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Noncausal Gauss Markov Random Fields:
Parameter Structure and Estimation

Nikhi! Balram and José M. F. Moura, Senior Member, IEEE

Abstract—The parameter structure of noncausal homogeneous
Gauss Markov random fields (GMRF) defined on finite lattices
is studied. For first-order (nearest neighbor) and a special class
of second-order fields, we provide a complete characterization
of the parameter space and a fast implementation of the max-
imum likelihood (ML) estimator of the field parameters. For
general higher order fields, tight bounds for the parameter space
are presented and an efficient procedure for ML estimation is
described. Experimental results illustrate the application of the
approach presented and the viability of the present method in
fitting noncausal models to 2-D data.

Index Tem—Mdom fields, noncausal, Gauss Markov ran-
dom fields, maximum likelihood parameter estimation, parameter
space in random fields.

I. INTRODUCTION

ONCAUSAL Markov Random Fields (MRF) are an im-

portant paradigm in multidimensional signal processing.
In this paper, we study the parameter structure of noncausal
Gauss MRF’s (GMRF) defined on finite lattices. GMRF’s on
lattices may result from sampling spatially dependent phe-
nomena described for example by an elliptic equation or may
correspond to a snapshot in a marching problem as with the
discretization of a parabolic partial differential equation (PDE).
Examples of applications include modeling circulation and
transport phenomena in Physical Oceanography, e.g., steady
state problems like Munk’s model or Stommel’s problem [31,
ch. 3]. Another area where GMRF’s have found widespread
use is in image processing.

Multidimensional signal processing, and in particular two
dimensional (2-D) processing where the two indexing vari-
ables are spatial coordinates, raises interesting challenges that
go beyond the “curse” of higher dimensions. The difficulties
we will deal with in this paper stem from the absence of
causality or unilateral structure for 2-D fields. For 1-D signal
processing, where time is the variable of interest, causality is
natural, leading to expedient processing algorithms that are
recursive like in the Kalman—Bucy filtering theory. In order to
handle higher dimensions and to extend 1-D recursive filters
to 2-D, many researchers have compromised the noncausality
of the field by assuming various causality constraints, e.g.,
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the Markov Mesh models [1] or the nonsymmetric half plane
fields [38].

Working directly with general noncausal MRF’s has found
renewed interest since the work of [13], [16], [26]. These and
other authors have addressed enhancement and segmentation
issues in the context of image processing. The optimal pro-
cessing algorithms are iterative, based upon the Metropolis
algorithm [27] and simulated annealing [22]. These procedures
are computationally very expensive. More recent work has
developed suboptimal or practical alternatives to simulated
annealing, see, for example, [10], [11]. In earlier work, by
assuming periodic boundary conditions for the finite lattice,
researchers have derived optimal fast transform filtering al-
gorithms that exploit the circulant structure of toroidal field
matrices, see, for example, [9].

In [29], [30], we have developed a recursive framework for
noncausal finite lattice GMRF’s with nonperiodic boundary
conditions, which enables the use of fast optimal recursive
techniques like Kalman—Bucy filtering without compromising
the noncausality of the field model. This framework is based
on the existence of an equivalent spatially varying one-
sided representation for every noncausal finite lattice GMRF. .
A more complete understanding of this framework, and its
application to 2-D signal processing, requires further the study
of the parameter structure of these fields and the problem of
parameter estimation. ’

Parameter estimation with noncausal MRF’s is very much
an open problem. An associated problem that also remains
open is the specification of the parameter space. Again, the
case of toroidal (periodic) fields has been well studied, see,
for example, [7], [20], [23], [24], for necessary and sufficient
conditions on the parameter space, and, e.g., [7] for optimal pa-
rameter estimation. Alternatively, in the case of fields defined
on infinite lattices, parameter space descriptions are available,
see, for example, [23], [24], while paramheter estimation is
treated, for example, in {35] and the references therein.’ In
contrast, for nonperiodic finite lattices, barring special cases,
notably that of isotropic (single parameter) first-order fields
with the so-called free boundary conditions [4], [32], in
general, the parameter space specification is limited to a loose
sufficient condition, while optimal parameter estimation 'is
hampered by the high cost associated with the computation
of the partition function. See [8] for an overview of parameter
estimation procedures for finite and infinite lattice GMRF’s.

In this paper, we consider parameter estimation for homo-
geneous noncausal finite lattice GMRF’s of arbitrary order
with nonperiodic boundary conditions (b.c.). For first-order
fields with various b.c. and a certain class of second-order
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fields, we derive exactly the parameter space of noncausal
GMRF’s. We design for these fields a simple and fast im-
plementation for the maximum likelihood (ML) estimator of
the field parameters. The basic difficulty with ML estimators
lies in the computation of the partition function (normalizing
constant of the associated probability function). Because we
establish explicitly the eigenstructure of the inverse of the
field covariance matrix, we have a closed analytical expression
for the partition function. For general higher order noncausal
fields, we provide tight upper bounds on the parameter space
and develop an efficient algorithm for ML estimation. The
algorithm uses the recursive framework for noncausal GMRF’s
[30] to overcome the problems that have made ML estimation
for noncausal fields computationally intractable.

This paper derives for nonperiodic fields the parameter
space specification and optimal parameter estimation proce-
dures that complement the work done by other authors for
periodic fields, e.g., [7], [8], [20], [24]. It is interesting to note
that while for periodic fields the work of these authors has
led to algorithms which are usually of the transform type, our
approach utilizes Kalman-Bucy recursive algorithms.

As a final comment, we would like to say that there is a
strong connection between the structure of the matrices we
deal with and the theory of Perron—Frobenius for nonnegatlve
matrices, e.g., [37]

The organization of the paper is as follows. In Sectlon II,
we present the main terminology and notation that we use. In
Section III, we discuss briefly the framework underlying our
work which focuses on the inverse of the covariance matrix,
rather than the field covariance itself. In Section IV, we study
the eigenstructure of the inverse covariance matrix. In Section
V, the results from the previous section are applied to derive
necessary and sufficient conditions for the parameter spaces
of first-order fields and a special class of second-order fields,
and to study sufficient conditions for higher order fields. In
Section VI, we present the ML estimation procedure for fields
of arbitrary order. A simpler ML procedure for first-order and
a special class of second-order fields is presented in Section
VII. Section VIII explains modifications that enable these
procedures to perform well on noisy data, while in Section
IX, experimental verification is provided. Finally, Section X
concludes the paper. To facilitate the discussion all proofs are
relegated to the Appendix.

II. TERMINOLOGY AND NOTATION

A finite N x M lattice, L, is defined as a set of sites, (%, j)
such that L = {(i,j) : 1 < i < N,1 < j < M}.We
define the neighborhood order using an Euclidean distance
based measure, as done, for example, in [13], [16].

Definition 1: A pth-order neighborhood is defined on an
N x M lattice, L, as the set of neighbors of site (2, 5)

Soi = {(k1): 0< (i -k + (G -D*<Dp}, (1)

where D, is an increasing functlon of p that represents the
square of the Euclidean distance between a site and its furthest
neighbor.
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Usually, e.g., [13], [16], D, takes on values 1, 2, 4, 5, &,
Qandsoon,forp_123456 SeeFlgl(a)
in Section IV for a hierarchical sequence of neighborhoods
produced by this definition. Note that a neighborhood set of
order p includes all the neighbors of sets of order 1 to p — 1.

The symbol ® represents the Kronecker product, also known
sometimes as the direct product or the tensor product, see, for
example, [14]. The Kronecker product A® B of two matrices,
Anxn and Barxas, is defined as the NM x NM matrix
formed by placing at each location (¢, 7) in A, a copy of B
scaled by the (%, j)th element of A.

We introduce below matrices that are relevant in the sequel.
The vector €; is the ith unit vector. Let

[0 0 . . .7
100 .
Kiy=1(0 100 ,
. 0 1 0l
01 0 . .
1010
Hy = . :
0101
L 0 1 0l
ie, Ky = [é&2---éum,0), Hyy = K} + (K3)T. More
generally,
12 . ... M
00 10 . 1
. 00 10 2
(K" = : @
0 1|M-j
o0 .. . .0l M
[E+1--+&m,0---0)T, 3
and
1 2 ._"+1 M
0 0 . 10 g1
oo . 010 2
j 10 010 i+l
-
Hu =10 1 L1 . @
1 . 1| M-j
L. . .. .1 . .00l M
; i \T ‘
=K+ (K3y) » ®)

where the rows and columns of these, matrices are indicated
along the top and side, respectively. The jth upper diagonal
of (K3,)T and the jth lower and upper diagonals of Hj, are
composed of 1’s, while all others are zero.

We define Iy as the N dimensional identity matrix, 0 as
a matrix of zeros whose dimensions are determined by the
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context, and the following set of four NM x NM symmetric
matrices, which we call interaction matrices, that will be

used in the sequel to represent the structure of higher order
fields:

1) Ip:
H, 0 .
) 0 Hj 0
IIJ'I = . . . . ©)
H, o
2) HiI:
[0 O In 0 . ]
0 0 0 In O
H,I =10 Iyg Iy
Iy Iy
L I 0 0.
| ®

The matrix H/ has the structure of HY, with each 0 replaced
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by a M x M matrix of zeros, and each 1 replaced by the
M x M identity matrix Iy, i.e., the ith block diagonals above
and below the main block diagonal are composed of copies
of I, M-

3) P; j: (see (10) and (11) at the bottom of the page.) To aid
the discussion, the block rows and columns of P; ; are labeled
along the top and side of the mattix, respectively. P; ; has
the structure of the decomposition of HY;, defined similarly to
(5), with the 0’s in K% being replaced by M. x M matrices of
zeros, the 1’s being replaced by K3, and the resulting matrix
being added to its symmetric counterpart. The result is a block -
matrix with only the ith block diagonals above and below the
main block diagonal being nonzero, and these have copies of
K3, and (K},)T, respectively, along them.

4) P; ; 7. (see (12) and (13) at the bottom of the page.)The
block structure of P; ;7 is similar to F; ; except that it has
(K3,)T in place of K3, and vice versa.

At the element level, the four matrices defined in (6)—(13)
have only one nonzero diagonal above the main diagonal and
one, its symmetric counterpart, below it. In the case of H], the
nonzero diagonals are the  M'th diagonals above and below the
main diagonal, and all the entries of these diagonals are 1’s.
For I}, P j, P jr, the nonzero diagonals are, respectively,
the jth, (iM + j)th, and (:M — j)th, diagonals above and
below the main diagonal. For these three matrices, not all the
entries in the nonzero diagonals are 1’s. Instead, the nonzero
diagonals have strings of (M — j) consecutive 1°s alternating
with strings of j consecutive 0’s.

