together, see Fig. 2. The
structure formed by the edges connecting the leaf nodes of
and the leaf nodes of is named the interleaver .

The first tier of contains only one check node . To
match , we let the root of be a bit node and connect
to . For the TS-LDPC code in Fig. 2, the height of the tree is

, and the column and row weights are, respectively,
and . The rate of the code is
where denotes the parity-check matrix and is the code block
length. This rate can be arbitrarily adjustable as long as we can
design TS-LDPC codes with appropriate values for and . We
will present an algorithm to achieve just that.

III. INTERLEAVER DESIGN

This section considers the design of TS-LDPC codes, in par-
ticular the design of the interleaver . The interleaver is de-
signed by specifying the rules of how to connect the leaf bit
nodes in the upper tree to the leaf check nodes in the lower
tree . Interleaver designs for turbo codes have been exten-
sively studied [27]–[30]. For example, an -random interleaver
[27] guarantees that any two positions within distance are
mapped to two positions with distance greater than after in-
terleaving. The functions of the interleavers for turbo codes are
to avoid low-weight codewords and to decrease the correlation
between the extrinsic information and the input data sequence.
They are not designed to construct Tanner graphs with large
girth. Hence, we can not directly borrow the existing interleaver
designs for turbo codes, say, the -random interleaver, for de-
signing TS-LDPC codes. We need to develop new interleavers
that suit the structure of TS-LDPC codes and lead to TS-LDPC
codes with large girth.

Section III-A introduces -alternate-decimal indexing that
is used in labeling the nodes in the Tanner graph and in deter-
mining how to connect the leaf nodes in and . We design
these rules to prevent cycles of length smaller than the desired
girth . We achieve this by categorizing the cycles in two types:
type I and type II cycles. Section III-B specifies the connecting
rules to avoid type I cycles. Type II cycles are considered in
Section III-C—they are prevented by “grouping and shifting:”
we group the leaf nodes and connect leaf nodes in distinct trees

Fig. 4. Auxiliary nodes of T .

Fig. 5. Left: A type I cycle. Right: A type II cycle.

whose labels are appropriately shifted. Section III-D discusses
the number of groups needed. Based on the discussions in Sec-
tions III-A-D, Section III-E shows the detailed algorithm to con-
struct TS-LDPC codes. Finally, Section III-F discusses the ad-
vantages provided by the structure of TS-LDPC codes in terms
of the memory required to store them.

A. Auxiliary Nodes and -Alternate-Decimal Indexing

Because of the regularity of the code, by construction, each
leaf node in is to be connected to leaf nodes in

. This is a one-to- mapping, while the standard interleaver
is a one-to-one mapping between elements of two sets with the
same size. To get a standard interleaver, we introduce “auxiliary
nodes” (solid triangles) as shown in Fig. 4 to facilitate the code
design. For each leaf node in , we add auxiliary nodes as
its children. Similarly, each leaf node in has auxiliary
nodes as its descendants.

Due to the tree structure of the upper and lower components
of the codes, cycles present in TS-LDPC codes must contain at
least four “auxiliary nodes”—two auxiliary nodes of and two
auxiliary nodes of . We use this observation to classify cycles
into two disjoint categories: Type I cycles contain four and only
four auxiliary nodes; type II cycles are all the other cycles in the
code and contain six or more auxiliary nodes. We will dispose
of each of these two types of cycles separately. Fig. 5 shows on
the left a type I cycle and on the right a type II cycle.

For with tiers, there are auxil-
iary nodes of . We address the interleaver design problem
algebraically by indexing all the auxiliary nodes of and .
We start by numbering the auxiliary nodes in from to

in the following format—the -al-
ternate-decimal format, where and . We
need digits in the -alternate-decimal indexing to label all
the auxiliary nodes in . These digits are numbered from
to , starting from the rightmost one. The odd-numbered digits
take values to and the even-numbered digits take values
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to . We refer to the position of each digit as its coordi-
nate. Similarly, we index all the auxiliary nodes of from to

and represent also all these indices in
-alternate-decimal format.

To be concrete, we provide an example. The index of
the auxiliary node in in Fig. 4, in -alternate-decimal
form, is

(1)

In (1), , , represents the th digit. The coordinate
of is . The corresponding value of in decimals is

From here on, when we refer to “indices” of nodes we mean
their -alternate-decimal or -alternate-decimal
representations.

Before establishing the connection rules, we first prove the
following auxiliary lemma.

