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Noncausal Predictive Image Codec

Nikhil Balram and José M. F. Moura, Fellow, IEEE

Abstract— The paper describes a lossy image codec that uses
a noncausal (or bilateral) prediction model coupled with vector
quantization. The noncausal prediction model is an alternative
to the causal (or unilateral) model that is commonly used in
differential pulse code modulation (DPCM) and other codecs with
a predictive component. We show how to obtain a recursive imple-
mentation of the noncausal image model without compromising
its optimality and how to apply this in coding in much the same
way as a causal predictor. We report experimental compression
results that demonstrate the superiority of using a noncausal
model based predictor over using traditional causal predictors.
The codec is shown to produce high-quality compressed images
at low bit rates such as .375 b/pixel. This quality is contrasted
with the degraded images that are produced at the same bit rates
by codecs using causal predictors or standard discrete cosine
transform/Joint Photographic Experts Group-based (DCT/JPEG-
based) algorithms.

I. INTRODUCTION

IGITAL image compression is an area of increasing
importance. Many software applications manipulate still
images along with text and graphics. Such applications require
compression algorithms providing good visual quality at very
low bit rates. Requirements of compression ratios of 20:1
(0.4 b/pixel) or more are not uncommon. At such low bit
rates, the block discrete cosine transform-based (DCT-based)
Joint Photographic Experts Group (JPEG) standard algorithm
exhibits severe degradation that appears unacceptable on high-
resolution monitors. This offers an opportunity for new still
image codecs that provide good visual quality at low bit rates.
The paper describes a new image codec. The codec couples a
noncausal predictor with vector quantization (VQ). The results
of the paper show that noncausal prediction is better suited to
model images than causal prediction. The paper is intended
to demonstrate the usefulness of the noncausal predictive
processing stage as a preprocessor to vector quantization
type schemes. The new noncausal-VQ image codec produces
images compressed at rates below 0.4 b/pixel whose quality
is better than that delivered by current standards like JPEG.
The novelty and superior performance of the codec is due to
the new predictive coding paradigm.
Traditional predictive coding schemes such as differential
pulse code modulation (DPCM) describe the image in terms of
a causal or unilateral model. By subtracting a minimum mean

Manuscript received February 16, 1994; revised January 17, 1996. This
work was supported by ONR Grant N00014-91-J-1001 and a Bellcore Grant
through INIL

N. Balram is with Kaiser Electronics, San Jose, CA 95134 USA (e-mail:
balramn@kaisere.com).

I. M. F. Moura is with the Department of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
moura@ece.cmu.edu).

Publisher Item Identifier S 1057-7149(96)05263-3.

. X X . . X . .
.. X 0 . . .. X 0 X .
. . . PN . . X .

() ()

Fig. 1. Image models: The pixels marked by “x” are the only ones that affect

the value of the pixel at “0.” In causal models such as in (a), the dependence

is from one direction only. In contrast, in noncausal models such as in (b),
the dependence is from all directions.

square error (MMSE) prediction of each pixel value from its
actual value, DPCM aims at generating an uncorrelated error
field. Typically, a three neighbor third-order Markov mesh
[1], shown in Fig. 1(a), is used. It is described as the causal
autoregressive (AR) field

x5 — (Brwij—1 + Bgwic1y + Baxi-1-1) =wij; (D
driven by white Gaussian noise, which corresponds to the
MMSE prediction error. Such models are used for practical
reasons, in particular the algorithmic convenience afforded by
the recursiveness of the model. However, causality imposes
an arbitrary and artificial directionality on the image. For
example, the model in Fig. 1(a) assumes a north, west, and
northwest dependence for the pixel values. It is well known
that the use of causal models introduces streaking in the
processed images [1]. In practice, images are usually noncausal
or bilateral in nature; in other words, a pixel value will depend
on its neighbors in all directions. Fig. 1(b) shows a first-order
noncausal model.

Our codec uses a noncausal image model. The key to
our approach is an information-preserving transformation that
converts the noncausal model into an equivalent unilateral
representation. The equivalent unilateral transformation allows
the use of Kalman-Bucy-type recursive algorithms that are
used with causal models. This affords all the advantages of
recursive processing while retaining the optimality of the
noncausal model. The noncausal predictive (NCP) component
is coupled with a VQ to obtain low bit rates. The combination
is referred to in the paper as NCP-VQ. The VQ component
that we use in the results reported here with NCP-VQ is
the VQ algorithm as described in [2]. It can be replaced
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by more sophisticated or faster forms of VQ, for example,
see that of [3] or [4], which will provide better tradeoffs
between compression ratio and image quality than the VQ
we incorporate in our scheme. The major novelty (and the
reason for the high performance) in the NCP-VQ codec is the
noncausal predictive component.

We contrast the results of a predictive coder with a causal
model with the results obtained when the causal model is
substituted by a noncausal model. The images produced by the
causal model show directional streaking while those produced
by the noncausal model display no obvious artifacts. We then
compare NCP-VQ with three codecs. The first is a causal
model based predictor coupled with VQ. The second is VQ
alone. The third is the JPEG baseline standard. These four
codecs are applied to compress an image to .375 b/pixel, which
corresponds to a compression ratio of 23.

Our experimental results demonstrate clearly the visual
superiority of NCP-VQ over the three competing alternatives.
NCP-VQ has no objectionable visual artifacts. In contrast, the
traditional causal prediction model coupled with VQ shows
severe streaking artifacts in the reconstructed image. VQ
alone, without the NCP component, and JPEG produce visible
blocking and other unsatisfactory artifacts.

Quantitatively, causal prediction with VQ exhibits a loss
over NCP-VQ of 4 to 7 dB in peak signal-to-noise ratio
(PSNR). NCP-VQ has a small loss of .6 dB with regard to VQ
alone and JPEG. With respect to entropy, NCP-VQ reduces
more significantly the entropy of the original image (from 7.6
to 4) than JPEG (with entropy of 5) or VQ alone (7.2).