Pij= 1 2 it1 . 2i+1 N
0 0 (Ki)T 0 : . 1 1
0 0 0 (Kt o 2
Ky 0 0 (KipT o i+l
=0 K ) (K3 )T (10)
K (KT | N—i
L. . K 0o o0 | N
= Ky @ Ki, + (Ki)" ® (K3)T, an
Pi’jj = 1 2 i+1 . 2i+1 N
[ 0 0 K3, 0 ) 1 1
0 0 0 K, o0 2
(K™ 0 0 Ki o i+1
0 (KT . Ki, (12
(K3)" Kj | N-i
L. S (Ki)T 0 0| N
= K} ® (Ki)" + (K3)" ® K. (13)



1336

IIl. UNDERLYING FRAMEWORK

We discuss now briefly the approach we use in this paper to
derive the desired results. In recent work [29], [30], we have
constructed a framework for characterizing noncausal finite
(N x M) lattice GMRF’s. This framework is based on the
structure and properties of the inverse of the field covariarnce
matrix, which we call the potential matrix. For zero mean
Gauss fields the exponent of the joint Gauss probability density
function (pdf) can be written as:

1 =2 -
U(X) = —FXTAX, (14)
where X is the NM x 1 vector of the N x M field variables
which we arrange in lexicographic order, ¢ is a positive scaling
constant, and A is an NM x NM matrix that is a scaled
version of the inverse of the field covariance matrix. When,
besides being Gaussian, the field is (noncausal) Markovian
of order p, A is a highly sparse and structured matrix, block
banded, with blocks that are themselves banded, see [30] for
details. The elements of A represent the field interactions
between a lattice site and its neighbors. These parameters are
also called field potentials, reflecting the equivalence between
MRF’s and Gibbs fields from Statistical Mechanics, [4]. The
specification of A for an arbitrary pth-order GMRF is provided
in [30]. We consider in this work nondegenerate GMRF’s, i.e.,
those with positive definite (pd) covariance matrices. We study
fields with potentials that are independent of the site locations.
Such fields are said to be homogeneous or spatially invariant.
At the boundaries, homogeneity is interpreted to mean that the
same boundary condition rule, along with the same boundary
potentials, is applied everywhere. The boundary conditions are
usually drawn from the PDE literature. Examples are:

1) Free or Dirichlet b.c.: Here, the field values. of the off-
lattice neighbors of a boundary pixel are set to zero;
consequently the boundary pixels have fewer neighbors.
These boundary conditions lead to the autonormal mod-
els considered in [4]. Since this term was later applied
in [5] to all GMRF’s, in order to avoid confusion in this
paper, we will call these Dirichlet fields.

2) Asymmetric Neumann b.c.: The off-lattice neighbors of

a boundary pixel are assumed to have the same intensity
as the pixel. We call this the varigtional field. A field
with similar potentials has been used in [26] to represent
quadratic intensities.

Symmetric Neumann b.c.: The off-lattice neighbors of a
boundary pixel are assumed to have the same intensity
values as the pixels that are their mirror images when
reflected across the x and y axes (defined with the bound-
ary pixel as their origin). We call this the symmetric
field.

Here, we investigate the structure of the potential matrix
further; in particular we consider the decomposition of A
into the sum of symmetric matrices whose eigenvalues can
be derived. In the case of first-order fields with the boundary
conditions previously mentioned, and a special second-order
field, we choose decompositions in which the eigenvalues
of the component matrices can be combined to provide the

3)
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eigenvalues of A as functions of the field parameters. This, in
turn, enables the specification of the valid parameter space via
a set of necessary and sufficient conditions on the parameters.
More generally, for higher order fields, we derive a recursive
procedure that constructs a lower bound for the eigenvalues
of the potential matrix of a pth-order field in terms of the
corresponding bound for the (p — 1)th-order field and the
eigenvalues of the symmetric matrices which contain the new
component of the field interactions. This bound provides a
sufficient condition, for the parameter space, which is shown
to always be tighter than the usual one that is derived by
imposing the strict diagonal dominance condition on A.

IV. EIGENSTRUCTURE OF THE POTENTIAL MATRIX A

For a nondegenerate noncausal GMRF, the parameter space
2 where the field interaction parameters (potentials) can take
values is defined by the positive definite condition on the field
covariance matrix. To determine this space € is in general a
very difficult problem. Parametrizing the covariance matrix
elements explicitly is usually itself a formidable task. In
contrast, the parametrization of the inverse of the covariance
matrix, i.e., the potential matrix, is much simpler.

A complete definition of 2 results if we parametrize the -
smallest eigenvalue of A in terms of the potentials. This is
possible for first-order fields and certain classes of higher
order fields. For more general higher order fields, we derive a
lower bound on the minimum eigenvalue of A, as we will see
later.

In this section; we present our results on the eigenstructure
of A, which are then used in subsequent sections to define the
parameter space (2 and develop algorithms for ML estimation.
For convenience, hereafter, whenever we refer to a field of
given order, we index |the potential matrix and its blocks
accordingly, e.g., A; forfirst-order fields, A3 for second-order

fields, and so on. !

A. First-Order Fields

For first-order fields, iwe can derive exact analytic expres-
sions for the eigenvalues of A by applying the properties of the
Kronecker product. We first discuss the case of Dirichlet fields
since it is the simplest ¢f the three introduced in Section 1L
Let By, dnd f,, rep: t the horizontal and vertical nearest
neighbor field interactions, respectively.

Dirichlet fields: The potential matrix is [29], [30]

By Ci 0O .
cC, B C; 0 .
0 C B G 0
A1 = . . . . .
0 C B G
.o 0 C B
=IN®’;1+SN®CI» (15)

where the blocks on the hlam diagonal, By, reflect the structure
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of Al,
1 —Bn, 0
~Bn, 1 =B O
0 —Br, 1 B O
B]_ = . .
0 —ﬁhl 1 _ﬂhl
. . 0  —bn 1
= Ing — B, Sm, (16)
and C; is diagonal,
Cy1 = By, Inm. a7
The matrices Sy, Su, are of the form’
01 0 .
1 01 0 .
Sk = 01010
0101
. .. . 010
=Hg, K=N,M, (18)

where H, ,i was defined in Section II. The eigenvalues of Sk
are well known, see, for example, [18], and are provided here
in the following lemma.

Lemma 1 (Dirichlet Fields), e.g., [18]: The eigenvalues of
Sk are

Me(Sk) = 208 2" <k<K.

K+1’ 1= 9

We now consider the other two fields.

Variational Fields: The potential matrix for these fields is
a perturbation of the potential matrix for free b.c. (Dirichlet
fields). See [29] for the specification. It turns out that we can
cast it in the form of (15)«(17), if we redefine Sy and Sy
to be as follows:

1 0
1
0

=

0

Lol =1

1
Sk = 0
0101

011
=Hy +&eT +éxé, K=N,M (20
The ejgenvalueé for this matrix can be derived by simple
manipulation of the transform matrix for the Discrete Co-
sine Transform. The results are provided in the following
lemma while the details of the derivation can be found in
the Appendix.

Lemma 2 (Variational Field): The eigenvalues of Sk are
(k-1

Ak(SK) = 2cos T,

Finally, we deal with the symmetric field.

1<k<K. (1)
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Symmetric Fields: As in the case of variational fields, the
potential matrix for these fields can be expressed in the form
of (15)«17) if we redefine Sk, (K = N, M), as

020 .
2010 .
01010 . .
Sk=1|. . . . . . .|
.. 01010
010 2
. 020
K =N,M. (22)

The structure of the eigenvalues for the symmetric field Sk is
more cumbersome than for the previous cases, requiring the
solution of a transcendental equation as shown in Lemma 3,
which is stated next, assuming K > 5.

Lemma 3 (Symmetric Field): The eigenvalues of Sk are

2cos O when k # ki, ko, k3, ka
2coshfy, whenk=k;
Ae(Sk) = 2cosh;, whenk = ko 23)
—2coshfx, whenk =k;3
—2coshfy, when k = k4

where {0,k # ki,ka, ks, ks} are the K — 4 solutions of the
transcendental equation,

_ _1 3sin26; _
[(K + 1)0) — kx] + 2tan T 3c0s20;, =

1<k<LK, (24)
and 6k, , Ox,, —0%,, —0k, are the 4 solutions of the hyperbolic
equation,

sinh(K + 1)0 — 6sinh(K — 1)8 + 9sinh(K — 3)8 = 0. (25)

This lemma is proved by finding a recurrence relation for the
characteristic polynomial of Sk (given by (22)) for arbitrary
K > 5. This recurrence relation can be specified in terms of
the characteristic polynomial of the matrix in (18) for which
five different closed form solutions are possible. One of these
leads to Chebyshev polynomials of the second kind, ¢.g., [34],
and equation (24), two others lead to a trivial result, and the
final two lead to (25). The detailed proof is presented in the
Appendix. For each K < 5, the structure of the matrix Sy and
its eigenvalues is different and must be derived as a special
case.

Eigenvalues of A;: The eigenvalues given in Lemmas 1, 2,
and 3 can be used in conjunction with the Kronecker product
specification of A; in (15)«(17) to specify the eigenvalues of
A; as functions of the field parameters.

" Lemma 4 (Eigenvalues of A;): The eigenvalues of the po-
tential matrix A, for a first-order homogeneous GMRF are
given by:

Xi5(A1) = 1= Buy Xi(Sn) — Buu Xi(Snr)
4 1<i<N, 1<j<M (26)
where the eigenvalues, {\x(Sx)}X,, of Sk, for K = M, N,
are given above by lemmas 1, 2, or 3, respectively, for the
Dirichlet, variational, or symmetric fields.
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The details of the proof are in the Appendix. This result
relies on the fact that the potential matrix can be expressed
in the form of a sum of Kronecker products where each term
(i.e., each Kronecker product) has the same set of eigenvectors.
Consequently, the eigenvalues are obtained by simply adding
the corresponding eigenvalues of each term. In general, it is
not possible to decompose A for higher order fields into a sum
of Kronecker product terms such that each term has the same
set of eigenvectors, therefore the argument used in the proof of
the previous result does not generalize, barring special cases
one of which is discussed next. '

B. Second-Order Field with Symmetric Diagonal Interactions

Consider a second-order field with free b.c. and symmetric
diagonal interactions, see Fig. 1, ie., Big,, = Prda;, =
Ba,,, which means the left and right diagonal interactions
are constrained to be identical. This is a three parameter
(Br,,Buy,Pay,) field, falling between the two parameter
first-order field and the fully general four parameter
(Bhy» By Bidss » Bray,) second-order field, see Fig. 1. For this
field, the potential matrix can be expressed in the form of (15),

Ay =TIy ® Bo+ Sy ® G, @n
with B, = Bj given by (16), Sk by (18) and C; by
Co = —By,Ine — Bar Sm- (28)

Substituting the structure of By and C; into (27), we get a

sum of Kronecker product terms each having the same set of

eigenvectors. Hence, the eigenvalues of A, are obtained by
adding the corresponding ones for each term. The result is
given below. The details can be found in the Appendix.

Lemma 5 (Symmetric Diagonal Interactions): The eigen-
values of the potential matrix A, given by (16), (18), (27),
and (28) for the second-order Dirichlet field with symmetric
diagonal interactions, are given by:

‘ T i
Aii(A2)=1- - A,
,i(A2) 2By, cos 37 i 2n, cos = I
: i i
- 7 29
44,, cos N1 cos T (29)

for1<i<N,1<j<M.

C. Higher Order Fields

Pairwise Interactions: ‘We consider here Dirichlet fields
of second-order or higher. The notation for the pairwise
interaction potentials for fields up to order 6 is given in Fig. 1.
The four types of pairwise interactions are the following.

a) Horizontal (within same row): These are represented by
Bh;, with the two interacting pixels being j columns
apart.

b) Vertical (within the same column): These are represented
by B,,, with the two interacting pixels being ¢ rows apart.

) Left (NW-SE) diagonal: These are represented by Bia,;,
with the two interacting pixels being i rows and j
columns apart.
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d) Right (NE-SW) diagonal: These are represented by Brd,;,
with the two interacting pixels being i rows and j
columns apart. ’

Next, we introduce some notation. Define (3, as the
coefficient of interaction 7 (e.g., fu,, is the coefficient
for interaction T ld11), mp as the set of interactions
for a pth-order field (e.g., 72 {h1,v1,1ld11,rd11},
n3 = {h1,v1,ld11,7d11, h2,v2}), and T as'the set of new
interactions in the pth-order field, i.e., Iy = n, — 7p-1, €.8.,
I's = {h2,va}. ;

Structure of A,: Here, we paraphrase the discussion in
[30}, providing only the information relevant to the issues in
this paper. See [30] for a detailed discussion of the structure of
A, For Dirichlet fields, A, is a block banded, block Toeplitz
matrix with each block being banded and Toeplitz as well.
The order of the field determines the structure of A,. It has
N rows of M x M blocks, with each block containing the
interactions between two rows in the field. Thus, the blocks in
the sth block row represent the interactions between row i and
all the other rows in the lattice. The (%, j)th block contains the
interactions between the th and jth rows. The block banded
nature of A, is the result of the Markovianity of the field,
since any row ¢ only.has nonzero interactions with rows that
lie within its neighborhood structure. To make things clearer,
we discuss the structure of A in the context of a third-order
field, relating the structure back to Fig. 1. From Fig. 1, we
see that for third-order fields the pixels in row ¢ are unrelated
to pixels in rows further than ¢ + 2 and i — 2. Consequently,
only the first two blocks on either side of the (,1) block are
nonzero, i.e., Az has block bandwidth 2. The symmetry of the
neighborhood definition produces a corresponding symmetry -
in A,. The block structure of A3 is given next.