Lemma 1:
(a) Let the distance between two auxiliary nodes and

within be . and are indices for
and , respectively. If is the leftmost coordinate where
the digits of and differ from each other, then

.
(b) Denote the distance between two auxiliary nodes and

within as . and are indices for
and . If is the leftmost coordinate where the digits of

and differ from each other, then .
Proof: We first prove part (a) of the lemma. From the defi-

nition of the -alternate-decimal indexing, the first common
ancestor of the auxiliary nodes and is in the th
tier of where is the leftmost coordinate where the digits of

and differ from each other and denotes the number of
tiers in . For example, with reference to the index in Fig. 4,
let and be the indices of two auxiliary
nodes and of . Since the leftmost coordinate where the
digits of and differ from each other is the fourth, then
the first common ancestor of the auxiliary nodes and is
the root of , located in the first tier of .

To find the shortest path in that connects and , we have
to go up tiers from to reach its first common ancestor and
then go downwards tiers from to . Therefore, the distance
through the tree between and is . Sim-
ilarly, we can prove part (b) of the lemma. This completes the
proof.

We now consider the connection rule to avoid type I cycles.

B. Avoiding Short Type I Cycles—Digit-Wise Reversal

We start from a simple interleaver design—digit-wise re-
versal, [31]. For an index in -alternate-decimal form
with digits, its digit-wise reversal interchanges the th digit
and the th digit for . We represent

Fig. 6. Left: Type I cycle with four auxiliary nodesA ,A ,A , andA . Right:
A path of length 3 that contains two auxiliary nodes is actually a path of length1.

the digit-wise reversal operator by . For the index
in (1), its digit-wise reversal is

(2)

We state the advantage of the digit-wise reversal interleaver in
the following theorem.

Theorem 1: Connecting the auxiliary nodes indexed by
in to the auxiliary nodes indexed by in guar-
antees that any resulting type I cycle is at least of length ,
where denotes the number of tiers in .

Proof: From its definition, a type I cycle contains four aux-
iliary nodes , , , and as shown on the left in Fig. 6.
Their associated indices are , , , and , respectively.
Denote the distance between and within the tree
as , and the distance of and within as

. According to the left plot in Fig. 6, the length of a
type I cycle is:

(3)

However, as auxiliary nodes , , , and are imaginary
nodes, the type I cycle does not contain them as vertices. For
example, the path of length 3 with two auxiliary nodes and

shown on the right in Fig. 6 is actually a path of length in
the Tanner graph. Therefore, the actual cycle length is ,
i.e.,

(4)

We relate the distance to the value of their indices.
By Lemma 1, , where is the leftmost coordi-
nate where the digits of and differ from each other. Let
represent the height of . After digit-wise reversal, the digits
of and at the coordinate become the digits of
and at the coordinate , respectively. So, the
digits of and at the coordinate are dif-
ferent. According to the connecting rule stated in the theorem,

and , so the digits of and at
the coordinate are different. Therefore, by Lemma 1
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By (4), the length of such a type I cycle is then

From the above analysis, all type I cycles that result from fol-
lowing the connection rule in Theorem 1 are at least of length

. This completes the proof.

Theorem 1 states that to increase the length of type I cycles
we need simply to increase the number of tiers in the upper
and lower trees.

C. Avoiding Type II Cycles—Grouping and Shifting

The connection rule in Theorem 1 prevents short type I cy-
cles. We now consider the connection rule to avoid short type
II cycles. To exclude short type II cycles, we propose grouping
and shifting.

Shifting We define the shift to be a constant in -al-
ternate-decimal format that is added to the original index

to form a new index. We illustrate it with an ex-
ample. Let , the shift ,
and represent by the digit-wise addition (with no carry). Then

(5)

In (5), , where
if is even and if is odd. In a similar fashion, we
represent the digit-wise subtraction by .

Grouping We divide the auxiliary nodes of into groups of
the same size according to their indices. Those auxiliary nodes
whose indices have the same leftmost digits are placed in the
same group. The auxiliary nodes of can, likewise, be clas-
sified into groups based also on whether their indices have the
same leftmost digits. We will derive in Section III-D, in partic-
ular, Lemma 3, the number of groups that we need for each tree
to achieve a given girth , i.e., what is the relationship between

and .
After clustering the auxiliary nodes into groups, we further let

the shift to be the same when we connect the auxiliary nodes
of in the same group to the auxiliary nodes of in the same
group. Denote by the shift introduced when we connect the
auxiliary nodes of in the th group to the auxiliary nodes of

in the th group. For different and , the shifts may
be the same or different from each other. The mapping rule for
the interleaver is now the following.