The paper is organized as follows. The remainder of the
section overviews the codec. Sections IT and III present the
theoretical foundations of the noncausal predictor. Section IV
describes the algorithm with further details in the appendices.
Section V discusses the experimental results. Section VI
summarizes the conclusions.

Codec Structure: The compression or coding procedure has
a predictive component followed by a quantization component.
The predictive component has three stages (see Fig. 2). In
the first stage, the model parameters contained in the model
matrix A are estimated from the image (X) after removal
of the deterministic component (DC) or mean level of the
image. In the second stage, the noncausal model is converted
to an equivalent recursive or unilateral form, represented either
by U or L in Fig. 2. The recursive form is obtained by
Cholesky factorization of A, either using an upper/lower tri-
angular factorization (A = UUT) or a lower/upper triangular
factorization (LL™'). In the third stage, the recursive equivalent
model is used to “whiten” the image data, i.e., to generate an
uncorrelated error field (W) for the image. The error field is
quantized and possibly entropy coded. To obtain low bit rates,
we use VQ.

The decoder is also shown in Fig. 2. The error image is
reconstructed and input to a state variable representation of the
model that outputs the reconstructed image. The state variable
representation is obtained by converting the noncausal model
to its equivalent recursive form exactly as done in the coder.

The key to the approach is the transformation going from
a noncausal model to the equivalent unilateral representation.
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Fig. 2. Codec block diagram. (a) Transmitter. (b) Receiver.

This differs from assuming from the start a causal or unilateral
model for the image. The noncausal model is parsimonious,
i.e., the number of its free parameters is small and the model is
derived from first principles. On the other hand, the equivalent
unilateral model that is derived from it is of high order, i.e.,
has a large number of parameters. These parameters are highly
constrained, the number of their degrees of freedom being the
number of parameters in the original noncausal model.

From the unilateral representation, we derive a state vari-
able model for the image to which we apply Kalman-Bucy
filtering-type (KBF-type) recursive algorithms. Our approach
makes use of KBF without compromising the basic noncausal
or bidirectional nature of the two-dimensinal (2-D) spatial data.

II. RECURSIVE FRAMEWORK

The major theoretical ideas underlining the derivation of
a recursive framework that is equivalent to the original non-
causal model are presented in [5]. The approach is statistical.
The image is modeled as a Gauss—Markov random field
(GMREF). Markov fields have a local structure that is captured
by the notion of neighborhood. Fig. 3 shows the neighborhood
sets up to order five for pixel marked “o,” where the neighbors
for a given order include all the neighbors of lower order.

For the most part in this section, for the sake of clarity, we
succinctly describe the noncausal prediction step in the simpler
context of first-order spatially invariant models on square finite
lattices with zero boundary conditions (bc) of the Dirichlet
type. This will be made clear below.

A. MMSE Representation

The image' is modeled as a noncausal GMRF. Basically,
this says that the image is represented by a bilateral autore-
gressive linear model driven by a correlated input noise. This
is the minimum mean square error (MMSE) representation
derived by Woods [6].

IRecall that by image we mean the signal obtained after the preprocessing
stage of mean removal.
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To be specific, we introduce needed notation. The image is
defined on a N x M square lattice £

X = {xij: (Za]) € L}

where z;; is the value of the image attribute in pixel (¢, ). We
restrict attention to a single image attribute, the gray intensity
level. As customary in image processing [1], we stack the
intensity levels of the pixels in row i in the column vector z*
and then stack these in a N M-dimensional vector 7
T

) T .
Tt = [55372‘,1 %M] and = = [le . ::NF} @

Woods” MMSE approach represents a first-order image by
Tij + Bo(@io1j + Tivr,3) + Bu(Tij1 + i) = € 3)

where 3, and f3; are the model parameters and ¢; ; is a zero
mean correlated noise with

o2 ifk=4l=j

EEZ"E, = UE/BU lfk:Z:tl,[:J
[ei j€r,1] o2 ifk=il=j+1
0 otherwise.

On finite lattices, as in the problem under study, (3) is
completed with bc’s. We choose be’s that match the order of
the model and stack all IV equations corresponding to the NV
rows of the finite lattice. Using vector notation and collecting
in an NM x NM matrix A the coefficients 5, and 3, the
MMSE representation of the finite lattice GMRF is written as

Az =¢ @

where € = [(¢!)T--- (V)T is the N M-dimensional vector
of the random noise samples ¢; ;.

B. Noncausal Canonical Representation

In [5], the following theorem is proved. We state the theorem
in its simplest form of first-order spatially invariant (homo-
geneous), nondegenerate (strictly positive definite covariance

Equivalent neighborhood structures (for the pixel marked by “0”). (a) Noncausal of order 1-5, each subsumes the lower order neighbors, i.c., the ¢th

matrix) GMRF’s with zero Dirichlet be’s. See [5] for the full
details.

Theorem 2.1: Equation (4) represents a zero-mean, first-
order, nondegenerate, noncausal GMRF with zero Dirichlet
be’s iff

B C 0 -
cC B C 0 -
A:AT:Q?B¢96>0
0 ¢ B C
0 C B
1 B 0 -
B 1 Brn O
B={0 - - - .0 5)
Bn 1 B
0 G 1
C =8I, Cove=0%A, and Ezc’ =0%l. (6)

In (5), 0 are zero matrix blocks. Further, the covariance Yq
of the field =z is

21; = O'zA-l. (7)

Theorem 2.1 provides for first-order fields a simple, albeit
powerful, representation in terms of three parameters
{02, Bn, B, }. The quantities G5, and 3, are the interaction or
potential parameters. The matrix A is highly structured, sparse,
block tridiagonal. The Toeplitz structure is a consequence of
the field homogeneity and of the Dirichlet bc. For other bc’s, A
is a tridiagonal block slightly perturbed Toeplitz matrix. Matrix
A is referred to as the potential matrix. In contrast with one-
dimensional (1-D) signal processing, where the covariance
matrix is usually the description of choice, the theorem states
that with 2-D data the appropriate object to work with is the
potential matrix A, not the field covariance .