[ Bs Cjs Ds 0 . . ]
C;T B3 Ca D3 Q . :
Dg Cgﬂ Bs C3 Dj 0 .
T T
Ag = 6 Df C;y By Ci3 D3 @ (30)

0 Dg Cg‘ By Cs3 D3
0 Dg Cg Bs Cs

0 Dg‘ C}" Bs |

=In®Bs+ Ky ®CT +(Ky)T®Cs+ K} ® D}
+ (K3)T ® Ds. €3]

Because of the symmetry of A,, we only need to study the
blocks that lie after the (4, i) block in any block row i. Consider
the interactions between row i and row i + 2 which is the
furthest row that i is related to (see Fig. 1). The block Ds
contains the interactions between the pixels in row ¢ and those
in row i + 2. From Fig. 1, we see that the only interaction
between the pixels of these two rows is the vertical interaction
represented by (3,,. Consequently, Dj is diagonal,

D;s = -0y, Inm. 32)
Next, we consider the interactions between rows 4 and ¢ + 1.
From Fig. 1, there are three pairwise interactions for each
pixel in row i. These are: the left diagonal interaction (B4, ),
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. . 6 . . . R . B . R
. 54345 . B Bun Pon Bran Brim
. 421 2 4 . By Py Bu By Bran -
6310136 B B B o Bn Brn B
. 421 24 - Bray Bray Pu By B -
.5 4345 Brézy Brazy Boi Bty Bl

. .6 . . . . B . .

(a) ®
Fig. 1. (a) Hierarchical sequence of neighborhoods, (b) Coefficients for pair
interactions.

the right diagonal interaction (8,4,, ), and the nearest neighbor

vertical interaction (8, ). Therefore, C3 is tridiagonal,
Cs

"—Bv,  —Buay 0 .
_ﬁrdu _ﬁvl "ﬂldu 0 .
0 _ﬁrdn _ﬂvl “ﬂldn 0
0 _ﬁ‘rdu _ﬂv1 _ﬁldu
0 _ﬂ'rdu _ﬂvl
(33)
= ~Budna = Bray, Ky — Buan, (Kp)"- (34)

Finally, we consider the self interactions of row ¢, i.e., the
interactions within the row. From Fig. 1, we sce that there
are four pairwise interactions for each pixel, excluding its
interaction with itself. These interactions are: two nearest
neighbor horizontal interactions (8h,), and two horizontal
interactions with pixels that are two columns away (Bh,).
Including the self interaction, Bj is pentadiagonal,

B3

1 _ﬂhl —ﬂh2 0 0 . o]
-ﬂhl 1 —'ﬂhl _ﬁhz 0 .
~Br, —Bn, 1 —PBn, —Bn, O
— 0 _ﬂhg _ﬂhl 1 _ﬂhl _B’lg
. 0- _bhz _bhl 1 —Bhl _éhz
. . 0 —Br, —PBn, 1 —ﬁhl
L . . . 0 —Br, =D,
(35)
= Inr — Br Hig — B, Hyy. (36)

Generalizing this argument to any order is straightforward.
When we go up in order, we add new diagonals within the
nonzero blocks for new interactions between the same rows (or
within the same row in the case of self interaction blocks By),
and new blocks for interactions between previously unrelated
TOWS.

Now we are in a position to define A, in general terms. The
potential matrix, A,, can be represented compactly as

> By

TEMp

37

p—INM

where 7, was defined previously as the set of interactions

for the pth-order field, while the matrices A} place the
interaction parameters, 3., at the appropriate locations in A,.
The structure of the A7 is explored in the following lemma:
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Lemma 6: For any p, T € 1, A] is one of the 4 interaction
matrices, I3, H!, P; j, ot P, ; 1, defined by (7), (9), (11), and -
(13), respectlvely

The proof follows from a formalization of the discussion at
the beginning of this section, in which the types of interactions
are broken down into horizontal, vertical, left and right diag-
onal, represented by ﬂhj’ ﬂvi, ﬂldij’ and ﬂ"d.‘j’ I'CSPCCﬁVCly-
It is straightforward to verify from (6)~«(13) that the matrices
required to place these pa;'ameters at the appropriate locations
in A, are respectively, I}, H}, P, j, and P; j r.

Order Recursive Expression for A,: From (37), the repre-
sentation of A, can be put in the recursivc form,
p21, (33

where A, is the potential matrix for the (i — 1)th-order field,
Ap = Iny, and A, contains the sum of the new interactions,

ie.,
- E ﬂ'rA

T€T,

Ap=Ap1+ Dy,

(39)

with T',, as defined earlier. A few examples follow. Using Fig.
1 and the discussion following Lemma 6, we get,

A1 = Ao + [~ (B, If + Bo, HY)), (40)
Az = A1 + [~ (Biay P + Bray, PLaT))s 1)
Ay = Ay + [~(Bn, T} + Bo H3)), 42)
Ay = Az + [—(Bua, Pr2 + Brai Pr2T

+ Bidy, P21 + Brdzy Po1,1))s “3) ..
As = Ay + [~ (Bidys P22 + Bran P22,7)]- 44)

In the next section, we will derive a lower bound for the
smallest eigenvalue of A, for arbitrary p. Construction of
this bound requires knowledge of the spectral norms of the
interaction matrices.

Spectral Norms of the Interaction Matrices: Let |||l
the matrix spectral norm, e.g., [37], and |.] the floor function.
Define

. M if M mod j=0
L =Q 37
MJ‘{LI‘f—.JH, if Mmod j #0, (43)
and similarly for N;, and
QN M= min(N,-, Mj). (46)

_Lemma 7: The spectral norms of the interaction matrices
I, Hf, P, j, and P, j 1, defined in (6)~(13), are given by

: vis
1% |ls = 2cos 72 + T C1))
[lHF|s = 2cos N + 7 48)
T
[IP;,5lls = 2cos 49)
+1’
M
is .
"Pi,j,THs = 2cos Q;\’;M 1 (50)

The first two norms are derived by using the properties of
Kronecker products and the eigenvalues of Hj from [15].-
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The other two are obtained by using graph theory to find the
largest block that is obtained when the corresponding matrices
are permuted into block diagonal form. A summarized version
of the proof is provided in the appendix. The complete proof
may be found in [3].

The results we have derived for the eigenstructure of A,
are applied in the next section to the problem of specification
of the field parameter space.

V. PARAMETER SPACE FOR NONCAUSAL GMRF’s

The parameter space for a nondegenerate GMRF is derived
from the positive definite condition on the field covariance
matrix or its inverse. This translates into

g% >0,

which is assumed in the sequel, and the positivity of the
eigenvalues of A,

M(A) >0, 1<I<NM, 1)

or equivalently

Amin(4) > 0, 2

where Apnin(A) is the smallest eigenvalue of A.

In Sections IV-A and IV-B, we derived the eigenstructure
of A for first-order fields and second-order Dirichlet fields
with symmetric diagonal interactions. Applying (52) we can
then determine completely Q for these fields. This is done
in Section V-A and Section V-B. For arbitrary higher order
Dirichlet fields, we derive a lower bound for Am;, that serves
as a sufficient condition for the valid parameter space. This
sufficient condition is shown to be tighter than the one derived
by imposing the strict diagonal dominance sufficient condition
for A, [a .1 > 0, see, for example, [37], which corresponds
to

Sp =min{1 - _ laf} >0,

J#i

(3)

where we have simplified the definition by using the fact
that the potential matrix for a Dirichlet field has a unit main
diagonal.

A. First-Order Fields

We use Lemma 4 to specify the parameter space for each of
the first-order fields considered in Section IV-A. The parameter
space is derived in each case by considering the form of

mm(A1) for each of the four possible combinations of +
signs of the pair of coefficients (B, , By, )-

Result 1 (Dirichlet Field): The valid parameter space for
the first-order Dirichlet field is defined by

1

+ |ﬂh1|cos < 5. (54)

N+1 M+1

The necessary and sufficient conditions in (54) correspond
to a region in (B, ,By,) space bounded by four lines which

[Buy | cOS ———
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Fig. 2. Parameter space for first-order fields is the region bounded by the
four lines whose (85, , Bv, ) axes intercepts are at points 1-4.

intersect with the (35, and §,, axes at points

{ G 0.0, 50

™ is
2 cos s 2cos —N+1

)

E———

2cos Mol

]
2cos M

see Fig. 2.
Result 2 (Variational Field): The parameter space for the
first-order variational field is defined by the set of inequalities:

Buu + B, < 3, 9)
Bor — By 008 77 ; (56) -
o = r<s 6D
— By, €OS — N — B, cos ]\7:1 < % (58)

The parameter space is bounded by four lines that intersect
the axes at

{30,609,z 0 O

see Fig. 2.
Result 3 (Symmetnc Field): The parameter space for the
first-order symmetric field is defined by

1

|Bu, | cosh 8% + |Bn, | cosh 83, < 5 (59)

with
;( = max{Okl,f)kg}, (60)
where 201, £0xo are the four solutions of the hyperbolic -

equation (25).
For symmetric fields, the corresponding intercepts are

)

1 1
(—ZCoshORl 0,0, " 2cosh 8%

1 1
{(2cosh0;,,’0)’ ©, 2 cosh 8%

)}
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Fig. 3. Comparison of actual parameter space for first-order symmetric
fields (region enclosed by the four solid lines) versus region defined by strict
diagonal dominance sufficient condition (region enclosed by the four dashed
lines) for lattice size N = M = 16.

Strict Diagonal Dominance Sufficient Condition: The strict
diagonal dominance sufficient condition for Dirichlet and
variational fields is

1Buul + 18] < 5 (61)

This is derived in a straightforward manner from the structure
of the corresponding potential matrices, from (15)—+(17) and
respectively, (18) and (20). The region defined by (61) is
always subsumed (assuming finite N, M) by the regions
defined respectively by (54) and (55)~(58) for the Dirichlet
and variational fields.

In the case of symmetric fields, the strict diagonal domi-
nance condition is not (61) but instead

1Bur + 16,1 < 3.

For these fields, a considerable portion of the parameter
space is excluded by the sufficient condition in (62). The
difference between the region defined by (59) and the sufficient
space defined by (62) is illustrated by an example. Consider
a first-order symmetric field defined on a 16 x 16 lattice, i.e.,
N = M = 16. For these values of N and M, equation (25)
was solved numerically and 63 in (60) was computed to be
2.3090. The parameter space defined by (59) is plotted in
Fig. 3 as the region in (0,, 8y, ) space enclosed by the four
solid lines which are obtained by replacing the inequalities
in (59) with equalities. The corresponding sufficient condition
space is plotted in the same figure as the region enclosed by the
four dashed lines that are obtained by replacing the inequality
in (62) by an equality. The plots in Fig. 3 demonstrate that
a significant portion of the parameter space is excluded by
the strict diagonal dominance sufficient condition. Hence, the
results presented above are of great importance to parameter
estimation procedures because they allow the optimization
algorithm the freedom of the entire valid space rather than
just the portion of it defined by the sufficient conditions.

(62)

B. Second-Order Field with Symmetric Diagonal Interactions

The necessary and sufficient conditions for the valid pa-
rameter space for the second-order Dirichlet field with sym-
metric diagonal interactions are obtained from Lemma 5. The
eigenvalues of A, form a set of planes in the 3-D space
(Buy s Bhy s Bay, ), with each plane having only two independent
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intercepts. The minimum set of planes that bound the valid
region in the 3-D space are obtained by applying the basic’
principles of 3-D coordinate geometry.