Connection rule to avoid type II cycles Connect the auxil-
iary node indexed by in the th group in to the auxil-
iary node indexed by in the th group in .

We will show that in fact this rule prevents short type II cycles.
But, first, we need to make sure that using this rule does not
introduce short type I cycles. This is settled in the next theorem
that shows that type I cycles do not depend on the shift .

Theorem 2: Connecting the auxiliary node indexed by
in the th group in to the auxiliary node indexed by

in the th group in guarantees that any

type I cycle formed is at least of length , where denotes the
number of tiers in .

The proof of Theorem 2 is similar to that of Theorem 1 and
is omitted here.

By Theorem 2, we are free to choose any shift in the
rule because the length of any type
I cycle is guaranteed to be greater than or equal to . The
freedom to choose the values of is exploited to avoid
short type II cycles. This is the subject of Theorem 3 and
Section III-C2.

We observe that each type II cycle with edges in the inter-
leaver is associated with shifts

We say that the type II cycle is characterized by the shift se-
quence . The index labels
of the shift sequence characterizing a type II cycle satisfy the
following two conditions:

(i) , and ,
;

(ii) , and and
, and .

For example, the two type II cycles of length six on the bottom
left and bottom right of Fig. 7 contain four edges in the inter-
leaver. They are characterized by the same shift sequence

The type II cycle shown on the top of Fig. 7 contains six edges
in the interleaver; it is characterized by the shift sequence

Given a shift sequence that
satisfies conditions (i) and (ii) above, we define further its accu-
mulated alternate sum to be

(6)

The following theorem helps to eliminate type II cycles with
edges in the interleaver.

Theorem 3: Let be a
shift sequence that contains shifts.

is the accumulated alternate sum of and has digits
in its -alternate-decimal expansion. If con-
tains at most consecutive digits “ ” in its

-alternate-decimal expansion, then any type II



LU AND MOURA: TS-LDPC CODES: TURBO-STRUCTURED CODES WITH LARGE GIRTH 1085

Fig. 7. Three different type II cycles of length 6.

Fig. 8. Type II cycle with 2k edges in the interleaver.

cycle characterized by has length NO less than
.

Proof: We prove Theorem 3 by proving an equivalent
proposition: If there exists a type II cycle with edges in
the interleaver and its length is less than , then the
associated MUST contain more
than consecutive digits “ .” Fig. 8 shows a type II
cycle with edges in the interleaver. Let this type II cycle
contain edges in and edges in .

By assumption, the length of this type II cycle is less than
. Since the length of the type II cycle is ,

then

(7)

Since there are edges in the interleaver, the cycle contains
auxiliary nodes, auxiliary nodes in ,

and auxiliary nodes in . With reference
to the plot in Fig. 8, and assuming that the index for the aux-
iliary node is , according to the connecting rule pre-
sented in Theorem 2, the index for the auxiliary node is

. Let denote the difference be-
tween and , i.e., . The index for

the auxiliary node is . Again,
let . The index for the auxiliary node is

.
Continuing to trace the cycle and finding the relationships

between the indices of the auxiliary nodes, when we reach the
auxiliary node , we find that .
The relationship between and is .
Iterating in the definition of , we have

(8)

Since the cycle has edges in , then the distance between
auxiliary nodes and , , through is
less than or equal to . By Lemma 1, we know that only the
rightmost digits of , , can be nonzero, the
other digits of have to be zero. Note that, for the digit-wise add

, there is no carry. Therefore, only the rightmost digits of
can be nonzero. Similarly, we derive that only the right-

most digits of can be nonzero. From the definition
of the digit-wise reversal , only the leftmost digits of

can be nonzero. According to (8), we derive that
only the leftmost digits and the rightmost digits of
can be nonzero. That means that the intermediate
digits of are zero. Since by (7) , then
contains more than consec-
utive zeros. Thus, if a cycle has edges in the interleaver and
its length is less than , then its associated contains
more than consecutive zeros in its -alternate-decimal
representation. This completes the proof.

D. Minimum Number of Groups in Each Tree

There is a tradeoff when deciding the number of groups to
choose in each tree. On the one hand, to get compact TS-LDPC
codes, we prefer a small number of groups in and . To
reduce the number of groups, the number of the common
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Fig. 9. Left: A type II cycle that can NOT be excluded by any choice of the shifts S and S . Right: A subsidiary figure with auxiliary nodes to prove
that the cycle shown on the left always exists.