For models of order p, the number of interaction or potential
parameters {3} increases. For example, with a general (2-
D) model there will be two additional diagonal interaction
parameters (34, and f34,; see Fig. 3 for the structure of a
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second-order field. We indicate the interaction parameters of a
pth-order model by {3-: 7 € 7, } where 7, is the neighborhood
set.

C. Equivalent Unilateral Representation

The next theorem introduces the recursive or unilateral
equivalent representation.

Theorem 2.2: The following are two equivalent represen-
tations for a zero-mean, first-order, nondegenerate, noncausal
GMRF with zero Dirichlet bc.

1) Noncausal representation

Az =« (3
where A, e are given in Theorem 2.1.
2) Causal representation
Uz =w )
where
U ©, 0 :
_ 0 Uy 0O 0 .
U= - 0 Uy-1 ©On-1 O (19)
. 0 Un
UrU; =8; and UP©;=C (11

and 0 are zero matrix blocks of appropriate dimensions.
The S; are obtained through the successive iterates of
the following Riccati? iterative scheme.

S =B,8;=B-CTs\C 2<i<N. (12

The noise vector is white

w=[(wh)T - (w"T)T with Covw=s2l. (13)

The first part of Theorem 2.2 follows by Cholesky decom-
position of A. What is important to note is that the Cholesky
upper triangular factor U in (9) is block diagonal, where the
blocks U; and ©; are themselves upper and triangular matrices,
respectively.

Expand the two representations (8) and (9) in terms of the
row intensity vectors. The noncausal model in (8) and the
causal model of (9) lead to

Cz* '+ Bt + Coitl = ¢!
Uil‘i + @i.’vi+1 =g’

(14)
15)

respectively. Equation (14) expresses the vector z°, i.e., the
intensities of the ith row, as a linear combination of the
(“past”) vector £'~! and the (“future”) vector z*+!. We refer to
it as a noncausal or bilateral regressor. On the other hand, (15)
is row-wise unilateral or (anti-)causal, expressing x* simply
in terms of z'*!. We refer to it as a causal or unilateral
regressor. Further, the matrices U; and ©; are lower triangular.
This means that the pixel-wise regressor equations in (15) are
Nth-order unilateral AR models. This contrasts with the AR
Markov mesh model in Fig. 1, which is of much lower order.

2We refer to (12) as a Riccati iteration due to its analogy with the algebraic
quadratic equation in Kalman-Bucy filtering.
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However, the IV coefficients of the AR models (15) have only
two degrees of freedom (3, and f,).

The causal regressor is spatially varying, i.e., the matrices U;
and O; are different from row to row. In [7], it is proved that,
under suitable conditions, the Riccati iteration (12) converges,
S; — Seo, where S, is a solution of the steady-state equation

S =B-CTsZ'c (16)
1S; — Soolls < Kod®, Vi>2 an
where || - ||s is the spectral norm and Ko and 0<a <1 are

constants. Equation (17) shows that the convergence is at a
geometric rate.

From the point of view of computer implementation, the
geometric rate of convergence of the iteration is highly sig-
nificant. It says that after a small number n of steps, n < N,
it can be safely assumed that

i>n: S Se =ULU,
@izé)x,

Ure., =C. (18)

D. State Variable Framework

In order to enable the use of Kalman—-Bucy-type recursive
algorithms, we provide a state variable framework for the 2-
D image. We derive from (15) the following state variable
model for the image.

Backward State Variable Representation:

=V =G w?,
Tt = FPrt 4 Ghwt, 1<i<N-—1. (19

The model matrices for the state space representation are
given by

G'=Ut, and FP=-U7'0,=-GYGHTC. (20)

From Theorem 2.2, the statistics of the driving noise are

E(’U)i’u}jT) ZJ?IM(S.L',]',

E@'w ) =cU 1 for 1<i<N 3]
where 0; ; is the Kronecker symbol. In other words, the driving
noise w; ; is white and uncorrelated with the image variables
that lie ahead of it (in a backward sense) in the lexicographic
ordering.

There is a second equivalent state variable model, a forward
model, that is derived from the lower triangular Cholesky
factorization of A.

Equation (19) provides a quick way of generating sample
functions of a GMRF for given values of the interaction
parameters. We determine the model matrices F? and G? as
given by (20), where the U; and O, are found from Theorem
2.2, and drive the state variable model with a Gaussian
sequence of zero-mean independent, identically distributed
(i.i.d.) random variables w;; of variance o2

€
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III. MODEL FITTING

In predictive coding, the first stage fits a parsimonious
model to the image. By describing the image as a GMREF,
this corresponds to determining from the image of interest
the parameters § = {8,,7 € n,} as well as the noise power
level o2. We apply maximum likelihood (ML) estimation. ML
estimation maximizes the (negative) log-likelihood function
(LLF). Fast ML estimation of the field parameters has been
considered in [7]. The expression of the LLF follows from the
Gaussian assumption on the field

L(X/6,0%) :%lna2 In|A,(8)]

€ 2NM

+ —XTA,,(())X

oZNM 22

where A, is the potential matrix of a pth-order model. The
second term in (22) is the “model” term. It corresponds to
the normalizing constant of the multivariate Gaussian prob-
ability density function. It is the partition function in statis-
tical mechanic’s models. The third term is the “data”-driven
term.

In general, to maximize L(X/6,02) is no trivial task,
involving a large number of evaluations of the determinant
|A,| of the potential operator A,, an N? x M? matrix. Further,
the parameters 3, are constrained to a bounded region in the
parameter space © where A, is positive definite.

To search efficiently the parameter space, we use the con-
jugate gradient method, e.g., [8]. In conjugate gradient (or
any other gradient-based procedure), evaluation of the gradient
VL(-) is required at several points in the search space.
We compute VL for arbitrary order noncausal GMRF’s by
exploiting the recursive structure of these models as explained
below.

Arbitrary-Order Models:

1 1 &

2052
TENY

Reworking (22), we obtain

L(F),U?)
(23)

where the U,’s are the blocks on the diagonal of the Cholesky
factor (10), S, is the sample power, and X, is the sample
correlation of lag 7. The last two quantities are computed from
the image by (34) and (35) in Appendix A, respectively.