Result 4: The parameter space for the second-order Dirich-
let field with symmetric diagonal interactions is defined by the
set of inequalities:

B, cosN_|_1 +,6h1cosM+1

2Py COSN+1 ST <%’ ©3)
By, cos NL-l—l - ﬂhl cos M:— T
Bh, cos M—+1 — B, cos N7—:— T

— 284, cos—N% cos Mﬁ— T < %, (65)
_ﬂ”‘COSN+1 Pr c M—%

+ 284,, COS ——— N+ 7¢ M:— 7 < % (66)

In comparison, the strict diagonal dominance sufficient
condition is
1B+ 180u] + 21601 < 3, (©7)
which excludes a considerable portion of the valid parameter
space. For example, consider N = M = 32, B, = B,, = 0.3,
B4,, = —0.25. For these par:imeter values, the left-hand side
of (67) evaluates to 0.9 which is well outside the region
defined by the condition in (67), i.e., the point (0.3,0.3, —0.25)
is excluded by the sufficient condition. On the other hand,
substituting these values into equations (63)—(66) we sec that
this point is in fact inside the valid parameter space.

C. Higher Order Fields

In this subsection, we consider second or higher order
Dirichlet fields. For arbitrary higher order fields, we do not
have the eigenstructure of A,, or Ayin(Ap). We use, however,
the structure of A, to derive a sufficient condition for the
parameter space (). The main result of this section is a
recursive specification for a sufficient condition, L,, that is al-
ways tighter than the corresponding strict diagonal dominance
condition, Sp. Our sufficient condition is derived by using the
recursive specification of A, given in (38) and (39) to bound
Amin(Ap) from below, ie.,

/\min(Ap) 2 L}n (68)

whereupon

L,>0 69)
becomes a sufficient condition for the parameter space of Ap.

The strict diagonal dominance condition can be represented
compactly as follows. Let ||.||cc be the matrix infinity norm,
e.g., [37].
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Lemma 8: The strict diagonal dominance sufficient condi-
tion for a pth-order Dirichlet field is given by

S, >0, (70)
where
Sp=8p-1= Y B llIAFllee, P21, 80=1, (1)
€T,
and T', and A] are as defined in Section IV-C.

This is a straightforward relationship that comes from the
discussion in Section IV-C. Recall that in the decompesition
of A, given in (37) each A7 places the coefficients for
only the interaction 7 in the appropriate locations in A,.
Consequently, for any two different interactions, 7, and 72,
the corresponding matrices A7, and A7' have no nonzero
elements in overlapping locations. Keeping this in mind, we
apply the definition of S,, from (53), to (38) and (39) to get
the above result. Barring degenerate cases, corresponding to
lattices that are so small that there is no site with the full
complement of neighbors, all the matrices A} have at least
one row (column) with two 1’s in it, which is the most they
can have, and (71) simplifies to

SP = SP—]- -2 Z lﬂ'rla (72)
T€T,
or
p—l—zzwr (73)
TENY

which is the usual form this condition appears in, in the
literature. In the sequel, when we discuss the strict diagonal
dominance sufficient condition for a field of given order,
we assume that the lattice size is above this threshold. We
now establish a similar recursion for the lower bound L, for
arbitrary order p.

Result 5: The sufficient condition, L,, for the pth-order
Dirichlet field is given by

Ly=Ly1— Y 1B:lI1AFllss

7€,

p>1yL0=

1, (74

where Lp_; is the sufficient condition for the (p — 1)th-order
field and I'; and A7 are as defined in Section IV-C.

This result is derlved by using the property [25, theorem 5,
p. 205] that the smallest eigenvalue of the sum of symmetric
matrices is always greater than or equal to the sum of the
smallest eigenvalues of each of these matrices. This property
is applied to the recursive specification in (38) and (39) to
produce the desired result. More details are provided in the
Appendix. For the sake of concreteness, we apply (40)—(44),
(74), and Lemma 7 to get the following results up to fifth-order
fields.

Result 6: The sufficient conditions, L, for p = 1,2,3,4,5
are given by

Ly =1-2[|Bh,|cos — M+ 7 1 |Buy| cos N+1] (75)
= Ly = 2[(|Biay; | + |Bray, |) cos T—], (76)
ﬁ,M +1
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Lo = Ly = 2B, cos 37 + 1l cos gl 0D

Ly = L3 — 2{(|Bid,, | + |Bra;.|) cos Q_}Vﬁ
+ ([Buz| + |Bras ) cos Q—ZN,,I—;?], )
Ls=Ls— 2[(|ﬁtd,g| + |Brda,|) cos 521\}’2—;:?]' 79
o

Note that L is in fact necessary and sufficient. Quantities M;,
N; and Q}\’,” ¢ Were introduced earlier in Section IV-C. The
corresponding strict diagonal dominance sufficient conditions
for the same fields are:

S1=1-2[|Bn,| + |Bu, ], (80)
SZ = Sl - 2[|ﬂld11 I + |.B‘rd11 ”’ (81)
S3 = S2 - 2[|ﬁhz| + |ﬁv2|], (82)

84 = 83— 2[|Biays| + |Brdsa| + 1Bidy | + Bras, ], (83)
SS = 34 - 2[|ﬂld22| + I:Brdazl]' (84)

It is straightforward to verify that S to S5 are strictly smaller
than their counterparts L; to Ls. This is always the case, as
stated in the following result.

Result 7: The sufficient condition (69) with L, obtained
from (74) is always tlghter than the correspondmg one, in
(70), (71), obtained by imposing the strict diagonal dominance
condition on A,, i..,

Vp>1, L,> S5, 85)

This is proved by comparing (74) and (71). The details are
provided in the Appendix. ’

VI. MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

In most applications, the field potentials, B, ,Bu,," " -, are
unknown and have to be estimated. Let § be the vector
containing the field potentials. These are the parameters of
the potential matrix, A,(¢). The joint probability density
function (pdf) of a GMREF, defined on a N x M lattice, is
the multivariate Gauss,

1

P(X) = m‘

4O erp(~ 55 X7 A,(O)R).
(59)

The negative log likelihood function, scaled by (1/NM) for
convenience, is given by

L(X/6,0%) = %lna’ - 2_1;54‘

‘In]A,(8)| + MXTA 0)X. (87

202N
The ML estimates for # and ¢ are obtained by minimizing
-the negative log likelihood function previously defined.

ML estimation for noncausal fields is complicated by several
factors. A major problem is the prohibitive cost of computing
the likelihood function or some scaled monotonic function of
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it, e.g., (87) This is a direct consequence of the complexity of
|Ap(8)|~% which is, apart from a factor, the partition function
from Statistical Mechanics. In addition, the function gradient

which is central to an efficient search of the parameter space

is usually expensive to compute. A third complication is the
fact that constrained optimization is required because of the
restrictions on the parameter space.

In this section, we present an ML parameter estimation pro-
cedure for noncausal finite lattice GMRF’s of arbitrary order
that uses the recursive structure of these fields [30] to provide
computationally practical solutions to the above mentioned
problems. For the sake of clarity, the procedure is discussed in
the context of Dirichlet fields, but extension to other fields is
simply a matter of applying the corresponding field structure
from [30]. As a prelude to the parameter estimation, we
comment on the convexity of the function defined in (87).

Convexity of L(.): It is straightforward to establish the
convexity of L(.) over the valid parameter space of (6, Z5)
by inspection of the three terms in (87). The convexity of the
middle term,

~ x4, 0),
follows from the fact that the function (—log|A|) is convex
over the space of positive definite matrices, see, for example,
[25, p. 222]. The other two terms are immediately identifiable
as convex functions. Since ML estimates commute with non-
linear functions, the convexity of L(.) over the valid parameter
space of (9, %) also ensures that optimization in (6, 0?) is
unhindered by the problem of local extrema.
Estimation Procedure: Define

6= [B;,7 € pl, (88)
where 7, was defined in Section IV-C as the set of neighbor-
hood interaciions for a pth-order field. Using the structure of
A, for Dirichlet fields, from (37), in (87), we get,

1
L(X 2y = 2 _
(X/8,0%) =5 Ino 2NM In|A,(8)|
1
+ E&E[SI -2 Z ﬁ-rX'r], (89)
TEN,
where S, and X, are defined as
1 1 N M
—_ T v - = 2 )
Sy = NMX X NM;JZ::Iz,J (90)
_ 1 vT AT ¥V
ﬁ E'[\J:lz E&_-:_l Tr,sTrti,s: for 7 = v,
— ﬁ 25\,:_12 =1_] Tr,sTrs+7) for 7 = h;,
ﬁ E'Ij‘v=_1 Za=1j Ty sTrtis+js for 7 = ldij,
"NIW ot s —j+1TrsTryis—j, for7= rd;;.
91).

The quantity S, is interpreted as the average power in the
given field sample, while X, may be interpreted as the sample
correlation of lag 7.
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The gradient of the function in (89) is given by
oL 1
50Z =307 ==2) 6 X, (9
TENp
and for each interaction 7 in the set 7,
oL 1 X
oL _ A-IATY - 2T
a5, 2NMtrace (A4,°A7) = 93)
where the first term in (93) comes from
o(ln|4,)) _ 9(In |4,|) 3A
) trace( ————1-= a4, )
(applying the cham rule ),
= trace (A, 3 ﬂ” )(from [14, p. 75)),
= trace (—A, 1A;)
(taking the partial of (37)). 94)

Only (92) can be solved explicitly for the ML estimate of a2
Setting (92) to zero we get

;5=Sz—2ZEX‘r7

TENY

(95)

which, when substituted into (89), produces the function (after
we drop the "),

L(X/0,5%(8)) =% (s, —2 3 4, X,]

TE?)?

——In|A4,(0)| + (96)

2N M
which is minimized over the valid space of 4 to get the ML
estimates.

The ML estimation procedure presented here is based on
the (Polak—Ribiere) conjugate gradient search method, which
is a well studied unconstrained optimization procedure, see,
for example, [33]. The parameter estimates are obtained by
an iterative process that consists of a series of 1-D line mini-
mizations along a sequence of conjugate directions generated
using the function gradient, with each line minimization being
preceded by a procedure that brackets the line minima. We
will now discuss the problems mentioned earlier, namely, the
computational burden imposed by repeated evaluations of the
function and its gradient and the complications induced by the
constraints on the parameter space, and outline our solutions
to these. )

1) Partition Function: Computation of the partition func-
tion is required for every evaluation of L(.). Direct computa-
tion of |A,(f)] when the eigenvalues of A, are unavailable,
as is usually the case for higher order fields, is extremely
costly since A, is NM x NM. A computationally practical
alternative is provided by the recursive framework in [30]
which includes the computation of the Cholesky factor of A,
via a matrix Riccati iteration that converges at a geometric
rate. As a result, the determinant of A, can be computed
expeditely, to any specified degree of precision, as a function
of the determinants of the transient iterates and the steady state
solution of the Riccati equation.
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2) Parameter Space Constraints: The constrained optimi-
zation problem of locating the parameter estimates within the
valid section of # space can be converted into an unconstrained

problem by imposing the parameter space constraints in the

bracketing procedure that precedes each line minimization.
In other words, the bracketing procedure is constrained to
place the bracketing points within the valid parameter space.
One way of doing this is to assign a large penalty term
to the function whenever it is evaluated outside the valid
‘region, see [36]. Since the line minimization algorithm only
searches the portion of the line between the bracketing points,
it can continue to operate as an unconstrained optimization
procedure. The exact bounds on the parameter space are in
general unknown for higher order fields. Therefore, we use
instead the fundamental definition of the parameter space
as the region of parameter values for which A, is positive
definite (pd). The positive definiteness of A, is automatically
checked during the computation of In|Ap(6)| because the
Riccati equation previously mentioned diverges if A,(#) is not
pd. The estimation procedure can be speeded up by restricting
the search to the space defined by the sufficient conditions
derived in Section V-C. Here, the tighter bounds derived by
us enable more of the valid parameter space to be included
in the search area than the previously available strict diagonal
dominance sufficient condition bounds, see results 5 and 7 in
Section V-C. '

3) Function Gradient: The gradient of L(.) is required to
guide the iterative search for the optimal parameter estimates.
The expression given in (93) for the gradient is computation-
ally intractable because it involves the inversion of Ap(6),
which is an NM x NM matrix. An alternate approach to
computing the gradient at a given point (§%),¢2®) in the
parameter- space is obtained next by interpreting (93) as a
statistical quantity. The following lemma is derived from (93)
by using the structure of A, and the fact that A;! is a scaled
- version of the field covariance matrix.