Fig. 10. Left: A length 8 cycle that can NOT be excluded by any choice of the shifts S and S . Right: A length 12 cycle that can NOT be excluded by
any choice of the shifts S and S .

leftmost digits of the indices of the auxiliary nodes in the same
group should be as small as possible. On the other hand, a
smaller number of groups decreases the number of free param-
eters in the code design. We will see that a specific class of type
II cycles constrains how small the minimum number of groups
in each tree can be.

Lemma 2: The cycle shown on the left in Fig. 9 always exists
for any possible values of the related shifts and
when . ( , , , and are
indices of the bit nodes and , respectively.)

Proof: As shown on the right in Fig. 9, we add auxiliary
nodes , , , , , , , and to the cycle shown on the
left in Fig. 9. Let , , , , , , , and be
the indices of the auxiliary nodes , , , , , , , and ,
respectively. Suppose that the cycle shown on the left in Fig. 9
does not exist for certain values of the shifts and .
With reference to the plot on the right in Fig. 9, the two check
nodes and should be different. Similar to (8), we derive
that

(9)

where , , , and
. Equation (9) can be simplified as

(10)

Since and , , , are auxiliary nodes of
, , , , respectively, we derive that and

are different only in the rightmost digit. Moreover, since , ,
, are connected to the same check-node group as shown on

the right in Fig. 9, the rightmost digits of , , , are also the
same. Hence, by the above reasoning

(11)

By (11), we derive that

(12)

Combining (10) and (12), we derive that

(13)

Since and are connected to the same check node ,
and are different only in the rightmost digit by definition.
Therefore, all the digits of are zeros except for
the rightmost one. Since by (13),
should also have all zero digits except for the rightmost digit.
Hence, and are different only in the rightmost digit,
which implies that the two auxiliary nodes and are chil-
dren of the same check node. However, as shown on the right
in Fig. 9, is connected to and is connected to .
Hence, and are the same check node. This contradicts the
assumption that and are different. Therefore, the cycle
shown on the left in Fig. 9 always exists for any choices of the
shifts and when . This
completes the proof.
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Fig. 11. Left: A type II cycle that CAN be excluded by choosing appropriate shifts S , S , S , and S . Right: An auxiliary figure to show
that the cycle shown on the left CAN be excluded.

Fig. 10 shows two specific examples of the cycle described
in Lemma 2 . The left plot shows a length cycle that cannot
be excluded by choosing appropriate shifts and ; the
right plot shows a length cycle that cannot be excluded by
choosing appropriate shifts and .

To eliminate the cycle shown on the left in Fig. 9, we intro-
duce more subgroups to divide the two check nodes and
into two different groups, as shown on the left in Fig. 11. Sim-
ilar to the proof of Lemma 2 and with reference to the right plot
in Fig. 11, we derive that

(14)

Since by (12), (14) can be simplified as

(15)

As analyzed before, has only one nonzero digit—the right-
most one. However, this time, we have the freedom to choose
appropriate values of the shifts , , , and

to make their summation having nonzero digits other
than the rightmost one, e.g., the second to the rightmost digit.
Hence, by (15), can be made to have nonzero digits
other than the rightmost one, which means that the two check
nodes and can be different. It follows that the cycle
shown on the left in Fig. 11 can be avoided by carefully choosing
shifts , , , and . This shows that, to
achieve a desired girth , we should require that the number of
groups in which we divide the auxiliary nodes of and be
larger than a certain minimum, which is a function of the girth .

We now consider the question of determining the minimum
number of groups to achieve the girth and how this relates to
the parameter in Section III-C. Let and represent the
minimum number of groups needed for and , respectively.
Then we have the following lemma.

Lemma 3: To achieve a girth , the minimum number of
groups and are

(16)

(17)

Fig. 12. Divide check nodesA andB into subgroups to avoid a length 8 cycle.