The noise power level o2 is explicitly determined in terms
of the other quantities by differentiating the LLF with respect
to it and equating to zero. We get

o20) =S, -2 B-X

TEN,

(24)

Given a set of values {3,,7 € 7.}, the U;’s in (23) are
computed by the Riccati iteration (11) and (12). The geometric
convergence of the Riccati iteration significantly reduces the
cost of evaluating L(-). We now present a novel way of
computing the gradient.
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Result 3.1: The gradient of the LLF with respect to the
interaction parameters is given by

VL =[|VL;: T € np (25)
E{x.}— X

2
O¢

Vr €ny: VL, = (26)
The proof is in [7]. To compute the gradient in an efficient
way, we use this result and exploit the recursive structure of
the GMRF; see Appendix A for details.

For first-order and some higher order fields, we are able
to parameterize the function L(-) and its gradient explicitly,
thereby avoiding the need for using the algorithm described
in Appendix A.

First-Order Models: First-order GMRF’s have only two
interaction parameters, 35, and 3,, the horizontal and vertical
nearest neighbor interactions (see Fig. 3). In [7], we compute
analytically the partition function for this case (and certain
higher order models). The likelihood function is

L(X/ﬁhd /8?17 052)

1 N M
= ylno? - W 2 ; (1 — By Ai(Sn)
1
= Bui(Sm)) + 5518 = 260X = 28,X,]  (27)

with S, the sample power, and X and X, the horizontal
and vertical sample correlations given by (34) and (36) in
Appendix A, respectively.

The matrices Sk (K = N, M) depend on the choice of bc’s.
The eigenvalues of these matrices are computed prior to the
conjugate gradient search using the functional forms derived
in [7] for each bc. For example, for zero (free or Dirichlet)
be, the eigenvalues of Sk are given by

km

K+l 1<k<K.

The conjugate gradient search uses these expressions to com-
pute explicitly the gradient VL [see (39) and (40) in Appendix
Al

To alleviate the computational effort, we indicate an approx-
imate parameter estimate that we have used without noticeable
degradation in performance.

Approximate Estimates: For many images, the first-order
GMRF with zero be performs satisfactorily. For square (i.e.,
N = M) images that are locally smooth, there is a simple
approximate relationship that provides directly an approximate
minimum point at which the LLF is within a few percent of
its minimum value, without requiring an iterative search of
the parameter space.

For Dirichlet boundary conditions, the parameter space is
defined by the inequality

Me(Sk) = 2cos (28)

(29)

1
lﬂv| + |,3h| < 2—_7r—
COSM+ 1

For numerical stability, we use a tolerance « on the right-hand
side of (29), and define the boundary of the parameter search
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space as
1
¢ = ) = — K. (30)
cos 37 T
The approximate parameter estimates are given by
Xy ¢ X,

Bh= ot and By =t (31

| X | + 1 AR

where A} and A, are the horizontal and vertical sample
correlations as introduced before. These can be derived via
a Taylor series approximation. They reflect the fact that,
intuitively, the ratio of the interaction coefficients should be
equal to the ratio of the sample correlations and the fact
that for fields that are smooth (as most images are) the
minimum lies very close to the parameter space boundary.
This approximation is used in the image shown in Fig. 6(b).

IV. ALGORITHM

The codec is described in detail using the equations sum-
marized in the previous two sections. The coder is considered
in Subsection IV-B and the decoder in Subsection IV-A.
Specialized tasks are presented in pseudocode in Appendix B.
The dependence of the codec on the model order is through
these blocks. At the block level in Subsections IV-A and IV-B,
the procedure is independent of the model order.

A. Coder

We detail the structure of the coder. The coder takes
the given image X as input and produces a compressed
representation W, plus overhead information (mn, #) pertaining
to the image model. The specialized subroutines referred to
below are in Appendix B.

1) Parameter Estimation. The global mean (m) of the
image is subtracted out, and the noncausal model param-
eters # are estimated for the zero-mean image. There are
two steps, the setup and the iterative search. For a first-
order model with zero (also known as free or Dirichlet)
be’s, for practical reasons the iterative search may be
replaced by the fast approximation outlined in Section
I In this case, Step 2 is replaced by the subroutine
approxest (-) given in Appendix A.

a) Step I: Setup. Compute: i) global image mean
m=1/NM SL, ¥, z; ;; i) zero mean image
X := X — m; iii) sample power S, using (34),
and sample correlations {X,,7 € n,} using (35)
for arbitrary order models or (36) for first order.
b)  Step 2: Iterative Search. The parameter space of
0 is searched iteratively along a sequence of
conjugate line directions (D)) chosen according
to the Polak—Ribiere conjugate gradient method;
see, for example, [8, Sec. 10.6]. Each iteration i
finds the point #(**1) at which the (negative log)
likelihood function L(-) is minimized on the line
specified by the previous minimum point #¢ and
conjugate direction D). The iteration proceeds
unti]l the change in function value between two
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consecutive minimum points is below a user-
specified tolerance e (see Appendix A for details).

2) Transformation. Given the noncausal parameter esti-
mate vector éM 1 (output of the previous stage), the
subroutine riccati(-) computes the equivalent recursive
representation matrices {U;, ©;}.

3) Generation. The uncorrelated error image W is gener-
ated recursively one row at a time, starting with the last
(N'th) row, using the equivalent “backward” innovations
row process (15). The innovations process matrices
{U;,©;} were computed in the previous stage.

4) Quantization. Any quantizer may be used to quantize
the error image (W). In order to obtain bit rates of 0.5
and lower (corresponding to compression ratios of 16 or
better), we use a VQ employing the Linde-Buzo-Gray
(LBG) algorithm [2]. The quantizer output may be
entropy coded (in our experiments reported in Section
V we have not done this) to obtain additional lossless
compression. The output of this stage is the quantized
and entropy coded field W,. Details on the VQ actually
used in the experiments of Section V are given in that
section.