Lemma 9: . For each interaction 7 in the set 7,

oL _ E{X,}—X,

'a_'ﬁ: > ’ (97)

o

where E{.} is the expectation operator.

The details of the proof are in the Appendix. The form of
(97) illustrates the fact that the ML estimates, located at the
extremum of L(.), correspond to the parameter values that
‘match the theoretical covariance of the field to the sample
covariance.

4)- Computation of E{X,}: The ML estimation procedure
is an iterative search of the parameter space that is propagated
by the present estimates (6(), 0*(¥)) being updated by a step
whose direction and magnitude are determined by the gradient
at the present location, ie., (§),0%?), in the parameter
space. From Lemma 9, evaluation of the gradient requires the
computation of E{X}, the ensemble average of the sample
correlation of lag 7. We compute this quantity by using a
Monte Carlo procedure that generates a large number (K) of
samples of the field with parameters (8, 0%(")) and estimates
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E{X,} from these samples as

K
- 1
E{X:}= %> X¥, 98)
k=1

where X,(-k) is the correlation of lag 7 computed from field
sample # k. The generation of field samples is computationally
intensive if relaxation methods are applied. We use instead
the equivalent one-sided (spatially varying) representation
for noncausal fields [30] which provides the means for fast
synthesis of samples of any noncausal finite lattice GMRF.

Summary: To summarize, the ML estimation algorithm
for fields of arbitrary order is' an iterative search of the
valid parameter space using the well-known (Polak-Ribiere)
conjugate gradient search method that conmsists of a series
of 1-D line minimizations along a sequence of conjugate
directions obtained from the gradient. The constraints on the
field parameter space are incorporated into the bracketing
procedure that precedes each line minimization. The gradient
at any point (§®),02() is obtained by sampling the field for
those parameter values and applying Lemma 9. This is a novel
approach which is made possible in a practical sense by the
recursive framework in [30] that enables rapid synthesis of
field samples. Experimental verification is provided in Section
IX. '

The estimation procedure presented in this section made
no assumptions regarding the eigenstructure of the potential
matrix. In the case of fields where this information is available,
the additional knowledge can be used to simplify the parameter
estimation as well as reduce the computational cost. This is
discussed in the next section.

VIL. ML ESTIMATION FOR FIRST-ORDER
AND SPECIAL SECOND-ORDER FIELDS

In Sections IV-A and IV-B, respectively, we derived the
eigenstructure of A, for first-order fields and second-order
Dirichlet fields with symmetric diagonal interactions. In this
section, we show how this information enables the parametriza-
tion of the likelihood function and its gradient in terms of the
field parameters, leading to simpler, faster, and more direct
means of computing these quantities than in the general case
discussed in the previous section. In addition, since exact
bounds on the parameter space were derived in Sections V-A
and V-B, the constrained optimization is easily handled.

First-Order Fields: In [7], the likelihood function for
isotropic (Br, = By,) toroidal fields was expressed in terms
of the field parameters by applying the known eigenvalues of
the block circulant matrix A;. Here, we take a more general
approach to handle nonisotropic fields with nonperiodic b.c.

For a first-order field,

6= [ﬂhlvﬂvx]'

From (26), the determinant of A; is

%9)

. N M .
|41) = [T TT(@ = Bos Xi(Sn) — Bn, Ai(Sm))- (100)

i=1j=1
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The quadratic, X XT A1 X, can be written using the structure of the partial derivative with respect to each of the parameters

4; from (15)—(17) as -

—XTA X =8, — 284, Xn, —

2B, Xv, (101)

NM

where S is the average power of the sample, defined in (90),
and

Xh1 = MX-‘T(IN ® SM)X

N M-1

= (Z Z Zi,;Ti,j+1 + Xhl)

i=1 j=1

T
= 2NMX (Sn ® In)X
N-1 M

= (Z th 3Ti+1,5 +‘X1€,)a

=1 j=1

(102)

(103)

with X} and X? representing correction terms that depend
on the choice of b.c. For the fields with Sk given by (18),
(20), and (22),

Xxp,
0, for Dirichlet fields )
1 %v:ﬁgl(x,z, 1+ 2 ), for variational fields (104)
Y1 (Ti1zi2
+Ti M_1Zi M), for symmetric fields
Xt =
0, for Dirichlet fields
1 Zﬁl(a:ij +1% ;), for variational fields (105)

M
Y i=1(T1,i%2,5

+EN_1,;ZN,5), for symmetric fields

The quantities X, and X,, may be interpreted, respectively,
as the horizontal and vertical nearest-neighbor correlations
in the field sample. In this context, the boundary condition
dependent portion of X},,-and X,,, can be interpreted as adding
the correlations due to pixel pairs that are produced by the
choice of boundary conditions. Thus, for example, in the case
of free b.c. there is no correction term because the off-lattice
neighbors of the boundary pixels are assumed to be zero, hence
the correlations due to these pairs are zero.

Substituting (99)«101) into (87) we get,

L(X/Bhy,Boy,0%)

_11 \ 1 NM1
=3 no —szn(l

i=1 j=1
1
20 2[ 2ﬂh1Xh1

= Bu, Ai(SN) — Br, Ai{(Sar))

+ 2By, X, |-

(106)
As an illustration, the log likelihood function, i.e., the negative
of L(.) without the scaling, for a 16 x 16 Dmchlet field
with parameters B, = 0.2, B,, = 0.15, and 0 = 10, is
plotted in (Bh,,8,,) space in Fig. 4. As expected from the
discussion at the beginning of Section VI, this is a concave
function with a well-defined global maximum. The minimum
of the negative log likelihood function is obtained by taking

and setting these to zero:

Ai(Sm) Xh1
2NM ;,21 (1= B Xi(S8) — BuAi(Sm)) o2
=0, 107)
8L .
9P, '5»7,5; ,az
Ai(Sn) X0,
2NM z_:lz_:l (1 - BuMi(SN) = Bucs(Sm)) o2
=0, (108)
oL
802 om0
1 1 o~ —~ :
; - 2(35)2 [Sz - 2ﬁh1Xh1 - 2:6171X111] = 07 (109)
where only (109) has an explicit solution i
o2 =[S, = 2Bn, Xn, — 2B, Xo,. (110)
We substitute o2 from (110) (droppmg the ) in L(.) in (106),

to get the function
L(X/8,0%(6)) = 5 1n(Sz = 2B X, = 280, Xo)

1

N M
~ 3N > In(1 - By, Xi(Sw)

i=1 j=1
1
= BrAi(Sm)) +3,

which is minimjzed over the space of § to get the ML
estimates.

Second-Order Field with Symmetric Dmgonal Interactions:
The negative log likelihood function for the second-order
Dirichlet field with diagonal interactions is derived by sub-
stituting (16), (18), (27)(29) into (87): '

(111)

L(X/8,0?)
1 N M
= -5NW ;;—:lln(l 2ﬁ.,l cosN+ 1
VL
_Zﬁ"lcosM+1 4ﬂ"“c°SN+1 Srawy
1 1
+ 5 1na2 + ﬁ[sm - 2ﬂh1Xh1 - 2:6"1 v T 2ﬂduXd11]’

(112)

where Sy, Xj, and X,, are defined similarly to (90), (102),
and (103), respectively, with boundary correction terms X}
and X3, being zero for the Dirichlet field and

X4, =2NMXT(SN®SM)X
N-1M-1 N-1 M
(Z Z ZijTit1,j+1 + Z E'—”E,Jwﬂlu 1)-
i=1 j=1 i=1 j=2

(113)
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Fig. 4. Log likelihood function for first-order Dirichlet field with parameters
Br, = 0.2, By, = 0.15, 02 = 10, N = M = 16, plotted as a function
of (Bhy,Bu;)-

As was done for first-order ﬁeld/sl the gradient is derived,
providing an explicit solution for ¢ which is substituted into
(112) to obtain a function of 6 alone, analogous to (111) for
first-order fields. Since no additional insight is provided by
the details, we leave them out. '

Estimation Procedure: The Polak-Ribiere conjugate gradi-
ent search method, e.g., [33], that was discussed in Section
V1 is applied directly to this problem. As explained in the
previous section, this search procedure consists of a series
of 1-D line minimizations along a sequence of conjugate
* directions generated using the function gradient, with-each
line minimization being preceded by a procedure that brackets
the line minima. In contrast to the case for fields of arbitrary
order, discussed previously, the parametrization of L(.) and
the gradient explicitly in terms of the field parameters provides
the means for fast computation of the ML estimates, the only
remaining problem being the constraints on the parameter
space. This is taken care of by using the necessary and
sufficient conditions for the parameter space, respectively,
(54), (55)(58), and (59) for first-order Dirichlet, variational,
and symmetric fields, and (63)+(66) for the second-order
Dirichlet field with symmetric diagonal interactions, in the
bracketing procedure to provide bracketing points that lie on
the portion of the line enclosed by the parameter space bound-
ary. As mentioned earlier, the line minimization algorithm only
searches the portion of the line between the bracketing points,
hence the above modification to the bracketing procedure
enables this to be solved as an unconstrained minimization
problem. Experimental results are provided in Section IX.

VIII. PARAMETER ESTIMATION IN THE PRESENCE OF NOISE

In many applications, the field sample is corrupted by
noise. The corresponding ML procedure for estimation of the
parameters from noisy data is complicated by the fact that the
inverse covariance of the noisy field no longer has the sparse
structure of the noiseless field. In the case of toroidal fields,
authors have exploited the special structure of the spectral
density function to construct ML procedures for estimation
of the parameters in the presence of additive white Gaussian
noise, see [6], [19]. For nonperiodic fields, we now present a
practical method that is similar in philosophy to the approach
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used in [21] for least squares estimation of the parameters of
a causal MRF in the presence of noise. The method assumes
the noise variance o2 is known. In most applications, o2
would have to be estimated, which is in general a nontrivial
problem. An exception is in image processing in which it is
very often straightforward to obtain an accurate estimate of
o2 by preprocessing a flat portion of the observed image, see
(2], 91

Consider the case where the field sample X is corrupted
by an independent, additive, white Gaussian field W, i.e., the
observations are:

2
Yij = Tij + wij, wij~N(007),

1<i<N, 1<j< M, (114)

where the noise w; ; is white, ie., wi; L wik, V(,5) #
(1,k), and uncorrelated with the field, ie., E{zijwik} =
0,Vi, j,1, k. We consider first the case for first-order fields.