Proof: Let us first look at an example. As analyzed be-
fore, the length cycle shown on the left in Fig. 10 cannot be
avoided when the two check nodes and are in the same
group. To avoid this length cycle, and must be in two dif-
ferent groups, as shown in Fig. 12. Since connects to the aux-
iliary node and connects to the auxiliary node in Fig. 12,

and must connect to check nodes in two different groups.
Further, since and can be any two auxiliary nodes whose in-
dices are different only in the two rightmost digits, we conclude
that any two auxiliary nodes whose two rightmost digits are dif-
ferent should be connected to different groups. Since there are

categories of such auxiliary nodes, we need
at least groups in . Similarly, to avoid the
length cycle shown on the right in Fig. 10, we need at least

groups in .
More generally, to avoid the cycle with length

as shown on the left in Fig. 9, we derive the following. When
is odd, at least groups in
are needed; when is even, at least
groups in are necessary.

The above relationship can be compactly written as

(18)

Now we study the number of groups needed for . To avoid
the cycle shown on the left in Fig. 13, we divide the two bit



1088 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 3, MARCH 2007

Fig. 13. Left: A type of cycle that can NNNOT be excluded by choices of shifts S and S Right: Divide bit nodes E and F into subgroups to avoid
cycles.

nodes and into different subgroups, as shown on the right
in Fig. 13. Symmetrically, we derive that

(19)

where is the girth to be achieved and is the minimum
number of groups needed for . This completes the proof.

On the other hand, if the indices of the auxiliary nodes in the
same group must have leftmost digits in common, and
are given by

(20)

(21)

So, to achieve girth , the parameter that determines the
number of groups has to satisfy

(22)

Equation (22) determines the minimum value of the parameter
to achieve a girth .

E. Construction of TS-LDPC Codes

We use Theorem 3 to reduce the construction of TS-LDPC
codes with desired girth to designing a matrix that collects
appropriate shifts . By choosing suitably these shifts
according to Theorem 3, we can avoid all short type I and type
II cycles up to the desired length . We present next an
algorithm that finds for TS-LDPC codes with girth

. The matrix is , which is much smaller than the
TS-LDPC code parity-check matrix . The algorithm is greedy;
we determine shifts , one at a time, its value being strongly
dependent on the previously determined shifts. Different initial
settings of will lead to different matrices . If the algorithm
fails to generate a matrix , it is restarted with different initial
settings. To construct a TS-LDPC code with column weight ,
row weight , and tier (number of tiers contained in the upper
tree ), the number of candidate matrices is

, which is exponential in the number of groups
and . Large girth may require increasing the number of
tiers in the upper and lower trees.

As an illustration, we applied Algorithm 1 to construct a
regular LDPC code, with rate and girth

. Its structure is given by the matrix
shown in Fig. 3.

We can clearly identify , , and the interleaver compo-
nent from the constructed matrix, as labeled in Fig. 3. In this
matrix, along the solid lines, there is a single in each row, while

along the dashed thicker diagonals there are five ’s in each row,
so that per row there are six ’s.

We have the following relation between the column weight
, the row weight , the girth , and the code block length of

TS-LDPC codes that we construct when the girth is small:

(23)

When the girth is large, we need to apply Algorithm 1 to find
the code block length required.

Algorithm 1 TS-LDPC codes with girth

Initialization Set matrix , the empty matrix.
Determine the elements of the matrix row by row.

. Set and
step a: and set its flag to .
for to do

for all closed paths of length in the current
entries of the shift matrix that pass the entry do

Check if contains
more than consecutive zeros

are the consecutive
corners of the closed path considered
if contains more than
consecutive zeros then

set the flag to be and stop the for loop;
else

keep the flag to .
end if

end for
end for
if the value of the flag is then

discard the current candidate for , go back to step a to
select another possible value for .

else
fill the entry of with the current value . Set
the values of and to the next element of that is
to be determined.
if all the elements of have already been properly
chosen then

go to step b
else

go back to step a
end if

end if
step b: End, output the shift matrix
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Fig. 14. Comparison of BER performance for a (4686; 2; 6) TS-LDPC code
with girth 16, rate 2=3, and a randomly constructed (4686;2; 6) LDPC code
(no 4-cycles).

F. Efficient Memory Utilization

In general, an -LDPC code is represented by an
parity-check matrix . Its efficient storage records only the
nonzero column indices in each row, hence, at least in-
dices needs to be stored. In contrast, for a TS-LDPC code we
need only to store its small shift generating matrix . For ex-
ample, for the matrix with girth shown
in Fig. 3, according to (16) and (17), , and
so the shift matrix is . Hence, instead of storing the

column indices required for generic LDPC
codes, TS-LDPC require only storing shifts, re-
ducing the memory by a factor of .