Output of Coder: The output is a compressed represen-
tation of the image consisting of the quantized entropy-
coded error field W,. The noncausal model parameters (6, m)
are overhead information, negligible in comparison with the
quantized error image. For example, for a first-order model,
there are only three scalar overhead items, the parameters &y,
and [3,, and the mean m.

B. Decoder

The decoder reconstructs the image (X,.) from the coded
error image W, and the model parameters (6, m). The decoder
is essentially the reverse of the coder, except it has no
parameter estimation step.

1) Reconstruction of Error Image. The coded error image

W, is entropy-decoded and reconstructed according to

the rules of the quantizer, producing the reconstructed

error image W.,.

Transformation. Given the noncausal model parameter

vector ¢, the subroutine riccati(-) computes the equiva-

lent recursive representation matrices {U;, ©;}.

3) Reconstruction. The “backward” state space model
(19) is used to reconstruct the image recursively, one
row at a time, starting from the last (/Nth) row, with the
rows from the reconstructed error image W, as inputs.
The {G?, F?} are obtained from {U;, ©;} using (20).
The global mean m is added to the reconstructed image,
X, = X, + m.

2)

C. Architecture Implementation

The architecture of the noncausal codec is simplified by
taking into consideration the following observations where,
for simplicity, we assume square images (N = M).

1) Storing the 2N triangular matrices U; and ©; requires

O(N?®) memory size. We observed that the coefficients
of the equivalent unilateral representations decay ex-
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TABLE T
PARAMETERS FOR MODELS USED IN FiG. 4. GLoOBAL MEAN oF ORIGINAL (LENNA) IMAGE = 110.396667

Model

parameters

noncausal

Bn = 0.103827, B, = 0.394309, o2 = 130.448801

Approx. noncausal

Bn = 0.246140, B, = 0.251996, o2 = 150.675292

causal

BE = 0.666224, B; = 0.863320, B = —0.556740, o2 = 118.731850

ponentially fast. By keeping only [ < N of these
coefficients, the matrices U; and ©, become upper and
lower triangular banded matrices with band [, reducing
the memory requirements to O(N?[). Because most
operations are O(N3) or O(N*?), they are now reduced
to being O(N?l) or O(N?p?). A band of | = 8
for images of N = 256 was found not to degrade
significantly the performance.

2) The Riccati iteration converges at a geometric rate. By
stopping at iteration n <« N, we save computation
time and memory space. The memory requirements
become O(Nnl) and the number of operations O(Nnl)
or O(Nnl?).

3) For many images, see the Lenna image at .375 b/pixel
in Fig. 6(b), the simple approximate estimates of (31)
provide good performance, avoiding the costly ML
estimation step.

V. EXPERIMENTAL RESULTS

The experiments presented here were designed to make two
major points. First, we seek to emphasize the importance of
using noncausal image models versus causal ones. This is the
motivation behind the first set of experiments in which we cou-
ple predictive coding with a simplified setting for quantization
(scalar quantizer) to contrast the effects of noncausality versus
causality in the image model. In the second set of experiments,
we show that good-quality results may be obtained at very low
bit rates when we combine noncausal predictors with vector
quantization as in NCP-VQ. These results are superior to
those obtained at similar bit rates using causal predictors with
VQ, VQ alone, or the DCT-based JPEG baseline system. We
discuss below these results in terms of visual quality, entropy,
and PSNR.

The VQ used in our experimental studies is the LBG
algorithm in [2] and has been trained with the image it is
quantizing. The JPEG implementation used here is from [9].
The JPEG results are after a final stage of lossless coding,
not included with the other methods, the compression ratio
indicated for JPEG already factoring in this additional gain.

We report results with one of the images from the USC-SIPI
database [10], the 128 128 Lenna image at a resolution of 8
b/pixel. The Lenna image combines relatively homogeneous
and smooth patches with highly detailed regions like the
eyebrows and strands of hair.

Experiment 1: The Lenna image is compressed to 2 b/pixel
using NCP followed by scalar quantization. The image was

modeled as a noncausal first-order Dirichlet field and its
parameters estimated using the ML procedure in Section IIL
The estimated values are given in the first entry of Table 1.
For simplicity, the uncorrelated error field was quantized to
four levels or 2 b/pixel using a scalar quantizer, the optimal
Lloyd—Max quantizer assuming a Gaussian density, e.g., [1].
The reconstructed image is shown in Fig. 4(b). We compared
this compressed image with the result of compressing it
with a causal predictor followed by scalar quantization. The
causal predictor is designed assuming the image is modeled
by a causal image model, the (three-neighbor) third-order
Markov mesh displayed in Fig. 1. The prediction error field
is generated recursively using a causal third-order AR [see
(1)]. This error field is then quantized using the Lloyd-Max
quantizer to the same bit rate of 2 b/pixel as above. The
Markov mesh parameters were obtained using least-squares
estimation (see the third entry in Table I). The reconstructed
Lenna using NCP and DPCM followed by scalar quantizer are
shown in Fig. 4(b) and (c), respectively.

Comparing the two reconstructed images, we see that the
one produced by the causal image model exhibits considerable
streaking while the one that used NCP does not. This em-
phasizes the superiority of noncausal image models vis-a-vis
causal ones. This is true in spite of the fact that the third-order
Markov mesh causal model has more free parameters to adjust
than the first-order noncausal model.

Experiment 2: We coded the Lenna image with the NCP-
VQ codec described in Section IV. Neglecting the small
overhead due to the noncausal model parameters, the image is
coded to .375 b/pixel. The corresponding compression ratio is
21.3. This bit rate is achieved with a vector quantizer based on
the LBG algorithm [2] with block size 4 x4 and 64 codevectors
trained with the Lenna image error field.

We tested two noncausal predictor models in the NCP-
VQ. In the first, the parameters of the noncausal predictor
are estimated by applying the ML algorithm of Section IIL
They are, as before, shown by the first entry in Table 1. The
image quantized with this optimal ML NCP-VQ is displayed
in Fig. 5(b). In the second noncausal predictor, the parameters
are the estimates given by the (31) (see second entry in
Table I). The results of the quantized image are displayed in
Fig. 5(c).