First-Order Fields: For simplicity, we provide details of
the approach in terms of the Dirichlet field which is ‘the
simplest to examine. The data dependent terms in (111) are
Sy, Xn,, X, i€, the sample correlations defined in (90),
(102)~(105). The equivalent quantities for the observed field
Y are Sy, Yp,, Yo, which are defined in analogous fashion
to the corresponding terms for X. Substituting (114) into
the definitions for Sy, Ys,,Y,,, we get, after minor algebraic
simplification,

LA g N M
Sy =5+ 57 > vt PIPILIFLINE
i=1j=1 i=1 =1
a15)
] N oMol v .
Yoo = Xn ¥ 737 Z (i, jwi j+1 + Wi jTij+1)
o1 j=1
| N M
+ == Wi Wi, j+1, (116)
NM i=1 j=1
1 N-1 M
Yo, =X + §31 SN (@iswisng +wiiTin;)
i=1 j=1
| No1M o
+ =7 Wi, jWit1,5- (117
NM i=1 j=1

Considering the summations in (115)+117) to be approxima-
tions of the corresponding expectations and using the statistical
properties of the noise (i.e., the fact that it is white), and its
independence with respect to the original field X, we get

S, ~ Sy +02, (118)
th ~ Xh]ﬂ (119)
Yy, & Xo,- - (120

Applying the same approximations to first-order variational
and symmetric fields, we get the same relations as previously
shown for the symmetric field and an additional term in
(119) and (120) for the variational field. The additional term
arises because of the squared terms in the boundary condition
corrections for X5, and X,,, see (104), (105). Consequently,
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TABLE I
RESULTS OF ML ESTIMATION FOR FIRST- OkDER DIRICHLET FIELD N M = 32, B, = 0.20, B, = 0.29,

= 1.0. NOISE VARIANCE: FOR 10db 02

= 0.18, for 6db o2

= 0.45. NUMBER OF SAMPLES = 30

Data < ﬂhl > < Bo, > <> var(Bn, ) var(B,, ) var(a?)
noiseless 0.198505 0.289605 0.995211 0.000306 0.000336 . 0.002109
noisy(o2 = 0.18) 0.194630 " 0.293368 0.993994 0.000504 0.000598 0.002068
noisy(o2 = 0.45) 0.192400 0.295691 0.991375 0.000642 0.000764 0.003380
TABLE Il
RESUL’IS OF ML ESTIMATION FOR FIRST-ORDER VARIATIONAL FiELD N M = 32, Bn, = 0.20, B», = 0.29,
= 1.0. NOISE VARIANCE: FOR 10 db ¢2 = 0.21, for 6 db 02 = 0.54. NUMBER OF SAMPLES = 30

Data < B, > < By > <> var(Bn,) var(By, ) var(o?)
noiseless 0.198492 0.290208 0.994926 0.000340 0.000331 0.002066
noisy(c2 = 0.21) 0.194581 0.294033 0.994132 0.000538 0.000569 0.002261
noisy(c2 = 0.54) 0.192522 0.296050 0.991253 0.000711 0.000757 0.004022

for first-order fields the correlations of the noiseless sample can
- be approximated from the noisy sample using the following
relationships:

Sy~ Sy — o2, 121)
X~V — 0,2 for Dirichlet or symmetric fields,
b T %41 for variational fields,
(122)
0, for Dirichlet or symmetric fields,
le ~ Yu; - o2 o
~ for variational fields.

(123)

The modified estimation procedure uses (121)~(123) to obtain
Sz, Xp,, Xy, from the sample correlations, S,,Y3,,Y,,, of
the observed data, and then proceeds exactly as outlined in
Section VII.

Higher Order Fields: Generalizing the previous procedure
to any order Dirichlet field is straightforward because there are
no boundary correction terms to be concerned with, unlike the
case of variational or symmetric fields. The same approach as
above leads to

2
S = 8y — o,
szyra

(124)

Vr € np. (125)

The estimation procedure outlined in Section VI may be used
after the sample correlations have been approximated from
the noisy data correlations by using the relationship in (124)
and (125). Generalizing to other b.c. is simply a matter of
obtaining the corresponding definitions for the correlations
X; and following the same approach, i.e., approximating
“the summations as expectations and applying the statistical
properties. Experimental results for the modified procedure
are presented in Section IX.

IX. EXPERIMENTAL RESULTS

In this section, we present results obtained when the ML
estimation procedures discussed in Sections VI and VII are
applied to noiseless fields and also to noisy fields, with the
modifications outlined in Section VIII being used in the latter

case. The experiments were conducted using synthetic fields
generated recursively by means of the equivalent one—sided
representation for the noncausal field [30]. We also present
the results of an experiment with real data and a comparison
with toroidal boundary conditions. )
First-Order Fields: Thirty samples of a 32 x 32 first-order
Dirichlet field with parameters

ﬂhl = 0'2y ﬂm = 0'29)

were generated. The ML estimation procedure outlined in
Section VII was applied to each sample and the corresponding
ML estimates were obtained. The mean and variance of the
estimates for each parameter, defined respectively as < . >
and var(.), were computed for the 30 samples and the results
recorded in Table I. The results demonstrate that even for a
small number of samples (30), the mean value of the estimates
for each of the parameters.is close to the actual value, and
the variance of the estimates is small. The same procedure
was repeated with measurement noise being simulated by
adding independent Gaussian random numbers with variance

= 0.18, chosen to get a signal-to-noise ratio (SNR) of
approximately 10db (computed using the average power of
the 30 samples), to each sample field prior to the estimation.
The procedure outlined in Section VIII for the case of noisy
data was used. The mean and variance of the estimates for
each parameter are presented in Table 1. The same procedure
was repeated with noise variance o2 = 0.45, chosen to get an
SNR of approximately 6db, and the corresponding results also
recorded in Table I. These results demonstrate that, even for
high noise levels, the modifications in Section VIII enable the
estimation procedure to produce estimates of almost the same
quality as the noiseless estimates.

The entire experiment was repeated for a 32 x 32 variational
field with the same parameters. As before, the measurement
noise variances were chosen to correspond to SNR’s of ap-
proximately 10 dB and 6 dB, respectively. The results are in
Table II. They show the same properties as the corresponding
results for the Dirichlet field.

Second-Order Fields: The next experiment uses the ML
estimation procedure outlined in Section VI to estimate the

0% =1, (126)
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TABLE 111
RESULTS OF ML ESTIMATION FOR SECOND-ORDER DIRICHLET (MEANS OF THE ESTIMATES) N = M = 32, Br, = 0.0500, By, = 0.1950,
Biay, = —0.1350, Brq,, = 0.1010, o2 = 1.0. Noise variance (for SNR = 6 db) 62 = 0.29. NUMBER OF SAMPLES = 30

" Data

< B, > < Bu > < Bidy, > < Brag, > <% >

noiseless 0.043060 0.194016 -0.132248 0.110510 0.988772

noisy(o2 = 0.29) 0.041380 0.203856 -0.123848 0101423 0.963911
TABLE IV

ResuLTs OF ML ESTIMATION FOR SECOND-ORDER DIRICHLET ( VARIANCES OF THE ESTIMATES) N = M = 32, fn, = 0.0500, Bv; = 0.1950,
Bray, = —0.1350, Brq;; = 0.1010,62 = 1.0. NoISE VARIANCE (FOR SNR = 6 db) 02 = 0.29. NUMBER OF SAMPLES = 30

Data var(Bny) var(Boy ) var(Bia,) var(f7ay,) var(a?)
noiseless 0.000952 0.000921 0.000586 0.000767 0.001827
noisy(e2 = 0.29) 0.001632 0.000932 0.000781 0.001869 0.002355

parameters of a 32 x 32 second-order Dirichlet field with
parameters,

;th = O'O'SOOa ﬂvl = 01950, ﬂldu = —0'1350,
Bray, = 0.1010, o =1.0. (127)

Thirty samples of this field were generated and the ML
estimation procedure was applied to estimate the parameters
from each sample. With reference to the discussion in Section
VI regarding the computation of the gradient using the Monte
Carlo sampling algorithm, see (97) and (98), we found that
a small number of samples, K = 25 for this experiment,
was sufficient to provide high quality estimates. The mean
and variance of each of the parameter estimates for the 30
samples are presented in Tables III and IV, respectively. The
results are promising, with the estimate means being close to
the actual parameter values while the variances are small, even
though the estimates for only 30 samples were averaged. The
fact that a small value for K, in (98), was adequate to provide
- good results enables fast computation of the estimates. The
experiment was repeated with the samples corrupted by the
-addition of white Gaussian noise with variance 02 = 0.29
(chosen to produce an SNR of approximately 6 db), with the
modified procedure being used to compute the estimates. These
results are also recorded in Tables III and IV.

Application to Image Coding: .

An important application of the recursive framework for
noncausal GMRF’s [30] is the coding of images for trans-
mission or storage. The results presented in this paper are an
essential part of the framework since they enable the iden-
tification of the underlying noncausal field. The importance
of this framework, and correspondingly of the present work,
is illustrated by a simple experiment in which we code a
128 x 128 portion of the Lenna image, see Fig. 5(a). The
image is coded using a noncausal first-order Dirichlet field,
and also, for the purposes of comparison, using a causal
field model with three neighbors, the - third-order Markov
Mesh {1], see Fig. 6. The ML estimation procedure from
Section VII was used to compute the parameters for the
noncausal field model, while the parameters of the causal field
were obtained using least squares estimation, ¢.g., [21]. The
noncausal field parameters were obtained as 8y, = 0.103827,

Ao, = 0.394300, o7 = 130.448801, while the causal field

®) ©

Fig. 5. (a) 128 x 128 Lenna, (b) Lenna coded to 2 bits/pixel using
noncausal first-order Dirichlet field, (c) Lenna coded to 2 bits/pixel using
causal (third-order Markov Mesh) field model.

)-( X B.d ﬂu
X o Bn o
(@) ®

Fig.6. Causal field model (third-order Markov Mesh): (a) Neighbors marked

by “x,” (b) Coefficients for the 3 pairwise interactions.

parameters were [ = 0.666224, By = 0.863320, By =
—0.556740, and o2 = 118.731850. Real images, such as
the Lenna, are often highly correlated, leading to parameter
estimates that are close to the boundary of the parameter space.
Furthermore, the (negative log) likelihood function L(.) varies
very slowly in the direction parallel to the boundary. As a
result, there is a local region of parameter values for which



BALRAM AND MOURA: NONCAUSAL GAUSS MARKOV RANDOM FIELDS: PARAMETER STRUCTURE AND ESTIMATION

1349

TABLE V
ResuLTs OF ML ESTIMATION FOR FIRST-ORDER DIRICHLET FIELD N = 8, M = 32, B;,, = 0.10, B, = 0.425, 02 = 1.0. NUMBER OF SAMPLES = 30
Assumed model < B > < Boy > <o?> var(Bn,) var(B,,) var(o?)
Dirichlet 0.100758 0.423846 1.006015 0.000238 0.000261 0.004898
Toroidal 0.140650 0.355827 1.179194 0.001673 0.001458 0.021216
TABLE VI
ResuLTs OF ML ESTIMATION FOR FIRST-ORDER DIRICHLET FIELD N = 8, M = 64, 8, = 0.10, 8,, = 0.425, 02 = 1.0. NUMBER OF SAMPLES = 30
Assumed model < B > < Bo, > <oZ> var(Br,) var(Bo, ) var(a?)
Dirichlet 0.104525 0.418060 1.000391 0.000669 0.000657 0.007466
Toroidal 0.150306 0.348399 1.232698 0.001160 0.001115 0.015102

L(.) is within 1% of its minimum value. Exactly which point is
selected from this region depends on the tolerances chosen in
. the estimation procedure. See [3] for a discussion of this issue.
The noncausal field representation was transformed into
its equivalent one—sided formulation which is driven by an
uncorrelated error field [30]. The error field for the given
image was computed from this formulation and is quantized
at a rate of 2 bits/pixel using the optimal scalar Lloyd-Max
quantizer, e.g., [17]. The corresponding error field for the
causal representation wass computed and quantized at the same
bit rate using the same quantizer.

The reconstructed images for the noncausal and causal field
models are provided in Fig. 5(b) and (c), respectively. A
comparison of the two images shows the dramatic difference
between the results of noncausal versus causal modeling.
Noncausal modeling suppresses the directional streaking and
other artifacts of causality, while we retain the computational
benefits of recursiveness because of the recursive structure
[30). This simple example is presented here as part of the mo-
tivation for this work, in particular to highlight the importance
of noncausal representations for 2-D phenomena. We have
used vector quantization to achieve much higher compression
ratios. A detailed discussion of applications of this work to
image coding and reconstruction of 2-D oceanographic data
will be presented elsewhere.