IV. PERFORMANCE EVALUATION

We compare by simulation the BER of the TS-LDPC codes
with the BER of randomly constructed LDPC codes that are
free of -cycles [32] in additive white Gauss noise (AWGN)
channels. The codes are decoded with the sum–product algo-
rithm [33]. We adopt the rate normalized SNR defined in [32]:
SNR , where denotes the code rate.

We first compare the performance of TS-LDPC codes and
random codes free of -cycles with column weight . We
consider TS-LDPC codes with girth . Fig. 14 compares
the BER performance for two LDPC codes
with rate : a random ( -cycle free) and a TS-LDPC
code of girth . In the high-SNR region, the TS-LDPC
code outperforms the random code: at BER this
gain is 1.2 dB. In the low-SNR region, the TS-LDPC code has
performance comparable to that of the random code. The slope
of the BER curve for the random LDPC code decreases with
the SNR in the high-SNR region, implying that for this code the
error floor occurs when the BER reaches , which is not the
case for the girth TS-LDPC code.

For LDPC codes with column weight , we can derive
that the minimum distance , where is the girth. For
the TS-LDPC code with girth , ; for the random
LDPC code that is free of -cycles, since the girth is only ,

. In the high-SNR region, is a dominant factor in
determining the code BER performance. Therefore, TS-LDPC
codes with girth outperform random codes when the SNR is
high. This is in agreement with our simulation studies.

We now study column weight codes. Fig. 15 shows the
BER performance for a column weight TS-LDPC code
with girth . For comparison, we also show the BER perfor-
mance of a randomly constructed LDPC code (no -cycles) with
column weight (dashed line). Both codes have the same
block length and the same code rate . Since there exist
many explicitly constructed LDPC codes with high girth, we
also incorporate a LDPC code constructed from
rectangular integer lattices [20] in our simulations. In particular,
the constructed LDPC code is based on the lattice construction
of - -configurations [20] and has girth .

Fig. 15 shows that the BER performance of the TS-LDPC
code outperforms that of the random LDPC code at BER

while at low SNR, both codes have identical error-cor-
recting performance. The BER performance of the TS-LDPC
code is also slightly better than that of the LDPC code con-
structed from rectangular integer lattices at high SNR.

The construction of TS-LDPC codes is based on interleaving
edges between the leaf nodes of upper and lower trees. Cycles
are avoided by controlling the interleaver. The variables in the
upper and lower trees are strongly connected only through leaf
nodes. During the decoding process, the computation of the like-
lihood for non-leaf nodes of the upper and lower trees depends
on the information from the leaf nodes of the trees. It is inter-
esting to check the error events of the iterative decoder to see if
specific error concentrations in the non-leaf nodes occur. This
is not supported by the experimental evidence shown in Fig. 16
that plots these BER for the TS-LDPC code con-
structed above. This figure shows that the BER for non-leaf
nodes is slightly better than that for leaf nodes. The figure also
shows that the BER for undetected codeword errors is much
lower than the BER for non-leaf and leaf nodes, as expected.

We study now TS-LDPC codes with girth . The plot in
Fig. 17 shows the BER performance for a column weight

TS-LDPC code with girth . For comparison, we show the
BER performance of a randomly constructed LDPC code (no

-cycles) with column weight (dashed line) as well. Both
codes have the same block length and the same code rate

. We also study by simulation three other structured regular
LDPC codes: finite-geometry LDPC code [7]; LU LDPC
code [19]; and GQC-LDPC code [17], [23]–[25]. The finite-
geometry LDPC code we use is an extended code constructed
from the TYPE-I 2-D EG-LDPC code. The code constructed
has code block length and code rate 0.5. LU LDPC
code constructed has code block length , girth , and code
rate . The GQC-LDPC code constructed has code block
length , girth , and code rate .

Fig. 17 shows that the BER performance of the TS-LDPC
code is 0.12 dB better than that of the random LDPC code at
BER , while at low SNR, both codes have similar
error-correcting performance. Using results from [3], we can
compute that the TS-LDPC code has minimum dis-
tance . Since this lower bound on derived in
[3] is not tight, the actual of the TS-LDPC
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Fig. 15. BER performance comparison between a (6084; 3; 12) TS-LDPC code with girth 8, rate 3=4, a randomly constructed (6084;3; 12) LDPC code (no
4-cycles), and a (6108;3; 12) LDPC code on rectangular integer lattices.