We compared these two NCP-VQ quantized Lennas with
the Lenna quantized using three competing codecs. The first
is causal prediction with the same implementation of VQ as in
NCP-VQ, trained now on the causal error Lenna image. The
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Fig. 4. (a) Original 128x128 Lenna image. (b)—(c) Reconstructed image after compression to 2 b/pixel using predictive coding and the Lloyd-Max
quantizer with four levels. (b) used (noncausal) first-order Dirichlet field as image model, and (c) used (causal) third-order Markov mesh as image

model. The model parameters are given in Table 1.

second is VQ alone trained on the Lenna image. The third
is JPEG as available from [9]. All these codecs compressed
Lenna to a similar .375 b/pixel compression.

The causal-VQ result is shown in Fig. 5(d). The result of
VQ alone (after subtraction of the global mean) is displayed
in Fig. 6(c). The JPEG reconstructed image is provided in
Fig. 6(d). The bit rates reported for JPEG include entropy

coding, while for NCP-VQ they are prior to entropy coding.
We expect entropy coding to provide an additional reduction
of 10-15% of the bit rate reported for this experiment (0.375
b/pixel).

The results in Figs. 5 and 6 show that the image compressed
with our technique [see Fig. 5(b) and (c) and Fig. 6(b)] dis-
plays good quality as well as fidelity especially considering the
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Fig. 5.

@

(a) Original 128x128 Lenna. (b)-(d) Comparison of reconstructed Lenna after compression to 0.375 b/pixel using: (b) NCP-VQ with optimal

ML parameters from Table [; (¢) NCP-VQ with approximated parameters from Table I; (d) third-order Markov mesh (causal prediction) with optimal

parameters from Table L

low bit rate (0.375 b/pixel). The reconstructed image retains
acceptable visual quality and most of the detail of the original,
e.g., the structure of the eye and eyebrows. Moreover, there
is little blocking visible in the image despite the fact that VQ
is prone to introducing blocking at low bit rates. This remains
true even when we use the approximate simple estimates of
(31) [see Fig. 5(c)]. The causal-VQ codec exhibits severe
degradation and streaking at these bit rates [see Fig. 5(d)].

VQ exhibits blocking effects as illustrated in Fig. 6(c) (VQ
alone). The result obtained with JPEG, see Fig. 6(d), displays
the blocking effects known to occur with this method at low
bit rates. This blocking or tiling occurs because each 8x8
block in the image is coded independently, and therefore the
reconstruction error for each block is independent. At low
bit rates, the difference between the reconstruction errors of
neighboring blocks causes the tiling.
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Fig. 6. (a) Original 128128 Lenna. (b)~(d) Comparison of reconstructed Lenna after compression: (b) To 0.375 b/pixel using NCP-VQ with a first-order
Dirichlet field as the noncausal image model and VQ (4x4 blocks, 64 codevectors) to quantize the error field; (c) to 0.375 b/pixel using VQ (4x4 blocks,
64 codevectors) to quantize the image with the global mean removed; (d) to 0.3765 b/pixel using JPEG (8x8 DCT) plus entropy coding.

Entropy and SNR Comparisons: Table Il summarizes the The MSE and PSNR are evaluated according to the follow-
entropy, MMSE, and PSNR values for the several techniques ing expressions:

discussed before when applied to the Lenna image. In Table 1 MX B

II, the entropies of the images compressed with the noncausal MSE = v Z Z(X(Z,j) - X(4,9))? (32)
predictor and causal predictor are computed for the error i=1 j=1

images. For the JPEG compressed image, the entropy value _ 2552

is the entropy of the DCT transformed image. PSNR = 10log, MSE (33)
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TABLE 1I

MSE, PSNR, AND ENTROPY VALUES
Images MSE | PSNR(db) | Entropy | Description
Figure 4-(a) - - 7.6016 | Original Image
Figure 4-(b) | 278 23.7 4.07 Noncausal codec (2bpp)
Figure 4-(c) | 689 19.5 4.14 Causal codec (2bpp)
Figure 5-(b) | 132.5 27 4.07 | ML NCP-VQ (.375 bpp)
Figure 5-(c) | 1444 26.54 4.23 Approx. NCP-VQ (.375 bpp)
Figure 5-(d) | 612.2 | 20.26 4.14 | Causal codec with VQ (.375 bpp)
Figure 6-(c) | 113.7 27.6 7.18 | VQ alone (.375 bpp)
Figure 6-(d) | 112.4 27.62 5.05 JPEG (.3765 bpp)

where X (4, ;) is the original image and X (i,7) is the recon-
structed image.

The PSNR values for the noncausal predictor exceed from
4-7 dB the corresponding values for the causal predictor. A
second important characteristic of the noncausal predictor is
that its PSNR increases 3 dB when we replace the scalar
quantizer with the VQ. This is not the case with the causal
predictor for which the MSE and PSNR values are practically
the same with scalar quantization and with VQ. Compared
with JPEG and VQ alone, NCP-VQ exhibits a slight loss of .6
dB in PSNR, 27.6 dB for the first two, and 27 dB for NCP-VQ.

In terms of entropy, the noncausal and causal predictors with
an entropy of 4 are capable of reducing more significantly the
correlation of the image than JPEG with an entropy of 5 or
VQ alone with an entropy of 7.

Feedback Versus Feedforward: Vector quantizers with
predictive coding are usually implemented as feedforward
schemes [11]. The quantizer is cascaded with the predictor
instead of being in the predictor feedback loop as is usually
done with scalar quantization schemes. A major strength of the
noncausal predictive component is that it is robust enough to
produce good-quality output at low bit rates, as demonstrated
by Fig. 5(b) or Fig. 6(b). In contrast, the traditional causal
predictive model is very sensitive to errors and produces
very poor-quality output, as demonstrated by Fig. 5(c) if the
quantizer is cascaded instead of being in the feedback loop.