Comparison with Toroidal Boundary Conditions: In many
applications where physical phenomena are modeled using
elliptic PDE’s, Dirichlet or Neumann boundary conditions are
used rather than periodic boundary conditions. Correspond-
ingly, the stochastic autoregressive (AR) models obtained
from the discretization of the PDE model are given the same
nonperiodic b.c. A question that may arise is whether there is
a significant difference when toroidal boundary conditions are
used to approximate nonperiodic fields. It is not our goal to
provide a complete or definitive answer to this question. We
address it from the point of view of parameter estimation.

Asymptotically, the effect of boundary conditions is negli-
gible, see Moran, {28}, in which it is shown that infinite lattice
GMRF’s may be constructed as a limiting case of fields defined
on a toroidal lattice. However, as illustrated below through
some experiments, for fields on finite lattices, particularly in
applications where one or more of the lattice dimensions is not
large, the use of toroidal boundary conditions may produce a
noticeable difference in the parameter estimates. This is be-

cause the parameter space constraints for a toroidal field differ
from those of other finite lattice fields, for example, Dirichlet
fields. How significant the impact of these discrepancies is
depends on the actual application.

In Table V, we present the results of a first experiment
where 30 samples of a first-order Dirichlet field with lattice
dimensions 8 x 32 were synthesized. The parameters for a first-
order Dirichlet field model were estimated from each sample
using our algorithm. In addition, each sample was also used
to estimate the parameters of a first-order toroidal field model.
The object of the experiment was to see how well the toroidal
boundary approximated a nonperiodic (in this case, Dirichlet)
field. The mean and variance, defined respectively as < . >
and var(.), of the estimates for each parameter were computed
for the 30 samples and are given in Table V. °

The same experiment was repeated for 8 x 64, 16 x 32,
16 x 64, 16 x 128, and 64 x 64 with the results being recorded
respectively, in Tables VI-X. These block sizes may well arise
in segmenting more complex fields. The toroidal boundary
approximation consistently produces biased estimates.

From Tables V-X, we conclude that the errors of the toroidal
field estimates are 1-2 orders of magnitude larger than the
corresponding errors of the Dirichlet field estimates, see Table
X1 where 13,7y, 742, are the ratios of the bias of the toroidal
estimates versus the Dirichlet for respectively, O, , By,, and
o2. The bias is due to the fact that the parameter space for
first-order toroidal fields is always subsumed by the one for
Dirichlet fields, compare Result 1 for Dirichlet fields with the
corresponding result for toroidal fields in [20].

The results just mentioned show that the periodic boundary
condition does not necessarily provide a good approximation
for a Dirichlet field. In fact, there can be significant differences
in the estimates. One can expect to obtain the converse result,
i.e., Dirichlet fields are not necessarily good approximations of
periodic boundary conditions. Ideally, therefore, the boundary
conditions used in the model should be matched to the
characteristics of the phenomenon being modeled.

X. CONCLUSION

In this paper, we have studied the parameter structure of
noncausal finite lattice Gauss Markov Random Fields. The
results include the following.

* The eigenstructure of the inverse covariance matrix for

first-order fields with boundary conditions drawn from
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TABLE VII
RESULTS OF ML ESTIMATION FOR FIRST-ORDER DIRICHLET FIELD N = 16, M = 32, 8, = 0.10, By, = 0.405, 62 = 1.0. NUMBER OF SAMPLES = 30
Assumed model < Bn, > < By > <a?> var(Bn, ) var(Bu, ) var(o?)
Dirichlet 0.100223 0.402252 1.008461 0.000340 0.000330 0.005091
Toroidal 0.109232 0.384998 1.052985 0.000447 0.000416 0.005811
TABLE VIII

ResuLts OF ML ESTIMATION FOR FIRST-ORDER DIRICHLET FIELD N = 16, M = 64, B, = 0.10, By, = 0.405, aé = 1.0. NUMBER OF SAMPLES = 30

Assumed model S < Boy > <> var(By, ) var(Boy) var(o?)
Dirichlet 0.097117 0.405307 0.993270 0.000138 0.000142 0.002459
Toroidal 0.106049 0.390370 1.029178 0.000151 0.000143 0.002524
TABLE IX
ResuLts OF ML ESTIMATION FOR FIRST-ORDER DIRICHLET FIELD N = 16, M = 128, B, = 0.10, By, = 0.40, 02 = 1.0. NUMBER OF SAMPLES = 30
Assumed model <Bm > <Boy > <> var(Br,) var(Bu, ) var(o?)
Dirichlet 0.100312 0.399454 0.998255 0.000092 0.000099 0.001491
Toroidal 0.108931 0.383039 1.028518 0.000102 0.000106 0.001634
TABLE X

RESULTS OF ML ESTIMATION FOR FIRST-ORDER DIRICHLET FIELD N = 64, M = 64, 3, = 0.10, By, = 0.400, 02 = 1.0. NUMBER OF SAMPLES = 30

Assumed model <P > <Bo > <> var(n,) var(Bu;) var(s?)
Dirichlet 0.099788 0.399854 0.9983(")6 0.000042 0.000040 0.000648
Toroidal 0.101355 0.397359 1.003812 0.000045 0.000042 0.000693

TABLE XI
RaTIO OF BiAs ERRORS (TOROIDAL/DIRICHLET) T4, Ty, 752, ARE THE Rm’o\s OF THE BIASAOF
' THE TOROIDAL ESTIMATES VERSUS THE DIRICHLET FOR, RESPECTIVELY, [, ,Bv,, AND 02

af;i:f;}’,;g;‘;{et) Table V Table VI Toble VIl Table VII  Table IX Table X

Thy . 8.98 66.37 41.40 2.10 28.625 . 6.39

Tyy 9.97 66.38 7.28 47.65 31.06 18.09

ro2 458.30 38.69 6.26 i 34.04 16.34 225

the PDE literature, as well as for a special case of a
second-order field.

A complete specification of the parameter space for the
first and second-order fields mentioned above.

Sufficient conditions on'the parameter space of Dirichlet
fields of arbitrary order, that are always tighter than
the corresponding strict diagonal dominance sufficient
conditions. ~

Explicit expressions for the likelihood function for the
first and second-order fields mentioned above. These ex-
pressions facilitate fast computation of the ML estimates.
A new parameter estimation procedure for fields of arbi-
trary order. This procedure exploits the recursive structure
of noncausal finite latticce GMRF’s to produce a computa-
tionally practical implementation. Work is continuing on
studying the properties of the algorithm.

Practical modifications that enable the ML estimators
to produce good results even when the field sample is
corrupted by additive white Gaussian noise.

The present work complements earlier work deriving a

framework for recursive processing of noncausal fields in
that it enables the estimation of the underlying noncausal
field model for a given 2-D field. Taken as a whole, the
work herein and in [30] facilitates the practical application
of noncausal fields in 2-D signal processing areas. This is
important because, as illustrated by the image coding example
in Section IX, noncausal field representations provide better
results for 2-D spatial phenomena than artificially formulated
causal ones.

APPENDIX
PROOFS AND DERIVATIONS

Proof of Lemma 2: Let

l1-a -a O .
-« 1 —-a 0 .
0 -a 1 —-a 0

D(a) = (128)
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This is the transform matrix for the discrete cosine transform
(DCT) [18]. Its eigenvalues are given by [18]:
k-1 '
A(D(@)) = 1 - 2acos (T)" 1<k<K. (129

For-the first-order variational field, the matrix Sx, given by
(20), can be expressed as
Sk = Ix — D(1), (130)

where D(1) is the DCT matrix evaluated at o = 1. Then, the
eigenvalues of Sk are given by

Me(Sk) =1-M(D(1)), 1<k<K,  (131)
=2cos(i;?1)—”, 1<k<K (132
0

Proof for Lemma 3: The eigenvalues of Sk are the roots
of the characteristic polynomial,

Dx(N) = |A\Ix — Sk, (133)
A -2 0 .
2 A -1 0

0o -1 x -1 0 .
0o 0 -1 X -1 0

= |, (134)
0 -1 X -1 0
0 -1 X =2
0 -2 A

where we have assumed K > 5. A recurrence relation
for Dx(A) is obtained by expanding the above determinant
through elements chosen to eliminate the four 2’s, stopping
only when this is achieved. The resulting recurrence relation
is,

" Dg(X) = ATk _2(A) — 8ATx_3(A) + 16Tk _4(7), K > 5,
(135)
where Tk ()) is the characteristic polynomial for the sym-

metric, Toeplitz, tridiagonal K x K matrix given in (18),
ie.,

A -1 0 .
-1 A -1 0
Tey=|0 ~1 A -1 0 136)
0 -1 X -1
0 -1 A

The recurrence relation for Tk ()) is given by, e.g., [12],
Tx(A) = '\T,K_l(’\) —Tg-2()), To=1,Ti =X (137

The closed form solution for (137) for A > 0 is provided, for
example, in [12], and is easily extended to A < 0 to get,

Tx(A) =
sinl;ﬁ_)_iﬁl‘;l 0 if A>2, 2coshf = ),
(_I)K(sin:lgﬁ*'o_)_l ) if A< -2, —2coshf =), :
(K +1) ifA=2, a9
(-DX(K +1) ifA=-2,

in(K+1)0 . . _
sl . f|A| <2, 2c080 =),

We will consider each of the cases in (138).
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Case 1 (A > 2): We can represent A as

A =2coshé, (139)
and solve for the corresponding 6 values. Substituting (139)
and the closed form solution of Tk () for A > 2 from (138)
into (135), we get, after some simplification using standard
hyperbolic identities,

Dg(0) = sinh(K + 1)0 — 6sinh(K — 1)

+ 9sinh(K — 3)6. (140)
A plot of this function for K = 8 is provided in Fig. 7 to make
the discussion that follows more concrete. The hyperbolic
equation (25) is obtained by setting (140) equal to zero. Since
the sinh function is odd, the roots of (25) are symmetric about
the origin, i.e., they come in + pairs. Note that Dg (8) is not
defined by the right hand side of (140) for § = 0 because
that corresponds to A = 2, which is handled separately. The
fact that (25) has only four roots is proved by examining the
relative effects of each of the three terms in the function.
Consider the form of (140) for § > 0, see, for example, Fig.
7(b). At 6 = 0, this function evaluates to zero, while its first
derivative is positive. Therefore, for small 8, or more formally, -
for the range,

O<e< [/ < 01,

with ¢ arbitrarily small, and 6, depending on K, the positive
term (9sinh(K — 3)0) dominates and the function remains
positive. As @ increases, the relative size of the arguments
of the sinh functions becomes more important than their
coefficients. Consequently, at some 8, which we call §; above,
the negative term (—6sinh(K — 1)d) begins to dominate,
and we have the first zero crossing as the function becomes
negative. Eventually, as @ continues to increase, (K + 1)
becomes large enough that the positive term (sinh(K + 1)d)
dominates from then onwards, leading to the second zero
crossing as the function rises monotonically. There are no other
terms to offset this tendency, hence the monotonic increase
continues indefinitely and there are no more zero crossings.
As a result of the odd symmetry of the function, the two
positive zero crossings, 0,, 6k,, have mirror images, —0,,
—0,. Since the cosh function is symmetric, the four roots of
(25) substituted into (139) provide only two eigenvalues of
Sk.
Case 2 (A < —2): Let

A= —2cosh¥, (141)
and solve for the corresponding ¢ values exactly as above,
except that we consider separately odd and even values of K.
For even values of K, substituting from (138) into (135), we
get the polynomial given in (140). For odd values of K, we get
the negative of the same polynomial. Therefore, for any value
of K we get the hyperbolic equation (25), which was shown
above to have four roots, O,,—0k,,0k,,—0k,. As before,
because of the symmetry of the cosh function, substituting the
four roots into (141) provides only two eigenvalues of Sk .
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Fig. 7. Plot of Dg(8) for A > 2 as a function of @ (in radians): (a) Plot for
9 € [—0.65,0.65], (b) Close up showing the zero crossings on the positive
9 axis.