Fig. 16. BER performance of leaf nodes, non-leaf nodes, and undetected error events for a (6084;3; 12) TS-LDPC code.

code may be much larger than . Again, in the high-SNR re-
gion, is a dominant factor in determining the code BER
performance. This explains why the TS-LDPC code with girth

has good BER performance in the high-SNR region. We also
notice that at moderate-to-high SNR the TS-LDPC code out-
performs the GQC-LDPC code, which suggests that TS-LDPC
codes have better BER performances than GQC-LDPC codes
with the same code parameters. Further, the TS-LDPC code, fi-
nite-geometry LDPC code, and LU LDPC code have sim-
ilar BER performances. The finite-geometry LDPC code and the
LU LDPC code have good BER performances since they
have large minimum distance [7], [19].

Again, we compare the BER performance for non-leaf and
leaf nodes for the same TS-LDPC code just dis-
cussed. This is shown in Fig. 18 that also plots the undetected
error rate. These simulation results confirm the previous obser-

vation, shown in Fig. 16 for the TS-LDPC code,
that the BER performance of non-leaf nodes is either compa-
rable or slightly better than the BER performance of leaf nodes.

V. EFFICIENT ENCODING FOR TS-LDPC CODES

TS-LDPC codes, or a variant of TS-LDPC codes, can
be encoded with linear complexity. We first describe this
variant—encoding friendly TS-LDPC (EFTS-LDPC) codes,
then we show how EFTS-LDPC codes can be encoded in linear
complexity.

A. Encoding Friendly TS-LDPC (EFTS-LDPC) Codes

The Tanner graph of an EFTS-LDPC code still contains an
upper tree and a lower tree that are interconnected by
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Fig. 17. BER performance comparison between a (6666; 3; 6) TS-LDPC code with girth 10, rate 1=2, a randomly constructed (6666;3; 6) LDPC code (no
4-cycles), a (6666;3; 6) GQC-LDPC code with girth 10, rate 1=2, an extended type-I 2-D EG-LDPC code with code block length 8190 and code rate 0:5 (LDPC
code based on finite geometries), and LU(3;19) LDPC code with code block length 6859 and code rate 0:4514.

Fig. 18. BER performance of leaf-nodes, nonleaf-nodes, and undetected error events for a (6666,3,6) TS-LDPC code.

an interleaver . There are no restrictions on the upper tree
of the EFTS-LDPC code, which can be exactly the same as the

part of the standard TS-LDPC codes. The of the EFTS-
LDPC code is restricted so that the degree of its bit nodes is
two. In addition, the root of the is changed from a bit node
to a check node, as shown in Fig. 19. The Tanner graph for
an EFTS-LDPC code is shown in Fig. 19. EFTS-LDPC codes
are slightly irregular. These modifications enable EFTS-LDPC
codes to be encoded with linear complexity.

B. Linear-Complexity Encoding of EFTS-LDPC Codes

Since an LDPC code is equivalently represented by its Tanner
graph , we explain how to encode EFTS-LDPC codes using
their Tanner graph.

To achieve linear-complexity encoding, we need to first re-
move the root (a check node) of the lower tree from the
Tanner graph of the EFTS-LDPC codes. We will show in the Fig. 19. EFTS-LDPC codes: A variant of TS-LDPC codes (EFTS-LDPC

codes).
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Fig. 20. Tanner graph for an EFTS-LDPC code (The bit node degree of T is
even).

Fig. 21. An equivalent representation of the Tanner graph shown in Fig. 20.
(The root of T is removed.)

following lemma that removing the root of will not alter the
underlying code structure.

Lemma 4: The parity-check equation denoted by the root of
is redundant and can be removed from the parity-check ma-

trix without changing the underlying code structure.
Proof: We discuss two different cases: the bit node degree

of is even; the bit node degree of is odd.
1) The Bit Node Degree of Is Even: Since all the bit nodes

in have uniform degree two by definition, then the degree of
all the bit nodes is even, which means that each column of
contains an even number of ’s. Hence, the sum of all the rows
of in the binary field is a vector of ’s. Therefore, one row
of is linearly dependent on the remaining rows and can be
removed without affecting the code. We choose to remove the
row that corresponds to the root of . For example, Fig. 20
shows an EFTS-LDPC code. The bit node degree of its is
two, an even number. The root of its can be removed to
generate an equivalent Tanner graph, as shown in Fig. 21.