VI. SUMMARY

NCP-VQ, the algorithm for image compression described
in this paper, has been demonstrated to provide significant
compression at a low level of degradation. It combines a new
noncausal prediction model component with vector quantiza-
tion. The noncausal component whitens the original image
(after removal of the global mean), generating an error im-
age that is vector quantized. The paper demonstrates how
to implement the noncausal predictor component recursively
making it structurally equivalent to a causal predictor, but
without compromising its optimality. Even at compression
ratios exceeding 20, NCP-VQ does not show any major
objectionable artifacts such as the streaking that is caused by
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causal prediction models or the blocking caused by VQ alone
or JPEG.

Besides the better visual quality results of the NCP-VQ,
it leads also to better quantitative results. Its PSNR value,
comparable to that of JPEG and VQ alone, exceeds in about
7 dB the PSNR of the causal predictor with VQ. In terms of
entropy, the noncausal predictor reduces the entropy of the
original from 7.6 to 4. This is better than the entropy of 5 of
the JPEG DCT transformed image, or the entropy of 7.2 of
the VQ alone.

NCP-VQ is a flexible and easily extensible algorithm.
Its novel component, the NCP stage, can be coupled (as a
preprocessor) with new high-quality VQ codecs to produce
even better results.

APPENDIX
SAMPLE CORRELATIONS AND GRADIENT COMPUTATIONS

Sample Correlations: The sample power, S, and the sam-
ple correlation of lag 7, X, are given by

(34)

for 7 = v;

for 7 =h;
(35)
— z

r,slrti,s+j for 7 = dlij

T sLryis—j [OTT=dp, .

In (35), 7 = w;,hj,dy,,d,,, represent the directions of
the interaction parameters vertical, horizontal, left diagonal
(northwest, southeast), or right diagonal (northeast, southwest),
respectively. For example, ﬂd"'zj represents the interaction
parameter along the right diagonal direction for pixel (4, ).
For first-order fields, there are only two sample correlations,
the horizontal 7 = h and vertical 7 = v

1 N M-
= Nu ZZ wisi i+ X ),

Z

-1

M
XU = § :fl‘ FEZESW + le

N (36)

o
Il
1A

=1

with X}lfl and Xfl being correction terms that depend on the
choice of boundary conditions. For example, for zero Dirichlet
boundary conditions, they are both zero.

Computation of the Gradient: We evaluate the gradient of
the LLF at a point (), 02(1)) using Result 3.1. First compute
the expectation E{X,}. Evaluate this by Monte Carlo via the
fast recursive procedure in Section II. Using the recursive
representation (15), we generate a large number (K) of
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samples of a field with parameters (9<i>,a§<i)). For each

T € 7, we estimate E{X;} from these samples as
1 &
— (k)
Ly

k=1

E{x,} = (37)

where Xﬁk) is the correlation of lag 7 computed from field
sample #k. The algorithm is summarized below. Given the
potential matrix A,(6*):
» Step 1. Compute the matrices {U;, ©;} using the Riccati
iteration (12) and (11).
* Step 2: Use the (“backward”) state-space representation
(19) to generate recursively K samples of the field, with
a Gaussian random number generator providing the white
noise input: For £ = 1 to K

Ig\l;) = Gl}vwé\]:;) s

o) = Flal) + Glwlyy  1<i<N-1 (38)

with model matrices defined in (20). The sample correla-
tion X is computed for sample #k.

+ Step 3: Substitute the sample correlations {Xf(k)}le in
(37) and the results in (26) to obtain an estimate for the
gradient at the given parameter space point (8, g2()),

For first-order fields, using the explicit equation for the log-
likelihood function in (27), we obtain the following explicit
equations for the gradient over the 2-D space (0, 5,), VL =
[VLy,VL,] where VL, and VL,, the partial derivatives of
L(-) with respect to 3, and f3,, respectively, are given by

1 A (Sum) X
Ve =53 ZZ T Fonon) — By @ar))  o?
(39)

1 X Xi(Sy) X,

Lo = 5N ;g 1= BuAi(SN) = Brdi(Sm)) o2
(40)

Coder—Iterative Search: The iterative search step in the

coder proceeds along the following lines.

1) Initialization: Choose search tolerance e, the starting
point PG (e.g., the origin), and the initial direction
DO (e.g., the negative gradient as suggested in the
Polak—Ribiere method)

0 =0, =0, i:=0, D©.:=_VLHD)
4D
where VL(-), the gradient of L(-), is computed by the
subroutine funcgradient(-).
2) Line minimizations: Iterate through line minimizations
until a stop condition is satisfied. The minimization
along line ¢ specified by the point and direction pair

(0, D®) proceeds as follows:

a) The line minimum is bracketed by finding scalars
a,b,c such that a <b < ¢ and

Yo

LOD +bDD) < min(L(69 + aDD), LD + cD®Y).
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The bracketing is done by subroutine bracket(-).
The value of L(-) at any location in the parameter
space is provided by subroutine funcvalue(-).

b) Given bracket points a,b,c, subroutine dbrent(-)
uses parabolic interpolation (Brent’s method), to find
the scalar «p,;, that minimizes the value of the
function along line ¢ as in

Grnin = arg min L6 + aD®),

¢) The present value of the minimum point is updated
as follows:

g0+ = 90 4 oy DO

3) Stop Condition: The function value at (1)) is com-
pared with that at the previous estimate of the minimum
(6()). If the change is below tolerance ¢, the parameter
estimation is terminated; otherwise, the new conjugate
direction is chosen according to Polak—Ribiere’s update
formula [8] as follows:

2AL(OGD) — L)
L) + [1(60)]

_ (VL(86+D) — VL(§D))TVL(66+)
= VLOOYTVLO)
DO .= _VL(HOHD) 4 4, DO
=1+ 1
Go to beginning of line minimization

else .
Orrr i= 0@
Exit the iteration.