Case 3 (|A\| = 2): Substituting

A=2, (142)

along with the corresponding solution for Tk (A) from (138),
into (135), we get,

Dx(2) = 4(K - 5), (143)

consequently, (142) is not an eigenvalue of Sk for K > 5.
Using :

A=-2,
instead of (142), and repeating the above procedure, we get,

DK(;Z) = {4(K —5) for K even

4(5—K) for K odd ’ (145)

in either case, (144) is not an eigenvalue of Sx for K > 5.
Case 4 (|\] < 2): We can represent A as

A =2cosb, (146)

and solve for the corresponding @ values. Substituting (146)
and the closed form solution of Tx(A) for |A| < 2, from
. (138), into (135), after some simplification using standard

trigonometric identities, we get,
Dg () = sin(K + 1)8 — 6sin(K — 1)0
+9sin(K — 3)6. 147

Using Euler’s identity to replace each of the sine terms in

(147), and setting the expression equal to zero, we obtain the

characteristic equation in the following form,
1—3exp{—j20})> _
(- 3exp(G20)?

exp{j2(K + 1)0}(

(144)
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Fig. 8. (a) Plot of 2tan~! ;281220 ~45 3 function of § (in radians), (b)

Same function plotted for § € [0, 7], using solid lines, superimposed with

' the family of lines indexed by k, [kx — (K +1)6), for 1 <k < K =8,

plotted using dashed lines.

(where j = v/=1), (148)

) _; 3sin20 .
= exp{j[2(K +1)0 +4tan 1—3cos20]} =1, (149)
3sin 26
— -1 -
%[(K+1)9 kx] + 2tan 1—3cos29} 0,
k=0,%1,%2 ..., @50

i.e., k is any integer. The roots of (150) can be interpreted as
the points of intersection between the function,

3sin 26
-1
2tan 1—3cos26’ asn
and a family of lines indexed by k,
kr—(K+1)0, k=0,21,22,..., (152

with constant slope —(K +1), and 0 axis intercept /(K +1).
It is straightforward to show that the function in (151) is
periodic in 6 with period «, and has odd symmetry about
the 6 axis. Both these properties are verified by the plot in
Fig. 8(a). Since the slopes of the lines in (152) are all always
(i.e., for all K) larger in magnitude than the slope of the
continuous portions of (151), each of these lines may have
no more than one point of intersection with (151), see, for

" example, Fig. 8(b).

From the symmetry of (147) it is clear that the roots come
in pairs (9,7 — 8), ie., if 8 is a root of (147), then so is
(7 — 6). From the periodicity of (151) it follows that any
point of intersection, 8%, , between (151) and a line, from (152),
indexed by ka > K or kz < 0, can be expressed in the form
(6%, +17) where 0y, is an intersection point for a line indexed
by k1 € [0,K], and I is some integer. Thus, 8, does not
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provide any additional eigenvalues beyond those provided by
the lines indexed by & € [0, K], because

cos(6s, + Im) = {cos O, if I is even (153)

cos(m —0,) iflisodd °
In addition, we discard the line indexed by k = 0 because it
intersects (151) at # = 0, which is excluded from this case
(see (138)). We are left with the family of lines indexed by
1<k <K
As an illustration, in Fig. 8(b) we plot (151) for 8 € [0,7]
as well as the family of lines from (152) for 1< k< K =8.
The points of intersection of the two functions correspond to
the roots of (147) which provide those eigenvalues of Sy that
take the form of (146). From Fig. 8(b), we see that only four
valid points of intersections exist for 1 < k < 8, because four
of the eight lines from (152) pass through the discontinuities
in (151). Below, using simple trigonometry we show that this
is always the case, i.e., for 1 < k < K, there are always only
K — 4 roots of (147).
Let k; index the line from (152) that is the last to intersect
(151) to the left of the first discontinuity, see Fig. 8(a), and
_let ko index the line that is the first to intersect after the first
discontinuity. We assyme that these lines intersect (151) at
function value —7 and 7 respectively, see Fig. 9, and derive
the horizontal distance, (marked as “x” in the figure) that
separates them. Using the right angle triangle in Fig. 9, we
derive this distance as '
2

K+1

Since lines in (152) have intercepts that are spaced /(K +1)
apart, it follows that ks = k; + 1, i.e., for this configuration
one line is lost in the first discontinuity. In actuality, for integer
k, K, it is not possible to have a line intersect (151) exactly
at —x (or =) which corresponds to § = 0.5cos™1(1/3); as
a result two lines are lost in the gap. The same analysis can
be carried out to show that two more lines are lost in the
second discontinuity. in [0, 7], see Fig. 8. Therefore, only K —4
of the K lines indexed by 1 < k < K have valid points
-of intersection with (151), providing us with K — 4 distinct
eigenvalues of Sk that take the form of (146). This concludes
the proof. : O

Proof of Lemma 4: From (15)<17), A
A=1Iy®(In — PnSm) + SN ® (—BuIm),  (159)

Using the distributive property of Kronecker products (prop-
erty 11, in [14]), in (154), we get

A=1In®In — B, (IN ® Su) — Bu, (SN ® Inr).

Let the K x 1 column vector, ¢, represent the kth or-
thonormal eigenvector of the matrix Sk. Using property
IX, from [14, p. 27], the NM eigenvalues of IN ® IM,
IN®Sp, and 5N®IM, are given by {Ai(In)A; (IM)}¢—1 =1
DaInA (S HYoss and {a(SMX U)oty Te-
spectively, with the corresponding eigenvectors given by {¢;®

¢;}, where ¢; and ¢; are N x1, and M x 1, respectively. Since
all three terms in (155) have the same set of eigenvectors, the

(155)

1353

hN

Slope = —(K+1)

.k

Fig. 9. Triangle formed bg the intersection of linesindexed by k1 and k2
with the function2 tan—! _'“‘ 26 7 at function values —x and 7 respectively.
The base of the triangle 1s the honzomal distance between these two lines,
marked by a dashed line and labeled as“x.”

eigenvalues of A are obtained as the sum of the correspondmg
eigenvalues of the terms:

Xij(A) =1 = B, Ai(Sn) — Bus Mi(SN),
"1<i<N, 1<j<M. (156)

O

Proof of Lemma 5: Using (16), (27), (28), and the dis-
tributive property of Kronecker products, we get

A=1In® In — Bn,(IN ® Snt) — Boy (Sv ® Ing)
- ﬂﬁu(sN ® SM)# (157)

with Sx(K = N, M) being given by (18). The rest of the
proof follows along the same lines as the proof for Lemma
4. Even though (157) has an additional term, (—S4,,(Sv'®
S)), as compared to (155), this term has the same set of
eigenvectors as the others and is handled in exactly the same -
manner. a

Proof for Lemma 7:  a) ||I}I|| s From property IX, [14,
p. 27), the NM eigenvalues of the Kronecker product I, =
In ® Hj, are given by,

A (IN ® Hig) = Aa(IN)Am(Hiy),
1<n<N, 1<m<M. (158)
Therefore,
17 le = | H3llo - (159)

The characteristic polynomial of H7, is provided in [15, Thm.
3.5] as

; ptl Ir
M — H,l =[II_'[1(,\ - 2cosp+ 2)]'1
L Ir ._
([I - 2008 =7 (160)
=1

where M =pj+¢q, 0<g<j-1 Fromthisweget,

||HM||3 =2c08 ——— (161)

M+1
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with M; defined in (45), and (47) follows immediately by
substituting (161) into (159).

b) ||Hf||s: The same property of Kronecker products
“applied to H] = H}; ® Ins provides the NM eigenvalues as

A (HI ® Ing) = A (HD A (Ing),
1<n<N, 1<m<M. (162)

Correspondingly,
WH ls = | Hxlls

and (48) follows by using (161) with j, M and M; replaced
by i, N, and N;, respectively.

¢) ||Pi;l|s: The desired result is obtained using graph
* theory. The directed graph of an NM x NM matrix P; ; =
[p1,k] is constructed by considering each nonzero element p i
to represent a connection (arc) from node ! to node k, in
other words the matrix elements are considered to represent
the interactions between N M nodes, see, for example, [37].
It is well known, e.g., [15], that if the graph of a symmetric
matrix has D disjoint components, the rows and columns of
the matrix can be perthuted to obtain a block diagonal matrix
with D blocks, each corresponding to one of the components
of the graph. Since P; ; has no more than 2 nonzero elements
in any row (or column), see (10), (2), the components of
the graph are all linear trees, hence the corresponding blocks
are tridiagonal. In particular, since all the nonzero elements
are 1’s, the tridiagonal blocks are of the form H}, with K
being the length of the corresponding component. Defining
Q to represent the number of nodes in the largest disjoint
component of the graph, which also makes it the dimension of
the largest nonzero block along the diagonal of the permuted
matrix, we get,

I1P:5lls = 1 Hgls

= 2cos

(163)

(using (19)). (164)

™
Q+1
It remains to show that @ has the form given in (46). This
is done by deriving the component that originates from node
1 and showing that no other component can be longer. The
details of this derivation are very lengthy and may be found
in [3, Appendix C]

d) |P;jrlls: Pijr has the same block structure as
P, ; except that the K}, and (K7,)T blocks aré swapped.

Consequently, the proof for (50) follows the same lines as

above except that the largest component in the graph starts at
node M instead of node 1. Alternatively, it is straightforward
to permute the rows and columns of P;;r to obtain P; ;
which means the 2 matrices have the same eigenvalues and

(50) follows immediately from (49). 0
Proof of Result 5: From (38), we get
)\min(Ap) = /\min(Ap—l + Ap)y (165)

Z Aﬂ'u"n (Ap—l) + Am'i'n(Ap)
(applying Thm. 5 from [25, pg. 205]),
(166)
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= /\min(Ap—l) + /\min( Z (—ﬁTA;))

T€l,
(substituting (39)), (167) .
Z Lp—l + Ami.n( Z ("ﬁ-rA;))
7€l .
(using definition of L,_, ), (168)
2 Lp—l + Z A'n'u'n("ﬂ‘rA;’;)
TET,
(applying Thm. 5 from [25, pg. 205]),
(169)
=Lp1— 3 1B-A1AF s (170)
7€l

The final equality in (170)is derived as follows. From Lemma
6, we know that A; is one of the four matrices defined
in (6)-(13). Each of these matrices has symmetric pairs of
eigenvalues, i.e., forany i, 37 s.t. \i(A7) = —;(A}). Hence,

/\min(_ﬂ‘rA;) = _IﬂrlAmaz(A;)r (171)
= — 18- 1A .- an

o

Proof of Result 7: Prove by induction.

Basis: Comparing (75) and (80), we see that (85) holds
for p = 1.

Induction: Assume L,_; > Sp_;. From (74),

Ly=Loi— Y |6-lIA s an)
7€l .
>Lpoi— 3 18114l
7€,
(because ||A7|]s < A7 lo), (174)
> Spo1= Y 1BlI1A o
T€l,
(using the induction hypothesis) (175)
=5, (from (71)). (176)
a7
O

Proof of Lemma 9: Recall, from (86), that A, is a scaled

version of the inverse covariance matrix, i.e.,
A‘ —E{XXT} (178)

Consider any 7 in the interaction set 7,. As explained in-
Section IV-C, the matrix A7 places B, the coefficient for
interaction 7, at the appropriate locations in A,. Consequently,
A7 has 1’s at these locations and zeroes everywhere else. With
this in mind it is straightforward to verify that

%trace(A_lAT) =

317 Er—l 2;—1 E{xys2ryis} for 7 =,
al r-l Za—l E{zr sy .s+J} for r = h'j s
r—l Za—l E{mr,swr+z,s+]} for 7 = ld,],

e DIe
o
& Zr:l Es—g+1 E{ZyoTryio—j} forr= "("11’1719’)
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Interchanging the order of expectation and summation in (179),
applying the definition of X, from (91), and substituting into
(93), we get (97). O
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