2) The Bit Node Degree of is Odd: By construction,
check nodes in connect to either leaf nodes of or bit
nodes of . Since each leaf node of is connected to
check nodes in and is an odd number, then each leaf node
of is connected to an even number of check nodes in .
Further, every bit node in is connected to exactly two check
nodes in by construction. Hence, every bit node is connected
to an even number of check nodes in . If we sum up those
parity-check equations denoted by the check nodes in , the

Fig. 22. Tanner graph for an EFTS-LDPC code. (The bit node degree of T is
odd.)

summation in the binary field is a vector of ’s. Therefore, we
can remove one of those parity-check equations in without
changing the underlying code structure. We again choose to re-
move the parity-check equation denoted by the root of . For
example, Fig. 22 shows an EFTS-LDPC code. The bit node de-
gree of is , an odd number. The root of can be removed
from its Tanner graph without changing the code, as shown in
Fig. 23. This completes the proof.

After removing the root of , we use Algorithm 2 to encode
an EFTS-LDPC code.

Algorithm 2 Encoding algorithms for EFTS-LDPC codes (
contains tiers)

Initialization
Encode , get the values of all the bit nodes in ,
including the leaf nodes;
Compute values of the bit nodes in tier of
based on the values of the leaf-nodes of ;
for to step–2 do

Compute values of the bit nodes in tier of based on the
values of bit nodes in tier of ;

end for
Output the encoding result.

Next, we show that the encoding complexity of Algorithm 2 is
linear in the block length . We first study the encoding process
for the upper tree . The upper tree can be easily encoded
in linear time, as shown in the following lemma.

Lemma 5: The upper tree can be encoded in linear com-
plexity.

The proof is straightforward. We omit it here. We look at an
example. Fig. 24 shows an upper tree . We encode as
follows:

a. Acquire the values of the information bits , , , ,
, , , , , , , , , and .

b. Compute the parity bit from the parity-check equation
.
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Fig. 23. An equivalent representation of the Tanner graph shown in Fig. 22.
(The root of T is removed.)

Fig. 24. Upper tree T of an EFTS-LDPC code.

c. Compute the parity bits , , , , , and
from the parity-check equations to :

; ; ;
; ;

.

The complexity of the above encoding process is only
XOR operations.

After encoding , we notice that all the bit nodes in
represent parity bits. Let represent the number of tiers in .
Since the degree of every bit node in is two, the value of

depends only on the values of the bit nodes in the lower tier.
Particularly, the values of the bit nodes in tier of are
based only on the values of the leaf nodes of . Hence, we can
compute the values of the bits in tier by tier, starting from
the bottom tier. Each time we succeed in obtaining the values
of all the bits in a given tier, say, the th tier, we can then
compute the values of all the bits in the th tier. This
encoding process keeps going on until the values of all the bits
in the second tier are known (the first tier has been removed by
Lemma 4). In this way, we encode all the bits in .

We, again, look at an example. Fig. 23 shows the Tanner graph
for an EFTS-LDPC code. Following Algorithm 2, we encode it
as follows.

a. Encode the upper tree as shown earlier.
b. Compute the parity bits to from the parity-check

equations to , respectively.
c. Compute the parity bits , , , and :

; ;
; .

We evaluate the computational complexity of Algorithm 2.
Let , , denote the number of bits contained
in the th parity-check equation. Each of the parity-check

equations is used to obtain the value of a parity bit. When em-
ploying the th parity-check equation to determine the value of a
parity bit, XOR operations are needed. So,
XOR operations are required to obtain all the parity bits. Let

denote the average number of bits in the
parity-check equations, then the encoding complexity can be
expressed as . For LDPC codes with uniform row
weight , the encoding complexity is . From the
above analysis, the encoding process proposed can be accom-
plished in linear time.

VI. CONCLUSION

This paper proposes a class of well-structured regular LDPC
codes—the turbo-structured (TS-LDPC) codes. We showed
through a series of theorems that we can design TS-LDPC
codes with arbitrary desired column and row weights and ,
hence, with any practical rate and arbitrary girth . TS-LDPC
codes can be designed by specifying a shift matrix , a much
smaller object than the parity-check matrix , hence, re-
quiring much less memory to store them. TS-LDPC codes with
girth have good BER performance, with lower error
floor at high SNR than equivalent size and rate -cycle-free
random codes. We further showed that a variant of TS-LDPC
codes—EFTS-LDPC codes—can be encoded efficiently in
linear complexity. These characteristics of flexible code rates,
arbitrary large girth, good error floor performance, efficient
storage, and efficient encoding make TS-LDPC codes attractive
for applications such as digital communication systems and
data storage systems.
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