APPENDIX B
SUBROUTINES

The coder and decoder use the following subroutines:
riccati(s), funcvalue(:), funcgradient(-), bracket(-),
dbrent(-), and approzest(-). Some subroutines use different
procedures when the eigenvalues of matrix A, are known
(first- and special second-order models). For these models,
explicit expressions are available for the evaluation of
the likelihood function and its gradient, in, respectively,
funcvalue(-) and funcgradient(-), and an exact description
of the parameter space is available for use in the bracketing
routine, bracket(-). We describe here the essential procedure
for these models, as well as the one for arbitrary order.

Tolerances for the Algorithm: The user specifies three tol-
erances k, €, and 8. The first two are used only in the coder
parameter estimation step, the third one in both the coder
and the decoder. Tolerance x is used in bracketing for first-
order fields only, representing the minimum distance from the
parameter space boundary that is acceptable from the point of
view of numerical stability [see (30)]. Tolerance ¢ is the stop-
ping condition for the iterative search in the parameter space.
Finally, tolerance ¢ is the stopping criterion for convergence
of the Riccati iteration in subroutine riccati(-).

1. riccati(+)
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Inputs: 0,6.

Outputs: ng, {U;

below).

Procedure:

* Blocks B and C in the potential matrix A given in (5)
are set up using the parameter vector §. The structure of
B and C is dependent on the model order and boundary
conditions.

e The Riccati iteration in (12) is continued until conver-
gence to specific tolerance 6. One possible metric for
convergence using the easily computed matrix infinity
norm || - ||oo is

..{©;}2, (optional, see comments

1Sim1 — Silloo <6 42)

i.e., convergence is said to have occurred at iteration
i = ngs, when the condition in (42) is satisfied. Due to
the geometric convergence, this occurs in most cases for
ns < N. At each iteration ¢, S; is tested for positivity. If
nonpositive (indicating that the parameters are outside the
valid parameter space of the model), the Boolean variable
“valid” is set to zero, and the iteration is aborted. The
Cholesky factor matrices {U;, ©;}2, are computed using
an.
The number of iterations until convergence, ns, and the
matrices {U;}72, are the output of this block. The set {©;}1,
may be returned as output or computed elsewhere, when re-
quired, from (11), depending on whether computational cost or
memory usage is the primary constraint of the implementation.

2. funcvalue(-)

Inputs: 09, DD . S, {X, € n,}, {\(Sk)}-

Outputs: valid (Boolean), L(#®) + o D®).

Procedure for First-Order Fields: The (negative log) like-
lihood function is evaluated at the given location () +a D))
using the expression given in (27), with o2 substituted from
(24).

Procedure for Arbitrary-Order Fields: The function is
evaluated at the given location () + aD®) using (23),
with o2 substituted from (24). The subroutine riccati(-)
computes the blocks U; up to convergence with tolerance
0. For convergence at ns (see procedure for riccati(-)), the
function value is

1 1|2
L(H,az):ilnaf‘m > In|Ui] + (N = ns) In |Us, |
1
307 Se—2> B.X, (43)

TENp

with o2 substituted from (24). If riccati(-) returns valid = 0,
exit the procedure with valid = 0.

3. funcgradient(-)

Inputs: 8@ D@ o S, (X, € n,}, {M\(Sk)}

Outputs: VL@ + oD®).

Procedure for First-Order Fields: The gradient is evalu-
ated at the given location (§() + D)) using the expressions
given in (39)—(40) with o2 substituted from (24).
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Procedure for Arbitrary-Order Fields: The gradient is
evaluated at the given location (#(Y + aD(®) using the
expressions given in (25) and (26), with o2 substituted
from (24). The statistical quantities in (26) (E{X,}) are
estimated from samples of a GMRF with parameter vector
0 = 0% + oD, These samples are synthesized using the
recursive representation of the GMRF. The procedure is as
follows.

1) Given 8, the subroutine riccati(-) computes the equiv-
alent recursive representation matrices {U;, ©;}.

2) The (“backward”) state-space representation given by
(38) is used to generate recursively (one row at a time)
K samples of the field. The sample correlation XT(k) is
computed for sample #k by (35).

3) The sample correlations {XT(k)},CK:1 are substituted into
(37), and the results into (26) to obtain an estimate for
the gradient at the given point.

4. bracket(-)

Inputs: 09 DO a8, {X, €

funcvalue(-).

Outputs: a,b,c

Procedure for First-Order Fields:

1) a := 0.

2) Set ¢ equal to the smallest &> 0 such that #© + kD®
is in the parameter space. For example, for first-order
models, zero be, and N = M, the parameter space is
given by (29). For numerical stability we use a boundary
cushion (matrix A is undefined on the boundary) using
(30) on the right-hand side of (29) and an equality
instead of the inequality. For k = k1, ko, k3, k4, the
point 8 + kD) is placed on one of the four boundary
lines given by (29) [with (30) as the right-hand side],
the negative values for k;,7 = 1,2, 3,4, are set to zero,
and ¢ := min(kl, kg, k37 k4)

3) If

Mot {Ak(Sk )}

LD + aD®) > L(#D + cDW)
then
Swap a and ¢
4) Repeat until exit condition is satisfied:
eb=ua+c¢/2
o If
L9 + 6D®) < min(L(¥) + aD®),
L(O® + cDW))
then
Exit
else
c:=b
Go back to beginning of loop.

Procedure for Arbitrary-Order Fields:

1) a := 0.

2) Find middle point: starting with a large initial value for
b, evaluate function at b using funcvalue(-), continue to
decrease b (e.g., b := b/2) until a valid point is obtained.

3) Find outer point: starting at b step along line away from
a and evaluate function. Repeat with decreasing step
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sizes until a valid point ¢ is found at which the function
value is larger than at b.

5. dbrent(-)

Inputs: 8 DO a b, ¢, funcvalue(:), funcgradient(-)

Outputs: min

Procedure: This subroutine uses Brent’s method for par-
abolic interpolation to obtain the minimum along a line.
The procedure begins with three points that bracket the line
minimum. The routine is from [8].

6. approxest(-)

Inputs: X, X,, k.

Outputs: 0 = [Bn, Bu)
Procedure: Compute approximate estimates /3;, and (3 using

3.
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